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Abstract—The focus of our work is on developing techniques thereby putting the responsibility of node selection foplap
for selecting nodes for scheduling applications in largeesle, cation deployment and scheduling on the users. Differest us
cooperatively pooled, shared computing platforms. In suclplat- applications maybe co-hosted on a node and they compete for
forms, resources at a node are allocated to competing userso .
fair-share basis, without any reserved resource capacit& for the resources available on that node.
any user. There is no platform-wide resource manager for the ~ The focus of our work is on developing techniques and
placement of users on different nodes. The users independ&n heuristics to guide application developers in selectingeso
select nodes for their applications. Our study is focused othe {5, their application deployment. We consider here coopera
tively pooled shared computing platforms with the follogin

PlanetLab environment which exemplifies such platforms. Fo
developing node selection techniques, we first study the m@srce o o
characteristics, as exemplified by the PlanetLab system.

utilization characteristics of PlanetLab nodes. Our apprach uses

the notion of dligibility period, which represents a contiguous
duration for which a node satisfies a given resource requiremnt.
We study the characteristics of the eligibility periods of Ranetlab
nodes for various resource capacity requirements. Based athis
study we develop models for identifying nodes that are likel to
satisfy a given requirement for long durations. We also devep
an online model for predicting the idle resource capacity tlat is
likely to be available on a node over a short term. We evaluate
and demonstrate the performance benefits of the node seleati
techniques and the prediction model using the PlanetLab nosl
utilization data traces collected at different intervals over an
extended period of several months.

I. INTRODUCTION

Federated computing platforms such as Grid computing
environments [8] and the PlanetLab [3] demonstrate the fea-

sibility of using cooperatively pooled distributed resces for
deploying global scale distributed applications. Evenutito
the PlanetLab platform is primarily intended for experiran

research, it demonstrates how cooperatively pooled shared
computing resources across a large number of organizations

can be utilized for building large-scale, distributed, retaa

computing platforms. In contrast to Cloud platforms such as,

Amazon EC2 [2] or Microsoft Azure [16], such cooperatively
pooled shared computing platforms have several distihgngs
characteristics. These platforms typically do not pransi

guaranteed levels of resource capacities to an application
Moreover, cooperatively pooled resources in such platséorna]
t

are generally widely dispersed and loosely managed by
participating organizations. They generally do not utilany

centralized resource management and scheduling mechanis%

« No provision of fixed resource capaciffhese platforms

do not provide any dedicated resources with fixed capac-
ity guarantees or reservation of resource capacitiesgor it
users.

No central resource managein such platforms, there is

no central resource manager or scheduler for platform-
wide resource allocation in order to balance the resource
utilization and load. The users deploying the applications
select the nodes to be used.

Fair-share based resource allocatiofThe resources on

a single node are allocated on fair-share basis to the
competing users. For example, in PlanetLab a user is
given asliceon each node and the resources are allocated
to slices on fair-share basis. An application can consume
the unused resources on a node as long as other users
do not compete for it. However, the unused resource
capacities on a node can fluctuate due to the changing
resource demands of the applications and the number
of users on the node. Due to these factors, there is
no guarantee of the resource capacities available to an
application.

Lack of guarantees for node availabilitfhe availability

of a node is not guaranteed due to crashes or shutdowns.
In such federated environments, the owner of a node has
autonomous control to shutdown it at any time.

The available resource capacities on PlanetLab nodes can
lictuate significantly as shown by the study presented in
[20]. It is shown there that the available resource capacity
a node may change significantly within 30-60 minutes.

As observed in [20] as well as in our study of resource
This work was supported by National Science Foundationtgra@34357 ava'lab'l'ty of PlanetLab nodes, a node selected to execute
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a task with some given resource requirements may become



unsuitable for hosting it in the near future due to the changeery high eligibility periods. We observe that recent raseu
in the available resource capacity on that node. This metsvausage behavior of nodes is a good indicator in selectingsiode
the need of supporting dynamic relocation of tasks bas®hen a node remains eligible for a certain duration it tends
on resource availability. For scheduling or relocation of 8 continue being eligible for a long duration. We utilize
task, we need to identify the nodes that satisfy the tashisese characteristics of node resource availability iretbging
resource requirements. Furthermore, as observed in ady, stuechniques for identifying nodes that are likely to satisfy
the available resource capacities and their fluctuatiomg vagiven resource requirement for long durations. Specificalé
significantly across nodes. Therefore, in order to minintie develop techniques for node selection that take into adcoun
number of migrations, it is important to discriminate amonthe recent eligibility period profile of a node when considgr
eligible nodes to identify the nodes that are most likely tib for inclusion in the eligibility set. We present here thasks
satisfy a task’s requirement for a long duration. for these techniques and evaluate their performance.
Towards developing techniques for node selection, we studyWhen a node hosting an application becomes ineligible for
the characteristics of resource availability of Planetbables its resource requirements, relocating the applicatiomtiteer
using the resource utilization data that we collected &t node may not be a good option if there is a high probability for
intervals over an extended period. In this regard, our ainots the current node to become eligible again within a short time
to study and characterize the long term distributions ogesaThis can be an important consideration if the cost of relocat
patterns of PlanetLab nodes, which may change over tinig.high. In this regard, an important question that needs to
Rather we are interested in understanding the node bekavioe addressed is what is the probability that a node would
over a short term (ranging from several hours to a week) become eligible again within a given duration after it beesm
develop techniques for selecting nodes based on their treceieligible. To address this question, we defimeligibility
behavior in terms of resource availability. The techniqugseriodas the time between two successive eligibility periods of
that we present in this paper require only about 30 minutasiode and observe its distribution. We find that the prolgbil
observation of resource usage of nodes. Thus an applicatfon the ineligibility periods to be under 60 seconds tends to
deployer would require to monitor nodes only for a short timeigh (close to 80%). This indicates that if an application ca
before selecting nodes for deployment or in making any enlinolerate the ineligibility of its host for a short duration i
scheduling or relocation decisions. meeting its resource requirements, then it can continuesé¢o u
We first study the behavior of nodes in terms of thethat node for longer periods without relocating. We present
eligibility for a task’s resource requirements. The requients here the details of this investigation and its benefits.
of a task could be stated in terms of CPU capacity, memory,Another important question that we address in this paper
and network bandwidth. We refer to the set of nodes satigfyiis how to predict the resource capacity that is likely to be
a given resource capacity requirement asaeligibility set available on a node in the near future. An application hosted
The eligibility period of a node is defined as the contiguous node may need to estimate the resource capacity thatlis like
period for which it remains in the eligibility set. We observto be available beyond its minimum resource requirement.
the distribution of eligibility periods and set sizes forieas Such prediction of available resource capacity can be usefu
resource requirements. The distribution of eligibilityripels for applications such as replicated services or any digtil
indicates how long a randomly selected node is likely to meapplication which can load-balance requests or schedele th
the given requirement of a task. The expected value of themputation based on the estimated available resource&-capa
eligibility set size is also an indicator of the average nembity. Towards this we develop an online prediction model vahic
of tasks of a given resource capacity requirement that canth&es into account the recent behavior of the node. We eiliz
scheduled in the system. In this study we are not concerrtbis prediction model in developing techniques for buitdin
with node availability in terms of the MTTF and MTTR of autonomically scalable services in such environments. [21]
the PlanetLab nodes as presented in [25]. Our focus is on thén the next section we describe the mechanisms we used
eligibility periods of nodes for some given resource catyacifor monitoring resource usage of PlanetLab nodes. Section |
requirements; these periods typically tend to be much emaltiescribes the datasets we collected for our study. Secton |
than the MTTF values (mean 3.8 days and median 3.16 daygsents our study of resource availability charactesstf
as reported in [25]). PlanetLab nodes. Section V presents the approach for sgject
Our study indicates that generally a node remains eligibi®des based on their recent availability profiles. In Sactib
for smaller durations for CPU requirements as comparegk present the model we developed for predicting the resourc
to memory and network bandwidth requirements. The nodepacity likely to be available at a node. Discussion orteela
eligibility periods depend on the resource requiremenelev work is presented in Section VII and the conclusions are
for CPU and memory, whereas in case of network bandwidphesented in the last section.
the eligibility periods typically tend to be less sensitieethe
requirement levels. Our study shows that for all resourpesy
the eligibility periods typically tend to be small with very For this study we needed to collect the data about resource
high probability. The distribution of eligibility periodgends utilization of PlanetLab nodes over time. In order to obtain
to be long-tailed indicating that some fraction of nodesehawaccurate measurements of a node’s behavior in terms of
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resource utilization, we wanted to collect this data at higbelected PlanetLab nodes over this period. This pool reptes
frequency, such as at 10-20 seconds interval. We obsemere than a third of the PlanetLab nodes.
that CoMon [22], the node momtorlng service provided byA Capacity Distribution of Monitored Nodes
PlanetLab, cannot be used directly for this purpose as’ it
provides average values of resource usage over systenedefin We first observed how the intrinsic resource capacities®f th
monitoring intervals of one minute and five minutes. Thus, tAnonitored nodes were distributed to understand the resourc
resource usage information of PlanetLab nodes provided §gPacity variations across the observed nodes. Figured 2 an
CoMon is relatively coarse grain for our purpose. Therefor&how the distribution of per node CPU and memory capacities,
we developed a system called Platinum for monitoring Plafgspectively. The CPU capacity shown is the total intrinsic
etLab nodes and obtain resource usage data at configurdpid) capacity of a node, calculated as the product of number
intervals. It collects resource usage information for sasi Of cores and clock frequency per core of that node. As shown
resources such as CPU, memory and network bandwidth. in Figure 1, a large fraction of monitored nodes (more than
The Platinum system collects data about resource utitizati®0%) had CPU capacity in the range of 4 to 7 GHz. Only

