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Abstract—We present here a scalable protocol for transaction
management in key-value based multi-version data storage sys-
tems supporting partial replication of data in cloud and cluster
computing environments. We consider here systems in which
the database is sharded into partitions, a partition is replicated
only at a subset of the nodes in the system, and no node
contains all partitions. The protocol presented here is based
on the Partitioned Causal Snapshot Isolation (PCSI) model and
it enhances the scalability of that model. The PCSI protocol
is scalable for update transactions which involve updating of
only local partitions. However, it faces scalability limitations
when transactions update non-local partitions. This limitation
stems from the scheme used for obtaining update timestamps for
remote partitions, causing vector clocks to grow with the system
configuration size. We present here a new protocol based on the
notion of sequence number escrow and address the underlying
technical problems. Our experimental evaluations show that
this protocol scales out almost linearly when workloads involve
transactions with remote partition updates. We present here the
performance of this protocol for three different workloads with
varying mix of transaction characteristics.

I. INTRODUCTION

Replication management techniques in large-scale systems

have to make certain fundamental trade-offs between data

consistency, scalability and availability. There are several

factors that can affect the scalability of replication manage-

ment techniques. A high degree of replication can become

a major obstacle in achieving scalability as noted in [10].

Full replication is undesirable in large-scale systems. This has

motivated investigation of techniques for managing data with

partial replication [9], [11], [17], [16], [18], [19], i.e. a data

item is not required to be replicated at all nodes, and a node

contains replicas of only a subset of the items in the database.

Another obstacle in regard to scalability is the requirement

of strong consistency, as in serializable transactions, which

can require distributed coordination such as the execution

of a two-phase commit protocol involving multiple nodes.

This has motivated designs of many large-scale systems to

adopt weaker yet useful models of consistency [6], [4], which

can be supported using asynchronous replication management

techniques. The weak consistency based models for replication

management in large-scale systems have ranged from eventual

consistency [6], per-record timeline consistency [4], causal

consistency [13], and snapshot isolation (SI) [3] with causal

consistency [20].

The focus of this paper is on the development of a scal-

able protocol for providing transaction support in partially

replicated databases in large-scale systems. We consider here

systems in which a database is sharded into multiple disjoint

partitions. Each partition stores a set of items using the key-

value based multi-version data storage model. A partition is

replicated at a subset of the nodes (sites) in the system, and

a node may contain any number of partitions. A transaction

may be executed at any node and it may read or modify items

in any of the partitions, local or remote. The protocol which

we present here is based on our previous work [15] on the

PCSI (Partitioned Causal Snapshot Isolation) model.

The PCSI model is based on snapshot isolation (SI) for

transaction execution, which is an optimistic concurrency

control technique. A transaction obtains a snapshot time when

it begins execution. It reads latest committed versions of the

data items as per its snapshot time, and all updates are made

to local copies of data in the transaction’s buffer memory.

The transaction then goes through a validation phase which

allows it to commit only if there are no concurrent write-
write conflicts. When a transaction is committed, it obtains

an update sequence number from each of the partitions that it

modifies. The commit timestamp of a transaction is a vector

clock consisting of these sequence numbers. The transaction’s

updates are then applied to the local partitions, and then its

updates are propagated asynchronously to other nodes which

contain the replicas of the updated partitions. At a remote

node, the transaction updates are applied according to their

causal ordering. For this purpose a vector clock is maintained

for each partition and the length of the vector clock is equal

to the number of its replicas.

In this paper we address the scalability limitations of

the PCSI protocol presented in [15]. It is scalable when

transactions update only the items in the local partitions at

their execution sites. It is also scalable for workloads in

which a partition is updated by transactions executing only

at some bounded number of remote nodes that do not have

that partition. For workloads in which any partition may be

updated by transactions executing at any of the sites in the

system, the scalability of the PCSI protocol was found to

be limited to about 20 sites. This scalability limitation of

the PCSI protocol motivated us to re-examine its mechanism

for supporting transactions updating non-local partitions. It
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creates at the transaction’s execution site a ghost replica of the

remote partition, which does not store any data and no updates

are propagated to it. Its purpose is to locally assign update

sequence numbers. We found that this mechanism causes the

vector clock of a partition to become as big as the system size,

having an element for each of the ghost replicas, in addition

to those for the real replicas. This becomes the major factor

in limiting the scalability of the protocol, as the vector clock

related computations start affecting the performance.

