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Abstract—The focus of our work is on developing techniques
for selecting nodes for scheduling applications in large-scale,
cooperatively pooled, shared computing platforms. In suchplat-
forms, resources at a node are allocated to competing users on
fair-share basis, without any reserved resource capacities for
any user. There is no platform-wide resource manager for the
placement of users on different nodes. The users independently
select nodes for their applications. Our study is focused onthe
PlanetLab environment which exemplifies such platforms. For
developing node selection techniques, we first study the resource
utilization characteristics of PlanetLab nodes. Our approach uses
the notion of eligibility period, which represents a contiguous
duration for which a node satisfies a given resource requirement.
We study the characteristics of the eligibility periods of Planetlab
nodes for various resource capacity requirements. Based onthis
study we develop models for identifying nodes that are likely to
satisfy a given requirement for long durations. We also develop
an online model for predicting the idle resource capacity that is
likely to be available on a node over a short term. We evaluate
and demonstrate the performance benefits of the node selection
techniques and the prediction model using the PlanetLab node
utilization data traces collected at different intervals over an
extended period of several months.

I. I NTRODUCTION

Federated computing platforms such as Grid computing
environments [8] and the PlanetLab [3] demonstrate the fea-
sibility of using cooperatively pooled distributed resources for
deploying global scale distributed applications. Even though
the PlanetLab platform is primarily intended for experimental
research, it demonstrates how cooperatively pooled shared
computing resources across a large number of organizations
can be utilized for building large-scale, distributed, shared
computing platforms. In contrast to Cloud platforms such as
Amazon EC2 [2] or Microsoft Azure [16], such cooperatively
pooled shared computing platforms have several distinguishing
characteristics. These platforms typically do not provision
guaranteed levels of resource capacities to an application.
Moreover, cooperatively pooled resources in such platforms
are generally widely dispersed and loosely managed by the
participating organizations. They generally do not utilize any
centralized resource management and scheduling mechanisms,
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thereby putting the responsibility of node selection for appli-
cation deployment and scheduling on the users. Different user
applications maybe co-hosted on a node and they compete for
the resources available on that node.

The focus of our work is on developing techniques and
heuristics to guide application developers in selecting nodes
for their application deployment. We consider here coopera-
tively pooled shared computing platforms with the following
characteristics, as exemplified by the PlanetLab system.� No provision of fixed resource capacity:These platforms

do not provide any dedicated resources with fixed capac-
ity guarantees or reservation of resource capacities for its
users.� No central resource manager:In such platforms, there is
no central resource manager or scheduler for platform-
wide resource allocation in order to balance the resource
utilization and load. The users deploying the applications
select the nodes to be used.� Fair-share based resource allocation:The resources on
a single node are allocated on fair-share basis to the
competing users. For example, in PlanetLab a user is
given asliceon each node and the resources are allocated
to slices on fair-share basis. An application can consume
the unused resources on a node as long as other users
do not compete for it. However, the unused resource
capacities on a node can fluctuate due to the changing
resource demands of the applications and the number
of users on the node. Due to these factors, there is
no guarantee of the resource capacities available to an
application.� Lack of guarantees for node availability:The availability
of a node is not guaranteed due to crashes or shutdowns.
In such federated environments, the owner of a node has
autonomous control to shutdown it at any time.

The available resource capacities on PlanetLab nodes can
fluctuate significantly as shown by the study presented in
[20]. It is shown there that the available resource capacity
at a node may change significantly within 30-60 minutes.
As observed in [20] as well as in our study of resource
availability of PlanetLab nodes, a node selected to execute
a task with some given resource requirements may become



unsuitable for hosting it in the near future due to the changes
in the available resource capacity on that node. This motivates
the need of supporting dynamic relocation of tasks based
on resource availability. For scheduling or relocation of a
task, we need to identify the nodes that satisfy the task’s
resource requirements. Furthermore, as observed in our study,
the available resource capacities and their fluctuations vary
significantly across nodes. Therefore, in order to minimizethe
number of migrations, it is important to discriminate among
eligible nodes to identify the nodes that are most likely to
satisfy a task’s requirement for a long duration.

Towards developing techniques for node selection, we study
the characteristics of resource availability of PlanetLabnodes
using the resource utilization data that we collected at different
intervals over an extended period. In this regard, our aim isnot
to study and characterize the long term distributions or usage
patterns of PlanetLab nodes, which may change over time.
Rather we are interested in understanding the node behaviors
over a short term (ranging from several hours to a week) to
develop techniques for selecting nodes based on their recent
behavior in terms of resource availability. The techniques
that we present in this paper require only about 30 minutes
observation of resource usage of nodes. Thus an application
deployer would require to monitor nodes only for a short time
before selecting nodes for deployment or in making any online
scheduling or relocation decisions.