at each monitored node by probing 8ticeStaf22] data at a & small fraction of nodes had very high capacity (aboye 10
periodicmonitoring interval(which is set to 15 seconds in ourHz). Compared to CPU capacity, node memory capacity had

experiments). For a monitored node, it collects the foltayvi relatively less variation. A large fraction of nodes (mohnert
data during each probe and maintains the average and stan@&”0) had memory capacity between 3 to 3.5 GB. About 20%
deviation values over a slidindata aggregation windowf 5 of the nodes had relatively low memory capacity (1-1.5 GB).

minutes which is moved at each monitoring interval.
120

1) CPU usage (measured in MHz) B Number of
2) Physical and virtual memory usage (in KB) 100 Nodes

3) Average sending and receiving bandwidth usage over so
past 1, 5, and 15 minutes intervals (measured in KB} 4,
On each probe to a node, around 4 KB data is recei ,,
on average. Thus, with 15 seconds monitoring interval,
monitoring 400 nodes, the bandwidth requirement of t I I I u
system would be approximately 106 KBps. Moreover, t © 0 "0 0 o oy 8_-9 910 > 10
usage data and related statistics, around 800 bytes pee Ghz Ghz Ghz Ghz Ghz Ghz Ghz Ghz Ghz
for a node, are stored in stable storage for offline data aigly
We compute the available (i.e. unused) resource capacity
at a node for a particular resource type as the difference
between the node’s intrinsic resource capacity and thé t 250 B Number of
usage for that resource for all the slices running on thaenc 2 Nodes
For example, currently available CPU capacity for a node
computed by subtracting the current CPU usage of all sli
measured in MHz from the node’s intrinsic CPU capaci 190
which is measured as the product of the number of cores
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Fig. 1. Distribution of Node CPU Capacities

150

the CPU speed. A resource requirement specifies the minin >° I .

resource capacity that needs to be available on a node. | . — [
example, a 2GHz CPU requirement indicates that the availe  ¢5"° 372 33%° §87° 3% &8¢ ~**°
resource capacity on the selected node must always be at icas

2GHz. In case of bandwidth, the requirements are specified in Fig. 2. Distribution of Node Memory Capacities

terms of usage rather than the available capacity. For ebeamp
1MBps bandwidth requirement indicates that the sum of the g- Collected Datasets

minute average bandwidth usage of all the slices must aIWaySI'abIe | describes the datasets that we collected for this

be less than 1MI_3ps..The requirements for .ne'gvyork bandwi ﬂldy. These datasets were collected over durations mangin
were expressed in this way because for a significant fractﬁon]c om 36 hours to 8 days. Our goal was to observe the
the nodes the information about the total network bandWidesource availability of nod.es over short durations (raggi

was not available. from few hours to a week) to develop heuristics for selecting
nodes, rather than characterizing long term usage patterns
and distributions. We used datasets labeled 1, 2, and 3 to
In this section we describe the datasets we collected for amalyze the resource availability characteristics andtihie
study. We monitored a pool of PlanetLab nodes and collectetbdels for node selection. We evaluated these models on the
traces of resource utilization data at different times friume remaining datasets (Dataset 4-10) to verify the applidgbil
2009 to January 2012. We observed a total of 390 randondf the developed models over different time periods. These

IIl. EXPERIMENT DATASETS



- . Requirement Dataset-1 Dataset-2 Dataset-3
data_sets be_Iong to time perlgds both before as well as after Avg. [ Med. | Avg. | Med. | Avg. | Med.
the time periods of the collection of Datasets 1-3. The ddtas 1 GHz 035 042 | 061 | 0.70 | 0.42 | 0.47
used for model evaluations were at least 3.5 days long. 2 GHz 0.28 | 0.36 | 0.54 | 0.60 | 0.36 | 0.40

3 GHz 021 ] 029 | 043 | 052 | 0.22 | 0.29
Dataset Time and Duration Number of 4 GHz 015] 020 | 032 ] 038 | 0.13 | 0.16
Nodes 05 GB 041 ] 048 [ 0.60 [ 0.68 | 0.39 [ 0.45
Datasets used to build the model 1GB 038 | 041 | 051 | 057 | 0.30 | 0.37
Dataset-1 | May 20-27, 2011 (7 days) 390 2 GB 011 | 019 | 037 | 043 | 0.14 | 0.20
Dataset-2 | Feb 11-12, 2011 (38 hours 286 T.4AMBps 0561 069 ] 070 072 | 047 | 050
Dataset-3 | Sep 1-2, 2010 (36 hours) 250 IMBps 055 | 0.66 | 0.61 | 0.62 | 0.46 | 0.44
Datasets used for model evaluation 0.6MBps 054 | 063 | 054 | 053 | 045 | 043
Dataset-4 | Jan 12-18, 2012 (6.5 days 390 0.2MBps | 0.52 | 0.60 | 0.50 | 0.48 | 0.42 | 0.40
Dataset-5 | Dec 9-13, 2011 (4.5 days) 390
Dataset-6 | Oct 25-28, 2010 (3.5 days 189 TABLE I
Dataset-7 | Sep 17-22, 2010 (5.5 days 210 FRACTION OF NODES SATISFYING DIFFERENT RESOURCECAPACITY
Dataset-8 | Mar 2-10, 2010 (8 days) 189 REQUIREMENTS
Dataset-9 Nov 8-12, 2009 (4 days) 303
Dataset-10| June 7-12, 2009 (5.5 days 200

TABLE | selection. We perform this study using the Datasets 1-3.
DATASETS AND THEIR OBSERVATION TIMES o o
A. Definition of Node Eligibility

C. Preliminary Analysis We consider a node eligible for a given resource require-
We present here a preliminary analysis of the Datasets ment based on its average available capacity for that type of