We developed a new protocol for supporting non-local

partition updates in the PCSI model to make it scalable when

partitions may be updated from any of the nodes in the system.

Our experimental evaluations show its performance scalability

on a cluster of 100 nodes. We conducted these evaluations

using three different workloads, each with five benchmarks of

varying mix of transaction characteristics. The approach taken

in this protocol is based on obtaining the sequence number for

a transaction’s updates to a remote partition from one of its

replicas. This approach raises several technical issues which

we elaborate upon and address in this paper. One is to ensure

that the local transactions at the replica’s site which grants a

sequence number to a remote transaction are not stalled due

to the causal ordering of transaction updates. To address this

issue, we develop a scheme based on the notion of escrow-
based sequence numbering. When granting a sequence number

to a remote transaction, a replica reserves as escrow a range of

sequence numbers for local transactions and gives out to the

remote transaction an advance sequence number following the

escrow range. We identify and address the various coordination

issues that arise in adopting this approach. Another issue

that arises is the possibility of deadlocks when several trans-

actions update a common set of multiple remote partitions.

Deadlocks can arise in applying updates of two transactions

which obtained remote sequence numbers from a common set

of partition replicas but the sequence order implied by two

replicas are not consistent. Addressing this problem requires

that if two or more transactions request sequence numbers

from a common set of remote partition replicas, then their

requests must be handled in the same order by all of them.

In the next section we discuss the related work on trans-

action support for partially replicated data in cloud/cluster

computing systems. Section III presents a brief overview of

the PCSI model. In Section IV we present the escrow based

advance sequence number assignment scheme for transactions

updating remote partitions. We elaborate on the various prob-

lems that arise in adopting this approach and present our

design to address these problems. In Section V we present

the results of our performance evaluation experiments and

demonstrate the scalability of this new protocol.

II. RELATED WORK

Several data management systems for cloud datacenters

distributed across wide-area have been developed in the recent

years [6], [4], [2], [13], [20]. Dynamo [6] uses asynchronous

replication with eventual consistency, whereas PNUTS [4]

provides a stronger consistency level than eventually consis-

tency, called as eventual timeline consistency, but both these

systems do not support transactions. Megastore [2] provides

transactions over a group of entities using synchronous repli-

cation. COPS [13] provides causal consistency for snapshot-

based read-only transactions. Eiger [14] provides both read-

only and update transactions with causal consistency, main-

taining causal dependencies on per object level. PSI [20]

provides snapshot isolation based transaction support guaran-

teeing causal consistency.

The techniques for transaction management in systems with

partial replication of data have been investigated by others in

the past [11], [19], [16], [9], [18]. The approach presented

in [11] uses epidemic communication that ensures causal or-

dering of messages using vector clocks. Other approaches [19],

[18], [17] are based on the state machine model, utilizing

atomic multicast protocols. These approaches support 1-copy
serializability. Non-Monotonic Snapshot Isolation (NMSI) [1]

and PCSI [15] are both based on the causal snapshot isolation

model.

Orbe [7] supports partitioned and replicated databases with

causal consistency, but it does not support multi-key update

transactions. It uses two-dimensional vector clocks for captur-

ing causal dependencies. GentleRain [8] uses physical clocks

to eliminate dependency check messages, but similar to Orbe

it lacks a general model of transactions. Spanner [5] pro-

vides strong consistency with serializable transactions under

global-scale replication. However, it relies on special purpose

hardware such as GPS or atomic clocks to minimize clock

uncertainty. The work presented in [12] provides a consistency

scheme called red-blue consistency, which uses operation

commutativity to relax certain ordering guarantees for better

performance.

III. BACKGROUND: OVERVIEW OF THE PCSI MODEL

We first present here an overview of the PCSI model

for transaction management in partially replicated key-value

based data storage systems. More detailed description of this

model can be be found in [15]. The PCSI model provides the

following guarantees. A transaction’s updates are applied at a

site only after the updates of all transactions causally preceding

it have been applied there. Atomicity of a transaction’s updates

to multiple partitions is ensured, i.e. either all or none of the

updates of a transaction become visible at a site. If two or

more concurrent transactions update the same item, then only

one is able to commit and all others are aborted, following the

snapshot isolation model. This means that updates to an item

are total ordered. All updates to a replica are total ordered,

but different items in the same partition can be concurrently

updated at different replicas.

