
Causally Coordinated Snapshot Isolation for
Geographically Replicated Data

Vinit Padhye and Anand Tripathi
Department of Computer Science

University of Minnesota Minneapolis, 55455 Minnesota USA
Email: (padhye,tripathi)@cs.umn.edu

Abstract—We propose a Snapshot Isolation based transac-
tion execution and consistency model, referred to as causally-
coordinated snapshot isolation, for geographically replicated data.
The data replication is managed through asynchronous update
propagation. Our approach provides snapshot-isolation model
over multiple sites and ensures causal ordering of transactions.
We present here an efficient protocol for precisely capturing
the causal data dependencies of transactions and ensuring the
causal ordering based on these dependencies when applying
transactions’ updates at remote sites. Through experimental
evaluations, we demonstrate the benefit of this protocol over an
alternative approach for providing causal consistency for geo-
replicated data. We further extend this model to support session
consistency guarantees such as read-your-writes and monotonic-
reads. Additionally, we provide a notion of group-session where a
group of users are involved in a collaborative session. We provide
various group-session consistency guarantees for users collaborat-
ing in a group. We present the mechanisms for providing these
session consistency guarantees and evaluate their performance.

I. INTRODUCTION

We address here the problem of providing transaction sup-
port for data replicated across geographically distributed sites.
Our transaction model uses Snapshot-Isolation (SI) [1]. There
are several issues related to scalability and performance that
need to be addressed while applying the SI transaction model
to a geographically distributed environment. The first issue is
related to managing data replication across multiple geograph-
ically distributed sites. Strong consistency of data replicated
across multiple sites, which would require synchronous update
propagation, is typically not practical in wide-area setting.
Due to this limitation, various geo-replicated data manage-
ment systems [2] use asynchronous update propagation. In
the context of SI, this means that transactions may see an
older database snapshot. The second issue is related to global
ordering of transactions. Under the SI model, transactions are
assigned monotonically increasing timestamps. This requires
a global sequencer mechanism for ordering transactions. Such
a global sequencer in wide-area environments can become a
performance bottleneck.

Recently, the work presented in [10] has recognized the
above limitations and proposed a weaker snapshot isolation
model called Parallel Snapshot Isolation (PSI) [10]. In the PSI
model, transactions execute at a single site and are ordered
within the site using a local sequence number. Transactions
are propagated asynchronously to remote sites. The model
does not enforce a global ordering of transactions, however,

it ensures causal ordering while applying transactions at re-
mote sites. This enhances the scalability and performance of
the system, while still providing a useful consistency model
to applications. Our transaction model, referred to as the
Causally-coordinated Snapshot Isolation (CSI) is based on
PSI, however, it differs from PSI with respect to the approach
for ensuring causal consistency. The PSI scheme [10] can
lead to false causal dependencies, which can unnecessarily
delay the application of a transaction’s updates at remote
sites. Due to these delays, a remote site would see an older
snapshot of data even though the updates are propagated at that
site. This can also increase the number of transaction aborts
due to write-write conflicts as the transactions at the remote
site would observe an older snapshot. In contrast to PSI, we
propose an approach which captures true causal dependencies
of transactions to eliminate such false dependencies.

We further extend the CSI model to support session con-
sistency guarantees [11] for a user session. Such guarantees
are often required to ensure that a particular user session
sees a consistent view of data. Our basic transaction model
ensures session guarantees as long as the user is connected
to a single site throughout her session. This is because all
the transaction updates performed at the local site are made
immediately visible to the subsequent transactions. However,
if a user connects to a different site, she may not see the recent
updates if those updates are not yet propagated there. We
describe the mechanisms to support session guarantees under
the CSI model. Furthermore, we propose a consistency model
useful for multi-user group applications, such as collaborative
editing, workflow applications, or multi-player games. For this
purpose, we propose a consistency model for a group session
involving operations by group members on some shared data.
We propose various consistency levels for such group sessions
and describe the mechanisms for implementing them under our
CSI model.

In the next section we describe the CSI model. In Sec-
tion III, we discuss mechanisms for providing session con-
sistency guarantees for single-user sessions. In Section IV,
we describe the group session model and its implementation.
Evaluations of the proposed models and mechanisms are
presented in Section V. Next we discuss the related work
followed by the conclusions.