3. We considered different resource capacity requiremen':t‘gSource over the current data aggregation window. The basi

and at every probe interval in the trace (every 15 secon éster_lon for (jetermmmg the _e||g|b|||ty of a n_ode for a g
. é%quwement is as follows. IP is the average idle capacity on

Qode over the current data aggregation window arisl its

requirement. Table Il shows the average and median val . : .
for this data for Datasets 1-3. A node was considered %andard deviation, then for a given resource requirenignt

meet the given requirement at any given point in the tradie select the node if it satisfies the following condition:
if its currently available capacity at that point was greate P—-2%x0>D 1)
than the specified requirement. For CPU, we found that very . o )
few nodes satisfied the requirements above 4GHz. Thereférg0de is dropped from the eligibility set if the currently
we considered available capacity requirements in the rangedvailable capacity at that node falls below the resource re-
1GHz to 4GHz. For memory, the requirement levels rang&yirementD, i.e. P < D. The criterion in equation (1) is used
from 0.5GB to 2GB. Although there were many nodes witRS & Simple heuristic to select nodes by taking into account
total memory capacity of 3GB and above, the free memol)€ quctuatlons in their resource aval_lab!llty in recenstpa
capacity at such nodes usually tends to be less than 3GB dtjgrnatively, one could use a simple criterion, suchras D
to memory usage of slices present on these nodes. Theref&?es,elec'[ nodes._ However,_m this case the nodt_as with alailab
we did not consider requirements of 3GB and above, HSOUrce capacity fluctuating around the.rgguwement_lé}/el
very few nodes could satisfy these requirements. For néwd¥ould frequently enter and leave the eligibility set, reniag
bandwidth, the requirements were expressed in terms of figible for short durations only. Thus, to filter out sucftes
sum of the usage of all the slices below some given threshol¥§ consider the standard deviation.
which were set in the range of 1.4MBps to 0.2MBps. Note that DUring @ particular data trace, a node may enter and leave
the requirement of 0.2MBps is more stringent, i.e. reflectifne eligibility set multiple times. We define theligibility
higher unused bandwidth, than 1.4MBps requirement. period of & node, which is denoted hy, as the time between
The above data gives an indication of how many nodd§ entry in the eligibility set and its subsequent departur
can meet a given capacity requirement at a random poffRM the set. Theineligibility period, which is denoted by
in time, however, an important question is how long a nod% is defl_ned as the duration between two consecutive eligi-
continues to meet the given requirement after initially timge Pility periods of a node. For the purpose of developing node
the requirement. It would indicate how long an applicatian ¢ Séléction techniques, we study how node eligibility pesiod
utilize a node selected from the pool of nodes satisfying ttfé€ distributed. We first perform this study by considering t
given requirement. Also, since the duration for which a nodauirements of different resource types separately. Men
stays eligible would vary across nodes, it is important tecte Study node eligibility periods when requirements for mpiéi

nodes that would remain eligible for long durations. resources are considered together.
IV. CHARACTERISTICS OFNODE RESOURCE B. Distribution of Eligibility and Ineligibility Periods
AVAILABILITY An important question that we wanted to address is to

In this section we present our study of node eligibilitdetermine how long a randomly selected node is likely to
characteristics for the purpose of building models for nodemain eligible for a given requirement. For this purpose, w
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Fig. 3. PDF of Eligibility Periods for 2GHz CPU Fig. 4. PDF of Eligibility Periods for 1GB Fig. 5. PDF of Eligibility Periods for 1MBps

Requirement Memory Requirement Bandwidth Requirement
50 percentile| 70 percentile| 90 percentile Plo <15 sec] | P[6 <30 sec] | P[0 <1min]

1 GHz 1 -3 mins 1-6 mins 10 - 17 mins CPU 0.35 - 0.52 0.50 - 0.70 0.71-0.84

2 GHz 1-4 mins 1-6 mins 12 - 26 mins Memory 0.42 - 0.57 0.60 - 0.79 0.80 - 0.88

3 GHz 2 - 4 mins 3 -8 mins 11 - 69 mins Network Bandwidth| 0.40 - 0.55 0.65 - 0.75 0.79 - 0.87

4 GHz 2-5 m!ns 5-26 mlns 11-113 mlns TABLE IV

0.5GB 1-2 mins 1-4 mins 8 - 20 mins DISTRIBUTION OF INELIGIBILITY PERIODS FORDATASETS 1-3

1GB 1-3 mins 1 -4 mins 10 - 22 mins

2 GB 2 - 4 mins 2 -9 mins 18 - 28 mins
1AMBps | 1-2mins | 1-3mins | 29 - 35 mins becomes ineligible. Thus, if an application can toleratehsu
1.0MBps 1-2 mins 1- 3 mins 27 - 34 mins h ineligibili iods. i k f th de f
0.6MBps 1-2 mins 1- 4 mns 53 - 35 mins short ine Igl ility periods, It can make use of the node for a
0.2MBps| 2-3mins | 2-4mins | 22-36 mins longer period.

TABLE Il C. Node Eligibility Characteristics

DISTRIBUTION OF ELIGIBILITY PERIODS FORDATASET 1-3 . ) . .
We investigate here how the nodes behave in terms of their

eligibility periods. The distributions shown in Figures &,

observed the probability density of the eligibility persod’he and 5 are the distributions of individual eligibility peds for
expected duration for which a node selected randomly, at alhthe nodes. As a node may become eligible multiple times
arbitrary point in time, would remain eligible is half of theduring the observation period, it may have multiple valums f
expected value of the eligibility period. We investigatdd e eligibility periods. Thus, in the above distributions, adeo
gibility period distributions separately for CPU, memoayid that became eligible more number of times contributed more
bandwidth requirements, for a range of resource requiremeaamples than the nodes that became eligible less number of
levels. As a representative example, we show, for Datas#étnes. Moreover, a node that tends to stay eligible for a long
1, the probability density of eligibility periods for 2GHztime is likely to contribute less number of samples than a
CPU capacity, 1GB memory, and 1MBps bandwidth usag®de that tends to stay eligible for a short time but entegs th
requirements in Figures 3, 4, and 5, respectively. Table Bligibility set frequently. Thus, to study the individuabde
shows min-max range for 50, 70, and 90 percentile values leéhavior, we consider the median value of a node’s eligjbili
eligibility periods for Datasets 1-3. From this table andufes periods as its representative eligibility period. We denibie
3, 4, and 5, we observe that the eligibility period values araedian eligibility periodof a node byu. In Figures 6, 7,
typically small (50 and 70 percentile values are typicalyow and 8, as a representative example we show the cumulative
10 mins). Hence, there is need for further discrimination distribution (CDF) of nodesj: values for Dataset 1 for CPU,
nodes to eliminate nodes that are likely to remain eligilbllyo memory, and bandwidth requirements, respectively. Table V
for short durations. presents the statistics for node median eligibility pesiathd

We also investigated how ineligibility periods are disset sizes for this dataset.
tributed. The nodes which never became eligible for a givenin this table, theunique nodesxolumn gives the number
requirement were not considered in this measurement. Td-nodes that became eligible during the entire duration of
ble IV shows the min-max range for probability mass dhe observation for the corresponding resource requiremen
ineligibility period less than 15, 30 and 60 seconds acro$he statistics given in the tables for a specific requirement
Datasets 1-3. We do not show these values separately dorrespond to the unique nodes for that requirement. For
different requirement levels as we observed that theseesal@éxample, in case of 2GHz CPU capacity requirement the
did not vary significantly across different requirementelsv  average eligibility period of 152 minutes is the average of