A. Partition Vector Clocks and Causal Dependency View

Each site is identified by a unique siteId. A site maintains a

sequence counter for each of its local partitions, which is used

to assign sequence numbers to the local transactions modifying

items in that partition. A transaction obtains, during its commit
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phase, a timestamp for each partition it is modifying. A

timestamp is a pair <siteId, seq>, where seq is a local

sequence number assigned to the transaction, by the replica

of that partition at the site identified by siteId. For this,

each partition replica maintains a monotonically increasing

counter called Sequence Number (SN), which is used for

assigning sequentially increasing commit timestamps. The

commit timestamp vector (Ct) of transaction t is a set of

timestamps assigned to the transaction by the replicas of the

modified partitions. For a partition q modified by transaction

t, the commit timestamp assigned by q is denoted by Cqt .

Each replica of a partition maintains a vector clock referred

to as the partition view (Vp). The vector clock of a partition

replica indicates the sequence numbers of the transactions

from the other replica sites which have been applied locally.

B. Transaction Execution

Before executing read/write operations, a transaction must

obtain a globally consistent snapshot for the partitions to be

accessed, as described in [15]. The snapshot consists of a

vector clock value for each partition. All read operations on

a partition are performed according to the snapshot obtained

for that partition. The writes are buffered till the commit time.

When a transaction is ready to commit, it executes a valida-

tion protocol to check for update conflicts with concurrently

committed transactions.

C. Transaction Validation

For each data item, there is a designated conflict resolver
which is responsible for checking for concurrent update con-

flicts for that item. The conflict resolver maintains an ordered

list of the commit timestamps (<siteId, seq>) of all the

committed versions of the item. The transaction coordinates

with the conflict resolvers for all items in its write-set to

check that no concurrent transaction has created an item

version newer than the latest version visible in the transaction’s

snapshot. The transaction commits only if none of the items

in its write-set have an update conflict, otherwise it is aborted.

This coordination is done using a two-phase-commit (2PC)

protocol. In the first phase, a conflict resolver votes “yes” if

no conflicts are found, and locks the item to prevent other

concurrent validations or updates. On successful validation,

i.e. when all votes are “yes”, the transaction is committed and

a commit timestamp is obtained from a replica of each of the

partitions being updated by the transaction. These timestamps

form the commit timestamp vector Ct for the transaction. The

commit/abort decision, along with the commit timestamp in

case of commit, is communicated to the conflict resolvers. The

conflict resolvers release the lock and record the new version’s

timestamp in case of commit.

D. Update Propagation

When a transaction commits, its updates are applied to

local partitions and then the update messages are sent to

the remote sites using the update propagation mechanism

described below. For ensuring causal consistency, the causal

dependencies of the transaction are computed and this infor-

mation is communicated with the update propagation message.

The causal dependencies of transaction t are captured by a set

of vector clocks, called transaction dependency view (T Dt).

A vector clock T Dp
t in this set corresponds to partition p

and identifies all the causally preceding transactions pertaining

to that partition. With the update propagation message for

transaction t the T Dt and Ct values are communicated to the

remote sites. A remote site applies the updates only if it has

applied updates of all the causally preceding transactions.

At the remote site, say site k, for every partition p specified

in T Dt, if p is stored at site k, then site checks if its partition

view Vp is advanced up to T Dp
t . Moreover, for each modified

partition p for which the remote site stores a replica, the site

checks if Vp of the replica contains all the events preceding the

sequence number value present in Cpt , i.e., for each modified

partition p the following check is done.

Vp[Cpt .siteId] = Cpt .seq − 1 (1)

If this check fails the site delays the updates until the vector

clocks of the local partitions advance enough. If this check is

successful, the site applies the updates to the corresponding

local partitions. Updates of transaction t to any non-local parti-

tions are ignored. Furthermore, when applying the transaction

t, the partition dependency views of the modified partitions

are updated using T Dt and Ct values as described in [15].

E. Remote Partition Update

As noted earlier, in our previous work [15] we used the

notion of ghost replica to support updates to remote partitions

by a transaction. If a transaction involves updating any remote

partition, the execution site creates a local ghost replica for

that partition. A ghost replica does not store any data but

its main function is to assign local commit timestamps to

transactions at its site, using a local sequencer. No updates

are propagated to the ghost replicas of any partition.