2012 31st International Symposium on Reliable Distributed Systems

1060-9857/12 $26.00 © 2012 IEEE

DOI 10.1109/SRDS.2012.15

261

II. CAUSALLY-COORDINATED SI (CSI) MODEL

We present here the Causally-coordinated SI model for
multi-site transaction management. The CSI model ensures the
following properties. First, transactions read from a consistent
(but possibly an older) snapshot, i.e. the transactions observe
only the updates made by committed transactions. Second,
when two or more concurrent transactions update a common
data item, only one of them is allowed to commit. Third, if
updates of a transaction are visible at a site, then all updates
that causally precede it are also visible.

A. Background: Snapshot Isolation Model

Snapshot isolation (SI) model [1] is based on multi-version
concurrency control where a data item version is assigned the
timestamp of the transaction that created the version. When
a transaction Ti’s execution starts, it obtains the timestamp
of the most recently committed transaction. This represents
the snapshot timestamp TSi

s of the transaction, and a read
operation by the transaction on a data item returns its most
recent committed version up to this snapshot timestamp. When
Ti commits, it is assigned a monotonically increasing commit
timestamp TSi

c. The commit timestamps of transactions reflect
the logical order of their commit points. A transaction Ti

commits only if there is no write-write (ww) conflict, i.e
none of the items in its write-set have been modified by any
committed concurrent transaction Tj i.e. TSi

s < TSj
c < TSi

c.

B. System Model

The system consists of multiple geographically distributed
database sites Si such that i ∈ (1..n). Each site is identified
by a unique siteId. Each site has a local database that
supports multi-version data management and transactions. It
can be either an RDBMS system or a key-value store with
transaction support [9]. Users connect to the site closest to
them and execute transactions on local database. Data items
are replicated at all the sites. For each data item, there is
a designated conflict resolver site which is responsible for
checking for ww conflicts for that item. Transactions can
execute at any site. Read-only transactions can be executed
locally without needing any coordination with remote sites.
Update transactions need to coordinate with conflict resolver
sites for ww conflict checking for the items in their write-sets.

C. CSI Model

As noted earlier, the total ordering on transactions is not
enforced. This eliminates the need of a global sequencer.
Instead, a transaction is assigned a commit sequence number
seqno from a monotonically increasing local sequence counter
maintained by its execution site. Thus, the commit timestamp
for a transaction is a pair <siteId, seqno>. Similarly, a data
item version is identified by a pair <siteId, seqno>. The
local sequence number is assigned only if the transaction is
guaranteed to commit, i.e. only if there is no ww conflict.
Thus, there are no gaps in the sequence numbers of the
committed transactions. A transaction first commits locally and
then its updates are propagated to other sites asynchronously.

A remote site, upon receiving a remote transaction’s updates,
applies the updates provided that it has also applied updates of
all the causally preceding transactions. The transactions from a
particular site are always applied in the order of their sequence
numbers. All the updates of a transaction are applied to the
local database as an atomic operation, which also includes
updating a local vector clock.

Each site maintains a vector clock, which we denote by V C,
indicating the transactions from other sites that it has applied
to the local database. Thus, a site Si maintains a vector clock
V Ci, where V Ci[j] indicates that Si has applied the updates
of all transactions from Sj up to this timestamp, moreover,
Si has also applied all the other updates that causally precede
these transactions. In the vector clock, V Ci[i] is set to the
sequence number of the latest transaction committed at Si.

Snapshot-based access: A transaction p executing at site Si

is assigned, when it begins execution, a snapshot timestamp
vector V T p

s , which is set equal to the current vector clock
V Ci value. When p performs a read operation for item x,
we determine the latest version of x that is visible to the
transaction according to its snapshot timestamp vector. For
each data item x, we maintain a version log which basically
indicates the order of the versions. When p performs a read
operation on x, we check for every version < j,n>, starting
from the version that is applied most recently, if the version
is visible in the transaction’s snapshot, i.e. if V T p

s [j] ≥ n. We
then select the latest version that is visible in p’s snapshot. All
writes by p are kept in a local buffer until the commit time.
The execution protocol is detailed in Algorithm 1.