We observe that with significant probability (greater thaR18 nodes’ median eligibility periods. Similarly, in Figu6
0.5) the ineligibility period values are below 30 secondshe CDF for 2GHZ CPU requirement is the distribution of 218
This indicates that there is high probability that a node wodes’ median eligibility periods. We observe that tydical
likely to become eligible again within 30 seconds after the median values for the nodes’ median eligibility periods
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Fig. 6. CDF of Node Eligibility Periods for CPU Fig. 7. CDF of Node Eligibility Periods for Fig. 8. CDF of Node Eligibility Periods for
Requirements for Dataset 1 Memory Requirements for Dataset 1 Network Bandwidth Requirements for Dataset 1

Eligibility Period (u) Unique Eligibility . AT AT
(minutes) Nodes Set Size D. Relation between Node Eligibility and Ineligibility Peds
Avg [ Median | Std Dev Avg | Std Dev Another aspect that we investigated for characterizingesod
o215 T 75 T3 o YA is how their e!|g|b|I|ty periods and ineligibility penodarg -
5GHz | 152 36 319 518 W) 35 related. For this purpose, we measure the average eligibili
3GHz | 129 30 265 182 | 425 25.1 period and average ineligibility period of a node. The ratio
4GHz | 136 | 47 M275 136 | 328 | 208 a node’s average eligibility period to its average ineligip
emory . . : S .
05GE [ 554 T 147 93 199 109 513 period gives the relative availability of the node. F|gu9e$0,
1GB 540 147 919 179 918 a4 and 11 show, separately for CPU, memory, and bandwidth, the
2GB 251 73 338 102 22.1 11.9 scatter graphs of average eligibility and ineligibilityrjwels for
Network bandwidth _ i id- ]
TaMBps | 520 103 =51 e TEEE 675 Datas.et 1. We con_5|dered the mid-range values for reqeinem f
TOMBps | 503 | 97 =41 556 | 1687 | 678 levels; CPU requirement _of 2GHz, memory requirement o
0.6MBps | 450 o1 651 256 | 1682 | 678 1GB, and bandwidth requirement of 1IMBps. We observe that
0.2MBps | 351 84 454 256 167 67.7 the nodes can be classified in three groups based on their
TABLE V eligibility and ineligibility periods. The first group coains
NODE MEDIAN ELIGIBILITY PERIOD AND SET SIZE FORDATASET 1 nodes WhICh tend to have |arge |ne||g|b|||ty periods and H;ma

eligibility periods. The second group of nodes tend to have

small eligibility and ineligibility periods, indicatinghiat they
tend to be always less than the average values. The standegdquently enter and leave the eligibility set. The thirdup
deviation also tends to be high, comparable to the averagfenodes, which we consider as ’high-quality’ nodes, tend to
values (coefficient of variation is between 0.89 to 2.17)isThhave small ineligibility periods and large eligibility peds.
indicates that some nodes tend to exhibit significantlydarg The scatter graph for CPU shown in Figure 9 shows that the
eligibility periods. From these statistics, we can obseha¢, nodes with large average eligibility periods tend to havalsm
for all resource types, generally the median and averagresal average ineligibility periods. There is also a large numiier
for node median eligibility periodi) tend to decrease with nodes which tend to have small eligibility periods but with
increase in the resource requirement levels. Howeverctms large variations in ineligibility periods. This indicatahat
not be taken as a rule as one can observe that sometirsesie nodes tend to have more frequent fluctuations in their
increase in the level of a requirement may lead to increase@PU usage. In contrast the scatter graph, in Figure 10, for
the median or average value pf as in the case of 3GHz andmemory shows that the nodes with large eligibility periods ¢
4GHz requirements. We find that this is because the noddso have relatively large ineligibility periods. This indtes
that become eligible for a lower requirement level for shotéss frequent variations in memory utilization. In case of
durations may not qualify for a higher requirement levehetwork bandwidth usage the ineligibility periods tend #® b
Thus, sometimes in case of higher requirement levels fewarshort durations. This can be explained based on the bursty
nodes may become eligible but they may remain eligible foiature of network usage.
longer durations. For all resource types and requirementsTo differentiate high quality nodes from other nodes we
the eligibility set size always decreases with increasehé tobserve the ratio of a node’s average eligibility period to
requirement level. This is to be expected as the nodes tltataverage ineligibility period. We find that the nodes with
become eligible for a higher requirement level must also lawerage eligibility period above certain threshold tend to
eligible for a lower requirement level. We find that typigall have higher value for this ratio than the nodes with average
the eligibility periods are smaller for CPU requirements asligibility period below the threshold. We examined thisiga
compared to memory and network bandwidth requiremerior different threshold values ranging from 5 to 60 minutes.
This indicates that the available capacity tends to fluetuatVe show the results of this study for Datasets-1 in Table VI. |
more for CPU than for memory and network bandwidth. this table,r; denotes the median value of this ratio for nodes
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for 2GHz CPU Requirement for 1GB Memory Requirement for Bandwidth Usage 1MBps

e Cr'ju (261‘,':2) N?'n?mory (ifB) Bf;”dw'dth (j:"Bps) for a duration oft units. This means, for a residual eligibility
Smins | 0.05| 47 | 067| 94 | 082] 2611 period A(t) = 7 —t, i.e. \(0) = 7.

10mins [ 0.15] 13 | 09 | 1296 | 34 282 Table VII shows the average residual period for different

20mins | 016 22 | 2 | 133 | 41 3151 values of threshold for Dataset-1. We can observe that for

30 mins | 0.89 | 48 | 2.2 | 1555 | 65 3482 I threshol | h idual eliaibility i

50 mins 137 101 | 38 | 1936 | 205 347 all thres old values, the average re_5|_dl_,|§1 e|g|_b| |ty|@@r

TABLE VI is much larger than the average eligibility peried This
NODE DISCRIMINATION BASED ON RELATION BETWEEN NODE indicates that .|f_a .node’s e“g't_)”'ty_ PenOd exceeds certa
ELIGIBILITY AND INELIGIBILITY PERIODS threshold then it is likely to remain eligible for a long dtice.

We also observe that the average residual eligibility mkrio
increases with increase in threshold values. This indictitat

with average eligibility periods below the given threshadd the distribution of eligibility periods is not memoryless.
r;, denotes the median ratio for nodes above the threshold. For

example, in case of 2GHz CPU capacity requirement with tire Multi-dimensional Resource Requirements
threshold of 20 minutes, the nodes with average eligibility We present here characteristics of resource availabilitgrw
period more than 20 minutes have the median value of 22 f@ltiple resource requirements are considered togetméinig
this ratio, and for the nodes below this threshold the mediaase, a node is considered eligible as long it satisfies all
value of the ratio is 0.16. the specified resource requirements. A node is dropped from
We find that for network bandwidth, with threshold of She eligibility set when it fails to satisfy any of the resoer
minutes one can find nodes with very large value (aroumdguirements. We consider three multi-dimensional comjoi
260) ofry,, i.e. their average eligibility periods are significantlyequirements by taking low, medium and high requirement
larger than their average ineligibility periods. For megnone levels for each of the resource types (CPU, memory and band-
can find high quality nodes with threshold of 10 minutes. Favidth). Thus, in this study we consider following requirants
CPU, with the threshold of 20 minutes one can find nodes tha the representative cases.

haver, value 22, i.e. with 50% probability a selected node will 1) |ow (1GHz CPU, 0.5GB memory, 1MBps bandwidth);
have average eligibility period at least 22 times highentit®  2) medium (2GHz CPU, 1GB memory, 0.6MBps band-
average ineligibility period. Similar trends were obsehfer width);

the other two datasets. 3) high (4GHz CPU, 2GB Memory, 0.2MBps bandwidth).