IV. ESCROW BASED REMOTE UPDATE PROTOCOL

We found that the ghost partition based approach for up-

dating non-local partitions limited the scalability of the PCSI

protocol when partitions could be updated by transactions exe-

cuting at any of the sites. The scalability gets limited because

the vector clock of a partition tends to become as large as

the number of sites. This motivated us to explore an alternate

approach, which we present below. A transaction updating

items in a non-local partition gets the sequence number from

one of the sites which has a replica of that partition. With

this approach, consider the case where a site, say S1, has the

sequence number (SN) 100 for partition P1, and a transaction

at some remote site S2 needs a sequence number from S1

for partition P1. If S1 gives the “next” sequence number

101, then this approach has a major drawback because all the

local transactions at S1 will stall (as they cannot get the next

sequence number) until the remote transaction commits at site

S2 and its update is applied at site S1. This is because the
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PCSI protocol orders transactions updating a partition replica

using the sequence numbers assigned by the replica.

The stalling of local transactions as noted above affects the

transaction response times and system throughput. The number

of stalled transactions depends on several factors. It depends

on the local load and the time it takes for a remote transaction’s

update to be applied at the site issuing the sequence number.

99 100 101 102 200 201 202 203 300

SN ASN1 given to T1 at S2 ASN2 given to T2 at S3

Site S1 : Replica of Partition P1

Escrow for local txns Escrow for local txns

SNs given to local txns ASN given  to remote txns SNs not assigned yet

199....

Notatation

Fig. 1: Notion of ASN and Escrow

To address the problem mentioned above, the approach we

adopted is to reserve a range of sequence numbers for local

transactions when a transaction from a remote site requests a

sequence number. This reserved range of sequence numbers

serves as an escrow for local transactions. A remote site

requesting a sequence number is given a number after the

escrow range. We call it Advance Sequence Number (ASN).

Figure 1 shows that the current sequence number of the replica

of partition P1 in site S1 is 100, and the escrow value is set to

100. When remote transactions T1 from site S2 and T2 from

site site S3 request for sequence numbers from P1, ASNs 200

and 300 are given out to the T1 and T2 respectively. With

this assignment of sequence numbers, T1 causally precedes

T2, denoted by T1 ≺ T2.

Figure 2 shows the sequence of events involved in the trans-

actions T1 and T2: obtaining ASN, committing the transaction,

and propagating the updates. The notation T1:w(P1, P2) means

that the transaction T1 updates partitions P1 and P2. Note

that as T1 ≺ T2, T1’s update will be applied at S1 before

applying T2’s update, even if T2’s update reaches S1 first,

thus guaranteeing transaction ordering.

In our implementation of the escrow technique, each parti-

tion replica keeps track of two sequence numbers: Sequence
Number (SN ), as in the PCSI model, and the last Advance
Sequence Number that was given out by this replica, ASNlast.

Whenever a remote transaction requests an ASN, it is com-

puted using the formula given below:

ASNnext := max(SN,ASNlast) + escrow (2)

Each partition replica also maintains an ASN List, a list of

sequence numbers that the partition has given out to other

site(s). Also, ASNfirst is the first ASN in the ASN List.

Naturally, the next question, which we address below, is how

to set the escrow value.

S1 S2 S3

P2P1 P3

SN: 100 SN: 200

ASN:<200, S2>

ASN:<300, S3>

T1: w(P1, P2)

T2: w(P1)

Commit T1

Commit T2

Apply T1 then T2

Time

Transaction update

Request to Get ASN
Legend

Fig. 2: Single ASN Scenario

A. Setting of Escrow Value

Case 1: If the value of escrow is too small with respect to

the local transaction execution rate, then the local transactions

will consume all numbers in the escrow range before the

update of the remote transaction to which the sequence number

ASNfirst was assigned is applied to the local replica. This

will result in increased stalling of local transactions, therefore

leading to reduced throughput and commit rate at the local

site. In our design we abort such stalled transactions instead

of blocking them while they are holding locks on conflict

resolvers, as required by the validation protocol.