Algorithm 1 Execution protocol for transaction p at site Si

function BEGIN(p)
V T p

s ← V Ci

function READ(itemId)
for each v ∈ versionLog(itemId) do

/* performed in descending order of versions */
if V T p

s [v.siteId] ≥ v.seqno then return v.data

function WRITE(itemId, data)
put itemId, data in local buffer of p

Commit protocol: When transaction p is ready to commit,
it performs the commit protocol as shown in Algorithm 2.
If p has modified one or more items, then it performs ww
conflict checking using a two-phase commit (2PC) protocol
with the conflict resolver sites responsible for those items. In
the prepare message to each site, p sends V T p

s and the list of
items it has modified for which that site is the conflict resolver.
Each site checks, if the latest versions of those items are
visible in p’s snapshot and that none of the item is locked. The
locking is performed to avoid conflicts with any concurrent
conflict checking operations by other transactions. If this
check fails, then the resolver sends a ‘no’ vote. Otherwise,
it locks the corresponding items and sends a ’yes’ vote. If p
receives ‘yes’ votes from all conflict resolvers, p is assigned a
monotonically increasing local sequence number by p’s local

262

site, obtained from localSequencer counter. First, p commits
locally, applying the updates to the local database. The local
site’s vector clock is advanced appropriately. It now sends a
commit message, containing the sequence number, to all the
conflict resolvers. Otherwise, in case of any ’no’ vote, p is
aborted and an abort message is sent to all the conflict re-
solvers. Upon receiving a commit or abort message, a conflict
resolver releases the locks, and in case of commit it records the
new version number as a 2-tuple: (<siteId, seqno>). After
performing these operations, the local site asynchronously
propagates p’s updates to all the other sites.

Algorithm 2 Commit Protocol for transaction p at site Si

/* [..] denotes an atomic region */
function COMMIT(p)

sites← conflict resolver sites for items ∈ p.writeset
for each s ∈ sites do

itemList← list of itemId ∈ p.writeset, such that
resolver(itemId)= s

send prepare message to s : (itemList, V T p
s)

if all votes are ‘yes’ then
[p.seqno← Si.localSequencer++
apply p’s updates at Si

V Ci[i]← p.seqno]
for each s ∈ sites do
{ send to s a commit message:
(itemList , i, p.seqno) }

propagate asynchronously to all sites:
(V T p

e , i, p.seqno, p.writeset)
else

send abort message to each s ∈ sites

/* Functions executed by Conflict Resolver */
function RECVPREPARE(items, V Ts)

if ∀ x ∈ items: if the latest version of x is visible
in V Ts ∧ x is unlocked then

lock all x ∈ items and vote ‘yes’
else

vote ‘no’
function RECVCOMMIT(items, siteId, seqno)

for each x ∈ items do
record version <siteId,seqno> in versionLog(x)
release lock on x

function RECVABORT(items)
release locks on all x ∈ items

Update propagation: For ensuring causal consistency,
p’s updates are applied at remotes sites only when all the
causally preceding transactions are applied. PSI model uses
the transaction’s snapshot vector timestamp V Ts to indicate
causal dependencies. Thus, p’s updates are applied at a
remote site only when that site’s vector clock is advanced up
to V T p

s , so that all the events that were visible when p started
its execution are visible at the remote site when p is applied
there. However, this can induce false dependencies, as not
all the updates that were visible at p’s execution site when

p started are necessarily seen by p. Therefore, we propose
an alternative approach that precisely captures a transaction’s
causal dependencies by considering only its read and write
sets. We define the effective causal snapshot, which indicates,
for each site, the latest event from that site which is ‘seen’
by the transaction based on the items it read or modified. In
other words, we capture causal dependencies with respect to
a transaction rather than a site. The effective causal snapshot
for a transaction p, executed at a site Si is defined as a
vector timestamp denoted by V T p

e , and it is determined as
follows. V T p

e [i] is set equal to n-1 where n is p’s sequence
number. This indicates that p can be applied only when the
transaction immediately preceding p at site Si is applied.
The other elements of V T p

e , i.e. those corresponding to the
remote sites, are determined as follows:
∀j; j �= i : V T p

e [j] = max{seqno | ∃x s.t.(x ∈ read-
set(p)∨x ∈ prevwrites(p))∧(version(x) =< j, seqno >)}