_ The observz_;\tions_presented in this study indicate_thaéthq_rhe node median eligibility periods for these requirememnes
is a need to discriminate amongst nodes to select high W“abriven in Table VI for Dataset-1.

nodes for a given requirement. We wanted to investigate which resource dominates the node

. N . eligibility when multiple resource requirements are cdeséd
E. Residual Eligibility Period together. For this purpose, we observed the number of times
In order to select high quality nodes, we wanted to ire node is dropped from the eligibility set or it is not added
vestigate whether the recent eligibility period profile of & the set because the requirement for one resource type is
node can indicate the likelihood that the node would remaimot satisfied but the requirements for other two resourcesyp
eligible for a long duration. As discussed earlier, FiguBgs are satisfied. In this table thesource unavailabilityndicates
4, and 5 show that with significant probability the eligityili the percentage of the times this occurs for the given resourc
periods tend be of short durations. This motivates the nesgbe. This data gives indication regarding the dominating
for observing how long a node has remained eligible beforesource type in case of multi-dimensional requirements. F
selecting it for inclusion in the eligibility set. We defind¢) example, in case of low requirement (1GHz CPU, 0.5GB
as theresidual eligibility periodof a node. It is measured asmemory, 1MBps bandwidth), the value 60.2 for CPU resource
the residual eligibility period after the node has beenilgilg indicates that 60.2% of times a node was dropped from



t =5 mins t =10 mins t = 15 mins

Requirement| Avg. A(0) | P[r <] | Avg. A(¢) | P[r <¢] | Avg. A(¢) | Plr <t¢] | Avg. A(¢)
1GHz 10.59 0.84 60.8 0.89 83.2 0.90 93.2
2GHz 10.55 0.85 57.2 0.88 73.7 0.89 82.1
3GHz 10.52 0.86 60.39 0.90 7.7 0.91 86.3
4GHz 11.7 0.88 78 0.92 105.7 0.93 117.2
0.5GB 14.6 0.84 78.9 0.88 96.4 0.89 104.5
1GB 14.9 0.85 85.35 0.89 103.7 0.91 111.93
2GB 17.2 0.84 92.1 0.88 112.2 0.90 121.8
1.4MBps 10.64 0.85 59.4 0.90 87.2 0.92 100.7
1MBps 10.63 0.85 59.3 0.90 87.2 0.92 100.6
0.6MBps 10.64 0.85 59.2 0.90 86.7 0.92 100.1
0.2MBps 10.52 0.86 57.8 0.90 84.3 0.92 97.4

TABLE VII

RESIDUAL ELIGIBILITY PERIOD (IN MINUTES) FOR DIFFERENT THRESHOLDS

Requirement Levels T .
Tow | medum [ high ineligibility periods. Some nodes tend to have very small
Node Median Eligibility Period ineligibility periods and large eligibility periods. This
Avg (Med) | 68 (35) | 49.5 (25) | 21.9 (9) indicates that there is a need to discriminate among nodes
Std. dev 8.98 6.4 12.1 ; P ;
: to identify high quality nodes.
Unique nodes| 125 118 31 . .. . .
Eligibility Set Size « The nodes that remain eligible for certain duration tend
Avg 113 835 25.1 to show long average residual eligibility periods. Thus,
Std. de; 433 ! %?’I;t“ 7 16.8 the nodes can be distinguished by observing how long
esource Unavallapbility (7o . P
CPU 502 656 164 they have r_emamed eI|g|bIe..
memory 29 28 77.7 « When requirements for multiple resource types are con-
bandwidth 10.8 6.4 49 sidered together, the node eligibility is typically domi-
TABLE VIII nated by CPU requirements, but memory resource starts
NODE ELIGIBILITY FOR MULTI-DIMENSIONAL REQUIREMENTS dominating in case of 2GB or higher requirements.

Bandwidth requirement is the least dominating factor

o _ compared to CPU and memory.
the eligibility set or was not added to the set because it

did not satisfy CPU requirement but the requirements fo¥. HEURISTICS FORNODE SELECTION AND APPLICATION
memory and bandwidth were satisfied. From this data we can PLACEMENT

observe that typically the CPU requirements dominates thewe present here the techniques that we developed for
node eligibility for low and medium level of requirementSse|ecting nodes which are likely to remain eligible for long
However, the memory requirements starts dominating fon higyrations for a given requirement. We utilize the node eligi
level of requirements i.e. 2GB and above. We can see that {jgy characteristics presented in the previous sectiohttild
bandwidth requirements were the least dominating compaigélristics for selecting nodes. We evaluate these techsiqu
to CPU and memory. on Datasets 4-10 and demonstrate their benefits in selecting
nodes that remain eligible for longer durations compared to

i ) ) the basic selection method presented in Section IV-A.
We summarize here the important observations regarding

node eligibility characteristics. These observationslguis in A. Profiling Based Node Selection

developing the node selection techniques presented inetkie N |n the previous section, we discussed the need to discrimi-
section. nate nodes to identify the ’high quality’ nodes which arehk
« The eligibility periods £) tend to have long-tailed dis- to remain eligible for a long duration. For selecting sucghhi
tributions. The nodes show wide variations in terms afuality nodes, we investigated the methods for discrinmgat
their eligibility periods and some nodes tend to showodes based on their eligibility periods. Based on thesé-met
significantly large eligibility periods. ods, we develop profiling approaches for selecting nodes for
« The ineligibility periods §) tend to be of short dura- a given requirement.
tions (typically 50% values are less than 30 seconds),The first aspect we use for discriminating nodes is their
indicating that if an application can tolerate such shodurrent eligibility periods. In the previous section we sked
ineligibility periods it may be able to use a node for dhat if a node remains eligible for a certain duration then it
longer duration without relocating. However, it is impor+esidual eligibility period tends to be large (refer Tabld)V
tant to understand for what fraction of its residency tim&hus, by observing the node eligibility periods for a short
at a node its resource requirement is satisfied. We addrdsgation, such as 5 minutes, one can find nodes that are likely
this question in the next section. to remain eligible for long durations. Another aspect that w
« Nodes can be distinguished based on their eligibility armbnsider for selecting nodes is their past eligibility pds for

G. Summary of Resource Availability Characteristics



a given requirement. For this purpose, we determine the con- Pmﬁ'ed(ﬁiir?&?gg’ Period | Uique | Profiied ERaIDItY
ditional probability that the node’s eligibility period eseds Avg | Median | Std Dev Avg | Std Dev
a given threshold provided that its previous eligibilityrioel CPU
exceeded that threshold. We measured this for various mesoy+ &Hz | 1280 | 707 | 2505 | 177 | 61 21.6
: 2 GHz | 2016 | 806 2807 142 54 25.4
requirements and resource types for Datasets 1-3. We @uberv3cpz T 1335 T 552 5050 105 | 35 185
that for the threshold value of 30 minutes, with probability 4 GHz | 1505 [ 645 2156 80 28 15.6
greater than 0.3 the eligibility period value exceeded t eOSGB 071103 M;égify - - 0%
threshold given that the previous el|g!b|llty perl.od exdg(f} 1CB 5196 1193 5697 166 &2 576
the threshold. For threshold of 60 minutes, this conditionea—3gg 5008 | 1207 5487 63 51 937
probability was in the range 0.4 to 0.6. This means that Network bandwidth
selecting nodes based on this criterion can give at least 30d*MBps | 2103 | 918 2810 | 247 | 94 37.7
> o 2 1.0MBps | 2075 | 918 2788 247 95 38.8
probability of a selected node remaining eligible for atstea 0.6MBps | 2054 | 909 5800 547 oa 377
30 minutes. 0.2MBps | 1763 | 829 2417 247 94 40.3
Based on the above two criteria, we develop a profiling TABLE IX
approach for node selection as follows. We use the basic criPROFILED NODE MEDIAN ELIGIBILITY PERIODS AND SET SIZES FOR
terion given in equation (1), in Section IV-A, for deternmigia DATASET-1
node’s eligibility for a given reguirement. We then maintai 7 Set size reduction(%
subset of these nodes as irefiled set We add a node to the min | max min [ max
profiled set if it satisfies any of the following two conditgn CPU
. o ] ] 1Ghz | 5.01 10.11 50 59
1) The node has remained eligible for a certain duration 2Ghz | 7.89 18.01 50 55
(set to 5 minutes in our experiments, using the data in 3Ghz | 848 29.8 30 66
Table VIl as the basis). 4Ghz | 7.21 117 50 58
. L . . Memory
2) The previous eligibility period of the node is greatentha 0EGE | 105 581 20 a2
certain threshold (we set it to 30 minutes). 1GB | 1.15 8.42 30 83
) _ _ 2GB | 2.37 7.79 50 79
We measured the duration for which a node stays in the Network Bandwidth
profiled set as th@rofiled eligibility periodof that node. We 14Mbp | 1.12 5.12 38 53
observed the distribution of the profiled nodes’ medianielig IMbps | 1.51 5.09 37 60
bl iods. For th Fill ing th ; 0.6Mbps | 1.21 4.47 40 57
ility periods. For the purpose of illustrating the perfamee 0.2Mbps | 1.30 518 i1 50