Case 2: If the value of escrow is too big, local transactions

will not fill the escrow range. By the time the update of the

remote transaction with the sequence number ASNfirst for

the partition reaches the partition replica, we’ve two options.

One option is to queue the remote transaction and let the

local transactions use the remaining escrow range. The second

option is to generate a special message to fill the remaining

escrow range and to advance the vector clock of the partition.

This message is then propagated to all the other sites that

have the partition’s replica. The former option is undesirable

because it blocks all transactions that causally follow the

remote transaction, thus causing increased queuing delay and

reduced throughput.

101 102 200

SN

ASN1 given to T1 executing at S2 

At Site S1 : Replica of Partition P1

Null Transaction for P1 (150, 199)
150....

T1's update reaches S1

Fig. 3: Generation of Null Transactions

To help understand the second scenario, we consider trans-

action T1 from the example presented in Figure 2. T1 executed

at site S2 and obtained ASN value 200 from site S1 for

updating partition P1. Figure 3 shows a scenario for the state

of site S1 when it receives the update of T1 from S2. In this
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scenario the current SN of P1 at site S1 is 150. If all the causal

dependencies for the remote transaction are satisfied, we would

like to apply the transaction right away. Hence, we need to

advance SN for the local replica of P1 to (ASNfirst−1), i.e.

199, and inform the other replicas of P1. For this, we send

a special update message to the other replicas which says: if

the value of vector clock VP1 [S1] = 150, then increment the

value to 199. We call this special message null transaction,

and its sole purpose is to advance the vector clocks.

We set the escrow value used by a replica based on the local

update rates. For this purpose, we observe for each assigned

ASN the number of local transactions that commit or abort

due to stalling during the period when the ASN is given out

to a transaction and its update is received and applied at the

local site. We compute the average value of this number over

a sliding window. This number indicates the local execution

rate, and the escrow value is periodically set proportional to

this number, with a factor slightly greater than 1.

B. Protocol for Single Remote Partition Update

A transaction updating some remote partition requests an

ASN from a site which has a replica of that partition. To

obtain ASN for partition P from its replica at a remote site,

transaction T executing at site S invokes the remote interface

function GetSingleASN at that remote site. This function is

simple as shown below in Algorithm 1. The ASN is generated

by adding an escrow to the maximum of the current SN or

the last ASN value given out by the replica.

Algorithm 1 Function for obtaining single ASN

Initial state:: ASNList is empty

function GETSINGLEASN(T , P , S)

// T requesting ASN for partition P
// T is executing at site S
[ begin atomic region
ASNnext ← max(SN,ASNlast) + escrow
ASNlast ← ASNnext

ASNList.appendRecord( <ASNnext, S> )

end atomic region ]
return ASNnext

When the transaction T ’s update from site S reaches the

site that gave out the ASN for partition P , P ’s ASNfirst

is checked against the T ’s commit timestamp component

corresponding to P , i.e. CP
T . If CP

T .seq is equal to ASNfirst

of partition P , and if all the other causal dependencies for T
are satisfied, then a null transaction is generated to fill the

remaining unconsumed part of the escrow range, the transac-

tion’s update is applied locally, and the <ASNfirst, S> entry

is removed from the ASN List.

C. Issues with Multiple Remote Partition Update

We now illustrate the problems that can arise with the

ASN scheme when multiple remote partitions are updated by

a transaction. When two transactions concurrently update a

common set of remote partition replicas, if the ASNs are not

handed out in a total ordered fashion there is a potential of

deadlocks when trying to apply the transactions’ updates at

remote sites.

S1 S2 S3 S4 S5

P2P1 P3  P4  P1  P2

Time

SN: 100 SN: 200
T3: w(P1, P2, P3) T4: w(P4, P1, P2)

ASN:<200, S3>

ASN:<300, S4> ASN:<300, S4>

ASN:<400, S3>

T3

T4
Deadlocked!

Transaction updateRequest to Get ASNLegend

T4: w(P4, P1, P2)

Commit T3 Commit T4

T3

T4

Fig. 4: Multiple ASN Scenario

In Figure 4, transactions T3:w(P1, P2, P3) and

T4:w(P4, P1, P2) get the ASNs from sites S1 and S2

for partitions P1 and P2 respectively. T3 gets the ASN 200

for partition P1 from site S1 before T4, whereas T4 gets the

ASN 300 for partition P2 from site S2 before T3. This implies

that T3 ≺ T4 for partition P1, but T4 ≺ T3 for partition P2.