Here, prevwrites(p) is the set of latest versions visible at
site Si for the items that p modified. If this information is not
included, then it may happen that for a particular data item x
modified by p a remote site may store the version created by
p without having all the preceding versions of x. We call it
the missing version problem. This can violate the basic multi-
version semantics of snapshot-based access in cases such as
time-travel queries, which read from a specific older snapshot.
It also complicates the version ordering logic described above.
It should also be noted that the effective causal snapshot vector
for a transaction is determined at the end of the transaction
execution, and therefore the information about the read/write
sets is needed only after the transaction execution has finished.

The update propagation protocol uses the V Te value of
a transaction while propagating its updates. Upon receiving
updates, the remote site compares its vector clock with V Te

vector to ensure that an update is applied at that site only when
it has seen all the causally preceding updates. On applying the
updates, the vector clock of the site is advanced appropriately.

III. SINGLE USER SESSION CONSISTENCY MODEL

In this section we consider session guarantees with respect
to a single-user session. A single-user session cosnists of
a sequence of transactions. During a session the user may
connect to different sites. The session model provides primi-
tives for suspending a session at a site and resuming it later
at a different site. We support the following four session
guarantees [11].

• Read-Your-Writes (RYW): A read operation on a data item
must read a version that is equal to or newer than the most
recent write on that item in that session.

• Monotonic-Read (MR): A read operation on a data item
must never see a version of that item which is older than
the version seen by any previous read operation.

• Monotonic-Writes (MW): A write operation on a data item
follows any preceding writes on that item in the session.

• Write-Follows-Reads (WFR): A write operation on a data
item is performed on a version that is equal to or newer
than the version seen by a preceding read operation.

263

The MW and WFR guarantees are supported, not only on a
session level but across the entire system, through the ww
conflict checking protocol of the basic SI model. The RYW
and MR guarantees are supported implicitly when the user is
connected to a single site during the entire session. However,
these guarantees may be violated if the user connects to a
different site and the updates seen at the previous site have
not been propagated there.

Our basic model for supporting session guarantees is as
follows. For a session, we maintain the session state as the
events (i.e. transactions) seen by the session. We maintain
the state of session s as a vector clock, called session vector
clock and denoted by Cs, in which each element corresponds
to a site and identifies the sequence number of the latest
event corresponding to that site that must be visible in order
to support the required session guarantees. A simple approach
to determine the session state vector is to consider the current
vector clock value of the site where the session is executing.
However, this can induce false dependencies, i.e. the events
not seen by the session. In our approach we consider only the
events seen by the session. This includes updates seen by the
read operations (we denote it as read-event set) and updates
performed during the session (denoted as the write-event set).
The read-event set Rs of session s is a set of 2-tuples <j, n>
such that a read operation in the session read the version
created by a transaction executed at site j with sequence
number n. Similarly, write-event set Ws is a set of 2-tuples
<j,n> such that the session executed an update transaction
at site j with sequence number n. We then determine the
session vector clock Cs as follows:
∀j; 1 ≤ j ≤ numSites: Cs[j] = max{seqno|s.t.
< j, seqno >∈ Rs∨ < j, seqno >∈Ws}

The session vector clock is itself maintained in the database
as a session object like any other database item. A sequence
of modifications to this object are committed as a transaction
and propagated to other sites. When a user connects to some
other site, say Sj , the Cs value is obtained by reading the
session object. For this, Sj contacts the conflict resolver for
the session object to obtain the latest version of that object.
Then, Sj compares its vector clock V Cj with Cs to check if
the required events are visible. If V Cj is advanced up to Cs,
then it means that both the updates read and written by the
session are visible at Sj . Thus, both MR and RYW guarantees
can be supported, and hence the session can be resumed at
Sj . If Sj is not enough up to date, then we need additional
mechanisms to provide session guarantees. In our approach
a site pulls the required updates to advance itself up to the
session vector clock, so that the session can be resumed at
that site. To do this, the site first determines the updates that
need to be pulled, and then contacts the corresponding sites.