benefit of the profiling approach over the basic approach, TABLE X

we show in Table IX the statistics for prOfiled node medianMPROVEMENTACHIEVED USING PROFILING APPROACH FORDATASETS
eligibility periods for Dataset-1. We then evaluate theegah 4-10

applicability of this approach using Datasets 4-10. We can

compare the statistics shown in Table IX to those shown in

Table V for basic eligibility periods. We can observe tha theligibility set size due to profiling, we measure the peraget
profiling approach gives longer node median eligibilityipds feduction in the set size. This is measured as the percentage
than the basic approach and the improvement ranges frorflegrease in the median value of the set size from basic
factor of 6 to 20. As expected, the average size of the profiléglection to profiling-based selection. We measuredfthend

set is smaller than the basic eligibility set. Thus, the po8ft size reduction for each of the seven datasets. Tablewssho
of nodes selected by the profiling approach is smaller buttie min and max value for the above two measures across

contains “high quality” nodes which remain eligible for tpn Datasets 4-10. From this data, we can see that the profiling-
durations. based node selection approach typically gives longertliityi

To measure the benefit of profiling across other datas@@/10ds compared to the basic selection approach, congrmin
(Datasets 4-10), for each dataset we compared the median @4 €arlier observation.
ues of the node median eligibility periogh)(using profiling-
based selection and basic selection method. We measured
profiling improvement factor f{,) as the ratio of the median We discussed earlier the motivation for tolerating short
value of u obtained with profiling to the median value pf ineligibility periods. We evaluated the benefit of this agpgch
obtained with basic selection method. For example, we can s® observing how the eligibility periods increase by totera
from Table IX and Table V thaf, for LGHz CPU requirement short ineligibility periods of duratiod\. For this, we used the
is equal to 19.6. We do not measure how eligibility periodame criterion as equation (1) to select the nodes, howaver,
improves per node, because the profiling approach selectsoale is dropped from the eligibility set only if the currgntl
smaller set of nodes and hence many of the nodes that geailable resource capacity at that node remains below the
selected in basic selection method do not get selectedsipecified requirement for duration greater than
profiling method. Therefore the per node improvement canTable XI shows the node eligibility period statistics using
not be measured for all the nodes. To observe the effect this approach for Dataset-1 to show the relative benefits in

qhgeneﬁt of Ineligibility Toleration



Node Median Eligibility Period #£) (minutes) t p (median)
A =15 secs A = 30 secs A =1 min 25 percentile] 50 percentile] 75 percentile
Avg Med) [ p Avg Med) [ p Avg Med) [ p CPU
GHz CPU 1 GHz 1.18 2.75 9.54 0.97
1 813 (104) | 0.99 | 888 (112) | 0.98 | 933 (116) | 0.95 2 GHz 1.06 1.42 5.33 0.98
2 539 (50) | 0.99 | 583 (52) | 0.97 | 627 (55) | 0.93 3 GHz 1.05 1.29 4.01 0.96
3 481 (40) | 099 | 525(42) | 0.97 | 539 (44) | 0.93 4 GHz 1.04 1.25 4.00 0.92
4 511 (63) | 0.99 | 560 (67) | 0.98 | 592 (72) | 0.94 Memory
GB Memory 0.5 GB 1.87 3.70 12.27 0.97
0.5 895 (406) | 0.99 | 923 (430) | 0.96 | 941 (449) | 0.93 1GB 1.72 3.47 9.89 0.96
1 875 (367) | 0.99 | 919 (389) | 0.94 | 927 (417) | 0.91 2 GB 1.33 2.57 7.74 0.93
2 459 (196) | 0.99 | 478 (202) | 0.94 | 481 (209) | 0.92 Network Bandwidth

MBps Network bandwidth 1.4 MBps 1.43 231 8.82 0.98
14 819 (284) | 0.99 | 837 (296) | 0.98 | 860 (317) | 0.98 1 MBps 1.37 2.19 7.79 0.97
1.0 793 (277) | 0.99 | 816 (283) | 0.98 | 848 (306) | 0.98 0.6 MBps 1.23 2.09 6.36 0.96
0.6 740 (274) | 0.99 | 801 (276) | 0.98 | 831 (299) | 0.97 0.2 MBps 121 2.01 6.07 0.96

0.2 731 (269) | 0.99 | 794 (273) | 0.98 | 822 (293) | 0.97 TABLE XII

TABLE XI IMPROVEMENT ACHIEVED USING TOLERATION APPROACH WITHA = 30
NODE MEDIAN ELIGIBILITY PERIODS (u) WITH TOLERATION FOR SECONDS
DATASET-1

ing and resource allocation mechanism for the underlying

comparison to the data shown in Table V for this dataset fgfatform. A user can utilize these techniques for selecting
the basic approach. Note here that the eligibility period iodes for deploying an application by performing short term
this case indicates the duration for which an applicatiom caonitoring of a set of potential nodes to identify high gtyali
use a node by tolerating ineligibility periods of duratiams nodes. For this purpose, the users can themselves run the Pla
to A. The goodness fractiondenoted byp, is the fraction inum monitoring system in their environment. The profiling
of the eligibility period for which the node satisfied the @ approach requires resource usage monitoring for only about
resource requirement. For exampleg; @alue of 0.99 indicates 30 minutes.
that the node met the given requirement for 99% of the The techniques presented in this section can be used for se-
eligibility period duration and the remaining 1% amounts t@cting nodes for deploying both applications and serviEes
the ineligibility periods of duration less than or equal4o |ong running services, dynamic relocation is required as th
We show in this table the average and median values fglacement decisions made at the time of the initial deplayme
node median eligibility periods; and the median value can become ill-suited after some time due to the fluctuations
of p. We observe that the eligibility period values increasg resource availability at the selected nodes. Howeves, th
significantly using the toleration approach. For exampte, hode selection techniques presented above can be used to
case of 1GHz CPU capacity requirement the avepagelue select high quality nodes for replica placement to reduce
increased from 218 minutes (refer Table V) to 813 minutefe number of migrations. Moreover, if the relocation cost
with goodness fraction of 0.99 with toleration of just 13s high then the approach of toleration can be used to avoid
seconds of ineligibility periods. unnecessary migrations. We have used these techniques in ou

We evaluated this approach using Datasets 4-10 to validaferk on building resource-aware migratory services [24] an

its general applicability. For this purpose, we observed fautonomically scalable services [21] in such environments
each node, the ratio of its median eligibility period) (with
toleration to the median eligibility period without toldian. VI. NODE-LEVEL RESOURCECAPACITY PREDICTION

We refer this ratio agoleration improvement factoff). We We address here the problem of how to predict for a given
observed this ratio for all nodes across Datasets 4-10 tyverosource at a node the amount of its idle capacity that is
whether the toleration approach is beneficial in case oferthqﬁ(my to be available (i.e. not used by other users) in tharne
datasets as well. Table XII shows the 25, 50 and 75 perceni{lg re with some given probability. The prediction of awbile
values for this ratio. We also show the median value @Ghacity can be useful for an application to estimate howtmuc
goodness fractiorfp) in this table. In this observation, th  5qgitional capacity is likely to be available beyond itsese
value was set to 30 seconds. We can observe that the appr@eflirements. Specifically, we address the problem that for
of tolerating short ineligibility periods gives longergibility  gome given confidence level, how to predict the resource
periods. Thus, if an application can tolerate short inblldy  c4nacityr for a particular resource type such that the available

periods it can continue to make use of a node for a longhacity over some period in the near future is at &agtith
duration without the need to relocate. probability C.