Moreover, when the update messages of T3 and T4 reach site

S5, both updates get stuck. This is because w.r.t P1, T3 ≺ T4

and w.r.t P2, T4 ≺ T3, and hence both transactions cannot

be applied, resulting in deadlock. Consequently, what this

means is that all transactions that have a sequence number

obtained from site S1, after transaction T3, for partition P1

or a sequence number from site S2, after transaction T4, for

partition P2 cannot be applied at S5.

A solution to this problem is to total order the transactions

which update a common set of partition replicas. This means

that the requests for obtaining ASNs by transactions with

common set of partition replicas must be total ordered.

D. Protocol for obtaining ASNs from Multiple Partitions

We present here the protocol for obtaining ASNs when

a transaction updates multiple remote partitions. For each

partition, it selects a remote replica site for obtaining ASN.

The transaction sequentially requests ASNs from remote

partition replicas in an ascending order of their partition

ids. It calls the remote interface function GetMultipleASN
at each of the replicas’ sites, shown in Algorithm 2. Each

such invocation request includes a list called Plist containing

<PartitionId, siteId> for all of the remote partition replicas

from which T is requesting ASNs. The request message also

contains a predecessor transaction list, called Tlist, which is

explained next. The response for an ASN request will contain

the ASN itself and an updated Tlist. Each transaction, Ti, in

the Tlist will satisfy all the following conditions:

• Ti obtained ASN from a partition replica P before T
• Ti’s updates were not seen by P when it gave ASN to T

• Ti has a common set of remote partition replicas with T

The following information about Ti is stored in the Tlist: its

Txn-ID Ti, site-ID S, and Plist.
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Consider the scenario outlined in Figure 4. When transaction

T4 requests ASN from the partition replica P1 at site S1, in

addition to the ASN 300 it also receives the predecessor list

which contains an entry for T3. When T4’s request for ASN

reaches the partition replica P2 at site S2, P2 looks at the

predecessor list and finds that T3 should be given ASN before

T4 to ensure total ordering. It checks if it has already seen T3,

i.e. it has either seen T3’s request and given out an ASN to

T3, or it has decided not to handle in the future any delayed

request from T3, thereby forcing it to abort. If P2 at site S2

has not seen T3, we’ve two options. One option is to make T4

wait until T3’s request arrives at S2. This way if T4 is delayed

by a long time period then the responseT ime of T4 takes a

hit and so does the throughput at site S4. The other option,

adopted in our design, is to make T4 wait only for a time-

out period, which was set to 200 msec in our experiments.

If T3 arrives before the time-out period, then T3 precedes T4

else P2’s ASNnext can be given to T4 and T3 will be aborted

when its request reaches S2. A pseudocode of this protocol is

provided in Algorithm 2.

Algorithm 2 Obtaining ASNs for multiple partitions

Initial state:: PredecessorList and ASNList are empty.

function GETMULTIPLEASN(P , T , S, Tlist, Plist)

// This is executed when transaction T at site S
// requests ASN for partition P at site mySiteId
// Tlist is the predecessor transaction list of T
// Plist is list of <PartitionId, siteId>
if (seenTxn[T ] = ABORT ) then return NULL

if (∃ Ti ∈ Tlist | {seenTxn[Ti] = NULL ∧
<P,mySiteId> ∈ Plist of Ti}) then

wait(time-out period)
[ begin atomic region
for all Ti ∈ Tlist do

if (seenTxn[Ti] = NULL) then
seenTxn[Ti]← ABORT

ASNnext ← max(SN,ASN last) + escrow
ASNlast ← ASNnext

Tlist.append( PredecessorList )

PredecessorList.appendRecord( <T, S,Plist> )

ASNList.appendRecord( <ASNnext, S> )

seenTxn[T ]← TRUE
end atomic region ]
return <ASNnext, Tlist>

When a site applies a transaction’s update to a local replica

for which it generated an ASN, its ASN entry is removed

from the ASN List. Such a transaction is removed from

the PredecessorList of the replica even earlier, when the

transaction’s update message is received by the site.