We first study the behavior of nodes in terms of their
eligibility for a task’s resource requirements. The requirements
of a task could be stated in terms of CPU capacity, memory,
and network bandwidth. We refer to the set of nodes satisfying
a given resource capacity requirement as itseligibility set.
The eligibility period of a node is defined as the contiguous
period for which it remains in the eligibility set. We observe
the distribution of eligibility periods and set sizes for various
resource requirements. The distribution of eligibility periods
indicates how long a randomly selected node is likely to meet
the given requirement of a task. The expected value of the
eligibility set size is also an indicator of the average number
of tasks of a given resource capacity requirement that can be
scheduled in the system. In this study we are not concerned
with node availability in terms of the MTTF and MTTR of
the PlanetLab nodes as presented in [25]. Our focus is on the
eligibility periods of nodes for some given resource capacity
requirements; these periods typically tend to be much smaller
than the MTTF values (mean 3.8 days and median 3.16 days
as reported in [25]).

Our study indicates that generally a node remains eligible
for smaller durations for CPU requirements as compared
to memory and network bandwidth requirements. The node
eligibility periods depend on the resource requirement levels
for CPU and memory, whereas in case of network bandwidth
the eligibility periods typically tend to be less sensitiveto the
requirement levels. Our study shows that for all resource types,
the eligibility periods typically tend to be small with very
high probability. The distribution of eligibility periodstends
to be long-tailed indicating that some fraction of nodes have

very high eligibility periods. We observe that recent resource
usage behavior of nodes is a good indicator in selecting nodes.
When a node remains eligible for a certain duration it tends
to continue being eligible for a long duration. We utilize
these characteristics of node resource availability in developing
techniques for identifying nodes that are likely to satisfya
given resource requirement for long durations. Specifically, we
develop techniques for node selection that take into account
the recent eligibility period profile of a node when considering
it for inclusion in the eligibility set. We present here the basis
for these techniques and evaluate their performance.

When a node hosting an application becomes ineligible for
its resource requirements, relocating the application to another
node may not be a good option if there is a high probability for
the current node to become eligible again within a short time.
This can be an important consideration if the cost of relocation
is high. In this regard, an important question that needs to
be addressed is what is the probability that a node would
become eligible again within a given duration after it becomes
ineligible. To address this question, we defineineligibility
periodas the time between two successive eligibility periods of
a node and observe its distribution. We find that the probability
for the ineligibility periods to be under 60 seconds tends to
high (close to 80%). This indicates that if an application can
tolerate the ineligibility of its host for a short duration in
meeting its resource requirements, then it can continue to use
that node for longer periods without relocating. We present
here the details of this investigation and its benefits.

Another important question that we address in this paper
is how to predict the resource capacity that is likely to be
available on a node in the near future. An application hostedon
a node may need to estimate the resource capacity that is likely
to be available beyond its minimum resource requirement.
Such prediction of available resource capacity can be useful
for applications such as replicated services or any distributed
application which can load-balance requests or schedule their
computation based on the estimated available resource capac-
ity. Towards this we develop an online prediction model which
takes into account the recent behavior of the node. We utilized
this prediction model in developing techniques for building
autonomically scalable services in such environments [21].

In the next section we describe the mechanisms we used
for monitoring resource usage of PlanetLab nodes. Section III
describes the datasets we collected for our study. Section IV
presents our study of resource availability characteristics of
PlanetLab nodes. Section V presents the approach for selecting
nodes based on their recent availability profiles. In Section VI
we present the model we developed for predicting the resource
capacity likely to be available at a node. Discussion on related
work is presented in Section VII and the conclusions are
presented in the last section.

II. PLATFORM-LEVEL RESOURCEUSAGE MONITORING

For this study we needed to collect the data about resource
utilization of PlanetLab nodes over time. In order to obtain
accurate measurements of a node’s behavior in terms of



resource utilization, we wanted to collect this data at high
frequency, such as at 10-20 seconds interval. We observe
that CoMon [22], the node monitoring service provided by
PlanetLab, cannot be used directly for this purpose as it
provides average values of resource usage over system-defined
monitoring intervals of one minute and five minutes. Thus, the
resource usage information of PlanetLab nodes provided by
CoMon is relatively coarse grain for our purpose. Therefore,
we developed a system called Platinum for monitoring Plan-
etLab nodes and obtain resource usage data at configurable
intervals. It collects resource usage information for various
resources such as CPU, memory and network bandwidth.