We present here an online model for prediction of available
resource capacity. On PlanetLab we observed that the fluc-

The node selection techniques presented in this sectiontdations in the available resource capacities depend on the
not require any global platform-wide monitoring servicedannode’s load conditions. This requires a dynamic prediction
they are also not intended for building any central schedutiodel that takes into account the node’s load conditions. Ou

C. Utilization of Node Selection Techniques



prediction method is based on observing the fluctuationlsen tlow value would cause overprediction.
available resource capacities over time. To charactetiz s To determine the impact of the lengthswf andw, on the
fluctuations, for each resource type we observe the avergmediction model, we observefdfor these datasets with the,
available resource capacitR,,, over some period, called values of 1, 3, and 5 minutes, ang values of 0.5, 1, and 1.5
observation period,), and the average available resourcminutes. Since & value close to 1 is desirable, we determined
capacity R,,, over a period in the immediate future, calledhe goodness of prediction in terms of the probability mdss o
prediction period {v,). We define thecapacity modulation ¢ values between 0.9 and 1.1. For CPU, network bandwidth,
ratio (6) as and memory, we observed that for all collected datasets
0 = Ry,/Ru, (2) andw, values of 1 minute give better prediction performance
. . ) o ) than other values, However, the sensitivity of the predicti
A capacity modulation ratio greater than 1 indicates INBee2n 6 rformance tas, andw, parameter values was marginal.
in the available resource capacity by some fracti_on, and aTo determine the impapct of the history window;() size, we
value less than 1 indicates a decreasg) > z| is the ,pgeryed the value af at which the required confidence level
probability thfat .the avc_arage_ available resource capaaigr 0 ¢ is achieved, i.ez such thatP[$ > z] = C. We evaluated
the next prediction period, is at leastR.,, - z. Therefore, 10 s for 4, values ranging from 10 to 60 minutes. We observed
predict the fraction of the available resource capacity tha 4t for allwy, values above 20 minutes this was achieved at
likely tq be available with a specified confidence level C_, Wealue of approximately 0.95. This data is shown for Dataset-
determinez such thatP|f > z] = C. We observe that while 5 i, Taple XIII as a representative example. That means the
the available resource capacity itself may change signifiga 11,qe| is overpredicting by about 5%, i.e. at least 95% of the
over short durations, such changes (that is healues) are e qicted capacity would be available with probability @r F
statistically predlctlable over durations of several_ mesugin wy, values of 10 and 20, the required confidence level was
range of 30-60 minutes). Therefore, our dynamic model fofhieved forg values of 0.9 and 0.92, respectively. We also
resource capacity prediction is based on observing therist ypseryed thaty, value of 60 minutes performs better, but only
of § values over some period, calledstory window {or,). OUr \yith marginal (about 4%) improvements ovef, values of 30,
prediction model estimates the cumulative distributio®E} 40, and 50 minutes. The prediction performance for network
of the ¢ values observed over a sliding window of periogh,;nqwidth and memory showed similar trends.
wy, and calculates the valug for some given confidence o gyajuating the effect of, we considered the amount of
level C, such thatP[f > z] = C. This value is used t0 ,nqerprediction in terms of the probability ¢fbeing greater
estimate the resource capacny for the next predictionoderi yya1 1.5. Since for all resource types, we achieve the reduir
For example, suppose thai; is the value calculated, asqqnfigence level with approximately 5% error, the amount of
described above, at théh prediction cycle for CPU resowce'overprediction is decided by th& value we set. As shown in
Let p; be the observed average available CPU capacity ovglpje x|iI, for CPU resource we can observe that the amount
the immediately preceding observation perioduof duration ¢ ndgerprediction increases with increase in confideneel.le
at thesth prediction cycle. The predicted CPU capadiyfor  poever, for network bandwidth and memory, confidence
the following prediction periodu, is estimated as: level had relatively less impact on underprediction, sifure
P, =p;-z (3) all ¢ values the underprediction was limited to 50%. This
behavior occurs because typically the CPU usage can flectuat
The goodness of the prediction model can be determing@gnificantly compared to memory and network bandwidth.
by considering the ratio of resource capacity observed to /e memory usage is relatively stable i.e. fluctuates less ov
available in a given interval to the capacity predicted fmtt a short time compared to CPU usage. In case of network
interval. We call it theprediction ratio ). A value of ¢ bandwidth, the usage tends to be bursty in nature, so when
close to 1 indicates that the observed capacity is close there is no burst of data communication the bandwidth usage
the predicted capacity, whereas values higher or lower thgihds to be relatively stable. Therefore, for CPU capacity
1 indicate underprediction and overprediction, respebtiv one can bias the prediction model towards underprediction
Since, in equation (3); is chosen such tha®[f# > z;] = C, or overprediction by choosing the confidence level whereas,
we expect that the resource capacity observed to be awailaigh network bandwidth and memory setting higher confidence
during the immediately following prediction periogd, is at level is more desirable.
least p; - z; with probability C. Therefore, we expect that We evaluated the accuracy of our prediction model across
Pl¢ > 1] = C. Based on this observation, the goodness @fatasets 4-10 for various confidence levels. We fixed the
the prediction model can be evaluated based on the valuenfddel parameter values ag = 30 minutes andv, = wy =1
¢ at which this required confidendg is achieved. minute. For each of the seven datasets, we observed the
We evaluated the impact of the different parameters;+ probability Ppp < 0.95] for various confidence levels for
w,, wp, and C — on the performance of the prediction mod€@PU, memory and bandwidth. Table XIV shows min and max
for Datasets 1-3. An important question is how to choose thalues for Pp < 0.95] across the seven datasets. We do not
values for these parameters. For the confidence level pggamshow this data separately for CPU, memory and bandwidth
C, a high value of C would result in underprediction, and as we observed that for any given confidence level the value



w, | C | Plp<0.95] | Plp< 1.5] | P0.95 < ¢ < 1.5] |

and removing service replicas based on the estimated reques

30 T 70 032 cpg-ss 056 handling capacities of service replicas and the observad. lo
60 | 70 0.31 0.89 057 In that work, we used the above prediction model for predict-
30 | 80 0.22 0.76 0.54 ing the resource capacities likely to be available at a cajdi
gg gg 8:% 8:;2 8:2‘3‘ host over the next 1-minute interval. A service replica ari
60 1 90 011 0.66 053 ically predicts the resource capacity likely to be avaiafar
Memory different resource types such as CPU, memory and network
30 | 70 0.32 0.99 0.67 bandwidth. It also monitors its request load and estimage th
gg ;g 8:32 8:22 8:32 average resource requirement for processing a request. The
60 | 80 0.21 0.98 0.77 predicted resource capacities and the estimated average pe
30 | 90 0.12 0.97 0.84 request resource demands are then used to estimate theeservi
60 | 90 0'11N . Bo.gg - 0.85 capacity, i.e. the request handling capacity of the repicer
30 1770 032 il alr']OW't 068 the next 1-minute interval. Using the operational analysis
60 | 70 0.31 1.0 0.69 technique, the replica identifies the bottleneck resourcg a
30 | 80 0.22 10 0.78 then estimates the maximum number of requests that it can
gg gg 8:% 01"9% 8:;2 serve over the next interval. Based on the estimated request
60 1 90 011 0.99 088 handling capacities of the replicas, the service deplogymen
TABLE XIll framework dynamically adds or removes the service replicas
PREDICTION PERFORMANCE FOR VARIOUS VALUES ORwj, AND C to maintain enough aggregate service capacity to handle the