IV. GROUP SESSION CONSISTENCY MODEL

A group session involves a group of users/clients, referred
to as the group members, accessing a shared pool of data
items, called the session object space. We assume that the
session object space contains a well-defined set of data items

and these items are not modified by users outside the group
session. Furthermore, we assume that the updates on the data
items outside the session object space are not relevant to the
group session and need not be seen by the session. The group
members may be connected to different sites and they may
concurrently execute transactions.

For each member in the group, we store the information
about the site the member is currently connected to. It may
be possible that more than one are connected to a single
site. For a member in a group, all the single-user level
session guarantees are provided. Additionally, we propose the
following consistency models for group sessions.

A. Strong Consistency Model

In strong consistency model we provide the following guar-
antee for the read operations in a group-session transaction.

• Read-Latest-Global (RLG): A read operation on an item
reads its latest global committed version at the transac-
tion’s start time, created in the group session.

This model implicitly supports the RYW and MR session
guarantees for the single-user level. Supporting this model
requires synchronous update propagation before locally com-
mitting the transaction. However, it is performed only for the
transactions in the group session and only among the sites
involved in the group session.

We take advantage of the fact that the effect of the transac-
tions outside the group session need not be seen by the group
session, since they do not modify any items in the session
object space. For a group session, we maintain a group-session
snapshot vector (Cg), which is different from the sites’ vector
clock V C. Transactions in the group session see the database
snapshot according to Cg instead of their site’s current vector
clock. Thus, for transaction p the snapshot timestamp V T p

s

is set equal to Cg . The Cg value is maintained synchronously,
i.e all sites in the group session have the same view of Cg.
The Cg value would be advanced only due to transactions in
the group session. Hence, synchronous propagation of only
the group session transactions ensures that the Cg value is
kept consistent across the group session sites. The non-group-
session transactions are propagated asynchronously.

There are two advantages of maintaining a separate snapshot
timestamp vector for a group session. First,, it ensures that
all group members see the same consistent state. Second,, it
allows to eliminate false dependencies caused by non-group-
session transactions. We elaborate this below. Suppose a site
Sj in a group session receives the updates of a group-session
transaction p from site Si with sequence number n. It may
be possible that Sj has not received some preceding, non-
group-session, transaction p′ from Si with sequence number
k, k < n. In this case, since the updates of p′ are not relevant
to the group session, we can make the updates of p visible
to the group session without applying the updates of p′. This
is done by setting Cg[i] to p’s sequence number. However,
with respect to Sj’s vector clock, since the vector clock
elements must be always advanced sequentially, V Cj [i] cannot
be advanced until p′ is received. Thus, maintaining a separate

264

snapshot timestamp vector for group sessions allows to avoid
unnecessary delays caused by such false dependencies.

B. Weak Consistency Model

The purpose of this consistency model is to eliminate
the need of synchronous propagation, but provide certain
primitives for users to read a consistent state whenever desired.
We refer to this as on-demand consistency. Specifically, we
provide a sync primitive for user-driven synchronization, either
on all data items or a specific data item. The sync(x) primitive
fetches the most recent version of item x created in the group
session, and syncSession() fetches the recent versions for all
items. In order to guarantee the snapshot isolation semantics,
these operations should be executed only at the time of starting
a transaction.

When a group member connected to a site Si performs
sync(x), Si contacts the conflict resolver site for x, which
has knowledge of the site that has the most recent version of
x. The syncSession operation is performed a bit differently.
In this case, Si contacts all the sites in the group session and
sends them it’s vector clock V Ci value. Each site then checks
if it has created any version for any item that is not visible in
V Ci and sends the required updates to Si, if any.

Mixed Consistency Execution Mode: In this execution mode,
different users may opt for different consistency levels. For
example, a mobile user may opt for a weaker consistency level
and periodically synchronize with other members. Moreover,
a user may opt for strong consistency for some critical items
whereas for other items it may tolerate weak consistency
level. For this, we provide a setUpdateMode(x, SYNC/ASYNC)
primitive to define consistency level per item. The setUp-
dateMode operation indicates whether updates of x should be
synchronously propagated.