E. Null Transaction generation in case of Multiple ASNs

When the number of remote partitions updated by a transac-

tion is more than one, then the generation of null transaction
requires some additional considerations otherwise it can result

in increased abort rates. Consider the scenario shown in Figure

5, T :w(P1, P2, P3) executing at site S3 updates two remote

partitions P1 and P2. It obtained the ASN for P1 from site

S1 and the ASN for partition P2 from site S2. Note that the

sites S1 and S2 both have replicas of partitions P1 and P2.

Consider the case when transaction T ’s update reaches site

S1 and the causal dependencies of T on all update partitions

but P1 and P2 are satisfied. Even if P1 at S1 generates a

null transaction advancing its SN to (CP1

T .seq − 1), which is

ASNfirst−1, site S1 cannot apply the transaction T because

of its causal dependency on partition P2. This will cause all

local transactions updating P1 at S1 to stall and abort. A

similar situation can happen at site S2 for partition P2.

S1 S2 S3

P3

P1(SN): 100

P2(SN): 200

T: w(P1, P2, P3)

P1(ASN):<200, S3>

P2(ASN):<300, S3>

 P1  P2  P1  P2

Time

T commits

Transaction updateRequest to Get ASNLegend

Fig. 5: Increased abort rate due to Multiple ASN

We adopt the following approach to coordinate the gen-

eration of the null transactions across all the remote update

partitions of a transaction. There are two cases to be considered

here when a transaction’s updates are ready to be applied:

Case 1: Site which generated an ASN does not have replicas
of any other remote update partitions. In Figure 5, if site S1

did not have partition P2, then this would be the case. In this

case, the site generates a null transaction to reduce the gap

between the current SN and ASNfirst to 1, without any delay.

This is similar to the case of applying updates of a transaction

which writes items in a single remote partition.

Case 2: Site which generated an ASN has replicas of all or
some of the other remote partitions updated by the transaction.

This case corresponds to the scenario in Figure 5, where sites

S1 and S2 both have replicas of all the remote partitions

updated by the transaction T . We want that the gap between

the current sequence number SN and ASNfirst of each of

the remote update partition should reduce to 1 within a small

real-time window. At each site, a thread periodically checks

if the updates can be applied and during this step the gap for

a partition is reduced by half its current value, thus retaining

some part of the escrow to avoid stalling of local transactions.

V. SCALABILITY EVALUATIONS

We implemented the escrow-based remote write mechanism

in the testbed system which we had previously developed

for the PCSI model. The focus of our evaluation was on the

scalability of the escrow-based protocol for a variety of work-

loads consisting of transactions which read or modify data
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Workload
Benchmarks (Mix of transactions with local and remote read/write partitions)

Local Only All Remote Read All Remote Write Remote Read/Write-(50/50) 5% Remote Write

A
Read=2
Write=1

All read/write
partitions local

1 remote read
partition

1 remote write
partition

1 remote partition:
read/write (50/50)

5% txn: 1 remote
write partition

B
Read=2
Write=2

All read/write
partitions local

1 remote read
partition

1 remote write
partition

1 remote partition:
read/write (50/50)

5% txn: 1 remote
write partition

C
Read=2
Write=3

All read/write
partitions local

2 remote read
partitions

2 remote write
partitions

2 remote partition:
read/write (50/50)

5% txn: 2 remote
write partitions

TABLE I: Transaction workloads and benchmarks with different numbers of read/write partitions

items stored in remote partitions. Our focus was on evaluating

how the system scaled out with the number of nodes in the

cluster. The number of partitions was set equal to the number

of nodes, thus larger configurations served larger data-sets to

reflect system scale-out. Each partition contained 1 million

items, each of 100 bytes. Each partition was replicated on three

nodes, and each node contained replicas of three partitions.

The period for propagating updates to remote nodes was set

to 1 second. We measured the peak throughput achieved for a

variety of workloads on different cluster sizes. We performed

the scalability evaluations on a computing cluster of 100

nodes. In this cluster, each node had 8 CPU cores with 2.8

GHz Intel X5560 Nehalem EP processors, and 22 GB main

memory.

A. Benchmarks and Transaction Workloads

We developed a custom load generator to evaluate the

impact of various parameters such as the number of partitions

read or written by a transaction, the number of items in a

partition read or written, the number of remote partitions

accessed and the percentage of transactions accessing remote

partitions. We defined three workload classes which we refer

to as A, B, and C. These three workload classes represent

progressively increasing resource requirements. For each of

these three workloads, we defined five benchmarks repre-

senting different mix of transactions with varying number

of remote partitions. The characteristics of these workloads

with the five different benchmark mix are shown in Table I.