request load. The estimated request handling capacititeeof
_ o _ replicas are also used for load balancing of requests across
of P[¢ < 0.95] did not change significantly across differenteplicas. We used the node selection techniques described

resource types. This can also be seen from Table XIIl. V¥gylier for dynamic placement of service replicas.
can observe from Table XIV that the required confidence is

achieved approximately at prediction ratio of 0.95 for any VIl. RELATED WORK
specified confidence level, confirming our earlier obseovati ~ Characterization of resource usage and availability irpeoo
eratively pooled shared computing platforms has beenedudi

confidence level r?]llﬁ = 0}?15a]x extensively in the past. Available capacity estimationepias
70 0.273 | 0.324 on idle machine availability in Desktop Grid environments
75 0.249 | 0.259 have been studied in past [18], [17]. A great deal of previous
gg 812; gigg work [19], [12], [13], [10], [11], [7] has provided charac-
90 0110 1 0134 terization and statistical models for resource availgbiin
95 0.067 | 0.071 Desktop Grid systems and public resource computing systems
TABLE XIV such as SETI@home. In all these previous approaches, the
PREDICTION ACCURACY ACROSSDATASETS 4-10 resource availability for task executions was defined based

) ) on host reachability, CPU availability to guest processes a
Based on these observations, we make the following cqgsyboard/mouse activities of users. We study here resource
clusions: availability characteristics based on a node’s eligipifior a
« For any given confidence level, our prediction model particular requirement based on the idle resource capaciti
predicts the resource capacity that is likely to be ava#labhvailable on that node. This way of characterizing resource
(i.e. unused) over the next interval with probabiliy availability is more appropriate for the platforms like fla
with 95% accuracy i.e. the available resource capacity ¢l ab because unlike Desktop Grids or volunteer computing
at least 95% of the predicted capacity with probability systems, the resources on a PlanetLab node are allocated
« For CPU capacity higher confidence level results im fair-share manner to all competing users. Work presented
higher underprediction. However, for network bandwidtih [20] provided a general characterization of resourcegesa
and memory, confidence level has relatively less impagt nodes in the PlanetLab platform in the context of service
on amount of underprediction. Therefore, it is desirablgnd application placement. The primary goal of our work is
to set high confidence level for memory and networlo develop node selection techniques for application pieme
bandwidth. and dynamic relocation and our study of resource avaitgbili
« The sensitivity of the prediction performanceg and characteristics was driven by this goal. The work presented
wp values in the range of 1 to 5 minutes is marginaln [25] provided characterization of node availability itaR-
Similarly, we found that forw;, values higher than 20 etLab based on MTTF and MTTR measures. As compared to
minutes the impact of the parameter values is marginahat work, our focus is on available capacities on node and
We have used this prediction model in our work on builctheir eligibility for various requirement levels.
ing autonomically scalable services over the PlanetLab pla The work in [4] presents machine learning based techniques
form [21]. The focus of that work was on dynamically addindor grouping nodes based on similarities in their resousage



characteristics. The main focus of that work is on scalablde also studied the relation between a node’s eligibility
management of long historical resource usage informatwon foeriod and ineligibility period. We observed that the nodes
statistical resource selection over various time intervéth with average eligibility period above certain thresholddeo
contrast to that work, the focus of our work is on selectinghow significantly higher eligibility periods compared teir
nodes which continue to meet given resource requiremeimsligibility periods. We used these observations to davel
for long durations. Our profiling method for selecting nodea profiling approach for selecting nodes. Our profiling-lbase
requires resource usage information over a short histaigghe node selection techniques select nodes that tend to remain
of up to 30 minutes only, and hence management of resousdigible for significantly longer durations compared to the
usage information is not a significant issue. basic selection method. The profiling techniques require re
Resource availability and capacity prediction has beetrstisource usage information for only about 30 minutes. Thus, an
ied extensively in the past [27], [28], [29], [18], [17], [6] application deployers would need to monitor nodes only for
[23], [9]. In [23] the authors provided a prediction modethort time before selecting nodes for deployment.
based on semi-Markov process to predict resource avéffabil We observed that the ineligibility periods are typically
in fine-grained cycle sharing systems. Systems for performf short durations and hence an application can benefit by
ing online prediction such as the Network Weather Servitelerating such short lapses in its host node’s ability teeme
(NWS) [29] and RPS [6] provide various prediction meththe resource requirements. Our experiments show that e tol
ods based on moving mean/median prediction, time seriaing ineligibility periods of up to 30 seconds, an appimat
and auto-regressive prediction methods. In [20] the astharan continue to use a node for a long duration without the
also presented preliminary analysis of applying diffenerg- need to relocate and still have the required resource dgpaci
dictions methods provided in NWS for predicting resourcavailable with high probability, which was observed to berov
capacities in the PlanetLab environment. In contrast to t8@% in our experiments.
previous approaches, our prediction model is developeddbas We presented here an online model for predicting the
on the observed characteristics of resource usage on Bémetresource capacities likely to be available at a node in the
nodes. The problem addressed in our prediction model risar future with some given confidence level. Our experisent
slightly different from the previous approaches; we adslreshowed that for any desired confidence level, this model can
the problem of predicting the resource capacity likely to beredict capacity with 95% accuracy. Moreover, for CPU capac
available in the near future with some specified confidenitg, we observed that a higher confidence level results ihdrig
level. By specifying the confidence level one can specifynderprediction. Hence, in case of CPU capacity, settieg th
the desired reliability of the prediction. Moreover, ireeof confidence level is a trade-off between underprediction and
considering the actual capacity values, our predictioneh® overprediction. However, in case of memory and network
based on observing the distribution of relative change & tlhandwidth the underprediction is always limited. Therefor
available capacity from one interval to the next interval.  setting a high confidence level is more desirable for memory
In the past, several systems [15], [22], [1], [26], [14]and network bandwidth. This prediction model can be used by
[5] have been developed for resource monitoring and noépplications and services for predicting their serviceacitjes
selection in large-scale wide-area shared computinggetaf. as demonstrated by our work in [21].
The primary focus of the designs of these systems was on scalour techniques can be used by application developers for
ability of node monitoring and resource selection techemuintelligent selection of nodes for application placememt i
and efficient management of resource usage information. Tdwch cooperatively shared environments. We demonstriadéd t
system for node monitoring presented in this paper wasing these node selection techniques certain level of-guar
primarily intended for experimental purpose and hence th@tee of resource availability can be achieved even when the
scalability issues of the monitoring system are not the @arym underlying environment does not provide any such guarantee
focus of our work. Moreover, such a level of resource availability guarantae c
be achieved even in the absence of any centralized resource
manager, through self selection of nodes by application de-
We have presented in this paper techniques for selectipigyers. Thus, such cooperatively pooled environmentsbean
nodes for application placement in a cooperatively pooléglilt for shared computing with softer guarantees of reseur
shared computing environment such as the PlanetLab platfoavailability as an alternative to using utility computintatp
Our techniques are based on the characteristics of resou@ens such as Clouds. Such a model of shared computing
availability on PlanetLab nodes. is useful when the applications do not require strict cagaci
We first provided a basic selection method for determinirguarantees with the advantage that more number of users and
eligibility of a node for a given requirement. We observedpplications can be supported through cooperative shafing
distribution of eligibility and ineligibility periods to elvelop the resources.
heuristics for node selection. Our study shows that thentece
eligibility period is typically a good indicator for selécg REFERENCES
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