V. EXPERIMENTAL EVALUATIONS

Our primary goals in these evaluations are as follow: (1)
compare the CSI approach of ensuring causal consistency to
that of PSI; (2) measure transaction performance in terms of
response times; (3) measure the overhead of providing session
consistency guarantees; (4) measure the overhead of providing
strong group session consistency.

Experiment setup: We deployed our system on 30 PlanetLab
nodes, distributed over the Internet. Each node acts as a single
site in our experiments. The geographic distribution of nodes is
as follow: 13 nodes from US/Canada, 9 nodes from Europe, 6
nodes from Asia, and 2 nodes from Aus/NZ. The average ping
latency between the sites was 158 ms with standard deviation
of 140 ms. The database contained 10,000 items replicated
at each site. Each site executed 6000 transactions per minute
and transactions were propagated periodically with the period
value randomly selected between 1 second to 1 minute. In our
experiments, we varied the size of the combined read-write
sets of a transaction from 1 to 10, with equal number of items
in the read-set and the write-set.

PSI vs CSI: To measure the benefits of the causal consis-
tency model of CSI over that of PSI, we first measured the

number of false dependencies induced by PSI. For this, we
measured for each transaction, the total difference between
the vector clock element values for V Ts and V Te. Table I
shows this data. In this table, f denotes the average number
of false dependencies. We observed that the number of false
dependencies tends to decrease with increase in number of
items in read/write set. This is because for a transaction the
actual dependencies are likely to increase with increase in
the number of items in its read/write set. Thus, as the actual
dependencies increase the number of false dependencies tends
to decrease. Note that, not all the false dependencies would
cause delays in application of updates at the remote site, as it
depends on that site’s vector clock. We measured the delays
in applying updates in two ways. The first measure, denoted
by M1 is the duration between the time a site receives an
update transaction till the time the transaction’s updates are
applied at that site. The second measure, denoted by M2, is
the number of transactions not seen by the site that are required
in order to apply the given updates. This indicates the number
of transactions that need to be applied before the given updates
can be applied. We show the average values of M1 and M2

in Table II for PSI and CSI approaches. The average values
were computed for sample size of approximately 3.5 million
transactions. We observe that the update delays are negligible
when CSI is used. Note that, the values for these two measures
depend on the transaction rate and update propagation delay.
However, we observed that CSI incurs significantly lower
delays in applying updates compared to PSI.

size of 1 2 4 6 8 10
read-write set

f 14804 14018 13612 13461 12917 12384

TABLE I
AVERAGE NUMBER OF FALSE DEPENDENCIES IN PSI

Number of items 1 2 4 6 8 10
per transaction

M1 (update delay in ms)
PSI 1123 1303 2234 2359 2019 1725
CSI 0 0 12 19 27 119

M2 (number of missing events)
PSI 1987 3040 2310 2591 2876 2342
CSI 0 0 42 48 97 180

TABLE II
UPDATE DELAYS IN PSI VS CSI

Transaction response time: We observed that, in case of
read-only transactions, as they do not require any remote
coordination, the response times were typically below 20
ms. For update transactions, the response times are typically
dominated by delays due to two-phase-commit. Figure 1
shows the average and 90-percentile response times for update
transactions with varying number of conflict resolver sites. In
case of update transactions with local conflict resolver, the
response times typically ranged between 20-30 ms.

Overhead of session consistency guarantees: In this case,
our goal is to measure the delays incurred in resuming a
session when a user migrates to a different site. Obtaining

265

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8 9 10

T
ra

ns
ac

tio
n

la
te

nc
y

(i
n

m
s)

Number of conflict resolver sites

Mean latency
90 percentile latency

Fig. 1. Transaction response time with 2PC

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000

D
el

ay
 (

in
 s

ec
on

ds
)

Number of update transactions fetched

Mean delay
90 percentile delay

Fig. 2. Overhead of pulling updates for sync

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5 6 7 8 9 10

D
el

ay
 (

in
 m

s)

Number of Group Session Sites

Mean delay
90 percentile delay

Fig. 3. Overhead of synchronous propagation

the most recent version of the session object typically re-
quires 200-300 ms. This delay depends largely on the update
propagation rate. Therefore, for better insight, we performed
micro-benchmarking of our mechanism for pulling the updates
and measured its overhead. Figure 2 shows the time required
to pull updates from a random site for varying number of
transactions. In this case, each transaction updated 10 items
with the total size of the transaction’s updates being 1KB.