All transactions involved updating of one or more partitions.

Column 1 of Table I shows the number of partitions read and

updated in these workloads. All transactions read 4 items from

each of 2 distinct partitions. The partitions and items were

selected randomly using uniform distribution. The number of

partitions updated by the transactions in workload A was 1.

This number was 2 for in workload B, and 3 for workload C.

The number of items updated in a partition was set to 2.

The characteristics of five benchmarks are summarized in

Table I. In the “Local-Only” benchmark all accessed partitions

are local. It serves as a reference to measure the impact of

remote partition access. In the “All Remote Read” mix, all

transactions access some remote partition for reading only.

In “All Remote Write”, all transactions write some remote

partition. Among the five benchmarks, this has the highest

resource demand. In “Remote Read/Write (50/50)”, all trans-

actions access some remote partition for either reading or

writing with equal probability. The benchmark “5% Remote

Write” consists of a mix with 5% of the transactions updating

some remote partition.

B. Scalability of Escrow-based Remote Write Protocol

For scalability evaluations we measured the peak throughput

(txns per sec) of the five benchmarks for each of the three

workloads on system configurations consisting of 20, 40,

60, 80, and 100 nodes. The peak throughput was measured

when the commit rate was at least 90%. We also measured

average transaction response time, time required for two-phase

validation, and delays in applying updates at remote sites due

to causal dependencies.

Figures 6, 7, and 8 show the peak throughput of the five

benchmarks for workload classes A, B, and C, respectively.

For a given system size, the throughput for Workload A is

higher than those for B and C across all benchmarks. Figure 6

shows the scalability of all benchmarks for workload A. As

expected, “Local-Only” has the highest throughput and “All

Remote Write” has the lowest. The throughput for the other

three benchmarks was between these two. In workload A,

for the “Local-Only” benchmark, updates are propagated to

2 other nodes, whereas for “All Remote Write” mix this

number is 3. The transactions with remote partition update also

incurs the overheads of the ASN protocol. Similar scalability

trends are reflected for all benchmarks in workloads B and

C. Performance scales out across all benchmarks. In workload

B a transaction updates 2 partitions and one of these can be

remote. The number of nodes to which a transaction’s updates

are propagated ranges from 3 to 5. We find that this number

impacts the throughput. For this reason, workload C has the

lowest throughput. A transaction updates 3 partitions, and 2

can be remote. The number of nodes to which the updates are

propagated ranges from 6 to 8. “All Remote Write” mix also

incur overheads of multiple ASN coordination.

Transaction Response time Validation time Update delay
workload avg (median) avg (median) avg (median)

msec msec secs
A 34.99 (15) 4.05 (3) 70 (41)
B 44.85 (20) 8.35 (5) 80 (49)
C 47.05 (26) 12.26 (10) 114 (59)

TABLE II: Response time and latencies

Table II shows the average and median values for the re-

sponse time, validation latency, and delays in applying remote

updates at a node due to causal dependencies. Response time
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Fig. 7: Throughput for workload B

is measured from the start of a transaction to the time it is

locally applied and queued for propagation to remote nodes.

We also measure the delay incurred in performing two-phase

validation with the conflict resolvers. The update delay is the

time for which a remote transaction’s updates are buffered

locally because causal dependencies are not satisfied. The

average response times ranged between 34 to 47 msec for

these three workloads. The median values were close to 20

msec. Validation time increased in the workloads with higher

number of remote update partitions. The causal delays tend to

be high in the range of several seconds, and this increased for

workloads with more update partitions.

VI. CONCLUSION

We have presented here a scalable protocol for transactions

with remote partition writes in systems with partial replica-

tion of data in cloud computing environments. This protocol

enhances the scalability of the PCSI model using the notion

of escrow based ordering of remote partition updates while

providing causal consistency. We have presented and addressed

here the problems associated with the escrow technique. We

evaluated the scalability of this protocol using three different

workload classes and five benchmarks on a cluster of 100

nodes. These evaluations show that the escrow based remote

write protocol provides a scalable approach for supporting

transactions in partially replicated data systems.
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