Overhead of group session consistency guarantees: Figure 3
shows the delays incurred due to synchronous propagation
with varying number of group session sites. This data indicates
the relative increase in the response times for group session
transactions. In this case, since the updates are propagated in
parallel to different sites, the delays are essentially dominated
by the slowest peer. For weak consistency level, users basically
utilize the sync primitive. Depending on the number of
updates to be fetched, the latency of the sync operation would
vary as shown in Figure 2.

VI. RELATED WORK

Database replication using Snapshot Isolation has been
studied widely in the past [3], [4], [5], [6], [7], [8], [10], [12].
Many of the proposals for SI-based database replication using
update-everywhere model, such as [4], [7], [12], used eager
replication with atomic broadcast to ensure that the replicas
observe a total ordering of transactions. Serializable snapshot
isolation based replication management is presented in [5].
COPS [8] provides causal consistency, but does not provide
transaction functionality except for snapshot-based read-only
transactions. PSI [10], which is the most closely related work
to ours, provides transaction functionality with asynchronous
replication and causal consistency. Our work differs from
PSI in two ways. First, we provide an efficient protocol
for ensuring causal consistency. Second, we provide session
consistency guarantees for single-user as well as group session
model. Session consistency models have been investigated
in the context of the Bayou system [11]. In contrast to the
approach in Bayou, which requires maintaining the entire
read and write sets of the session, our model uses a vector
clock based approach to support session guarantees. Session
guarantees under SI model using the primary-backup approach
are investigated in [3]. In contrast to that work, we support
update-everywhere model and also provide a group session
model for collaborative applications.

VII. CONCLUSION

We have presented here the CSI model for executing
transactions on geographically replicated database systems.
This model uses asynchronous replication for scalability and
ensures causal ordering of transactions. The approach taken
here avoids any false causal dependencies in propagating
updates. We have shown the performance benefits of CSI over
the PSI approach. Building upon the CSI framework, we have
developed models for different consistency levels suitable for
session level interactions in single-user as well as group-based
applications. We have presented here a set of mechanisms
that can be used by an application to guarantee the desired
consistency level.

REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ANSI SQL isolation levels,” in Proc. of ACM SIG-
MOD’95. ACM, 1995, pp. 1–10.

[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proc. VLDB Endow., vol. 1, pp.
1277–1288, August 2008.

[3] K. Daudjee and K. Salem, “Lazy database replication with snapshot
isolation,” in Proc. of the VLDB, 2006, pp. 715–726.

[4] S. Elnikety, F. Pedone, and W. Zwaenepoel, “Database replication using
generalized snapshot isolation,” in 24th IEEE Symposium on Reliable
Distributed Systems, 2005, pp. 73 – 84.

[5] H. Jung, H. Han, A. Fekete, and U. Roehm, “Serializable Snapshot
Isolation for Replicated Databases in High-Update Scenarios,” in VLDB,
2011.

[6] B. Kemme and G. Alonso, “A new approach to developing and imple-
menting eager database replication protocols,” ACM Trans. Database
Syst., vol. 25, pp. 333–379, September 2000.

[7] Y. Lin, B. Kemme, M. Patiño Martı́nez, and R. Jiménez-Peris, “Mid-
dleware based data replication providing snapshot isolation,” in Proc. of
the ACM SIGMOD, 2005, pp. 419–430.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage with
COPS,” in Proc. of the 23rd ACM SOSP, 2011, pp. 401–416.

[9] V. Padhye and A. Tripathi, “Scalable Transaction Management with
Snapshot Isolation on Cloud Data Management Systems,” in Proc. of
IEEE 5th Intl. Conference on Cloud Computing, 2012.

[10] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in Proc. of ACM SOSP, 2011, pp. 385–400.

[11] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. Welch, “Session guarantees for weakly consistent replicated data,”
in PDIS’94, 1994, pp. 140–149.

[12] S. Wu and B. Kemme, “Postgres-R(SI): Combining Replica Control
with Concurrency Control Based on Snapshot Isolation,” in Proc. of
IEEE ICDE, 2005, pp. 422–433.

266