The Platinum system collects data about resource utilization
at each monitored node by probing itsSliceStat[22] data at a
periodicmonitoring interval(which is set to 15 seconds in our
experiments). For a monitored node, it collects the following
data during each probe and maintains the average and standard
deviation values over a slidingdata aggregation windowof 5
minutes which is moved at each monitoring interval.

1) CPU usage (measured in MHz)
2) Physical and virtual memory usage (in KB)
3) Average sending and receiving bandwidth usage over the

past 1, 5, and 15 minutes intervals (measured in KBps).

On each probe to a node, around 4 KB data is received
on average. Thus, with 15 seconds monitoring interval, for
monitoring 400 nodes, the bandwidth requirement of this
system would be approximately 106 KBps. Moreover, the
usage data and related statistics, around 800 bytes per probe
for a node, are stored in stable storage for offline data analysis.

We compute the available (i.e. unused) resource capacity
at a node for a particular resource type as the difference
between the node’s intrinsic resource capacity and the total
usage for that resource for all the slices running on that node.
For example, currently available CPU capacity for a node is
computed by subtracting the current CPU usage of all slices
measured in MHz from the node’s intrinsic CPU capacity,
which is measured as the product of the number of cores and
the CPU speed. A resource requirement specifies the minimum
resource capacity that needs to be available on a node. For
example, a 2GHz CPU requirement indicates that the available
resource capacity on the selected node must always be at least
2GHz. In case of bandwidth, the requirements are specified in
terms of usage rather than the available capacity. For example,
1MBps bandwidth requirement indicates that the sum of the 1-
minute average bandwidth usage of all the slices must always
be less than 1MBps. The requirements for network bandwidth
were expressed in this way because for a significant fractionof
the nodes the information about the total network bandwidth
was not available.

III. E XPERIMENT DATASETS

In this section we describe the datasets we collected for our
study. We monitored a pool of PlanetLab nodes and collected
traces of resource utilization data at different times fromJune
2009 to January 2012. We observed a total of 390 randomly

selected PlanetLab nodes over this period. This pool represents
more than a third of the PlanetLab nodes.

A. Capacity Distribution of Monitored Nodes

We first observed how the intrinsic resource capacities of the
monitored nodes were distributed to understand the resource
capacity variations across the observed nodes. Figures 1 and 2
show the distribution of per node CPU and memory capacities,
respectively. The CPU capacity shown is the total intrinsic
CPU capacity of a node, calculated as the product of number
of cores and clock frequency per core of that node. As shown
in Figure 1, a large fraction of monitored nodes (more than
60%) had CPU capacity in the range of 4 to 7 GHz. Only
a small fraction of nodes had very high capacity (above 10
GHz). Compared to CPU capacity, node memory capacity had
relatively less variation. A large fraction of nodes (more than
50%) had memory capacity between 3 to 3.5 GB. About 20%
of the nodes had relatively low memory capacity (1-1.5 GB).
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Fig. 1. Distribution of Node CPU Capacities
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Fig. 2. Distribution of Node Memory Capacities

B. Collected Datasets

Table I describes the datasets that we collected for this
study. These datasets were collected over durations ranging
from 36 hours to 8 days. Our goal was to observe the
resource availability of nodes over short durations (ranging
from few hours to a week) to develop heuristics for selecting
nodes, rather than characterizing long term usage patterns
and distributions. We used datasets labeled 1, 2, and 3 to
analyze the resource availability characteristics and build the
models for node selection. We evaluated these models on the
remaining datasets (Dataset 4-10) to verify the applicability
of the developed models over different time periods. These



datasets belong to time periods both before as well as after
the time periods of the collection of Datasets 1-3. The datasets
used for model evaluations were at least 3.5 days long.

Dataset Time and Duration Number of
Nodes

Datasets used to build the model
Dataset-1 May 20-27, 2011 (7 days) 390
Dataset-2 Feb 11-12, 2011 (38 hours) 286
Dataset-3 Sep 1-2, 2010 (36 hours) 250

Datasets used for model evaluation
Dataset-4 Jan 12-18, 2012 (6.5 days) 390
Dataset-5 Dec 9-13, 2011 (4.5 days) 390
Dataset-6 Oct 25-28, 2010 (3.5 days) 189
Dataset-7 Sep 17-22, 2010 (5.5 days) 210
Dataset-8 Mar 2-10, 2010 (8 days) 189
Dataset-9 Nov 8-12, 2009 (4 days) 303
Dataset-10 June 7-12, 2009 (5.5 days) 200

TABLE I
DATASETS AND THEIR OBSERVATION TIMES

C. Preliminary Analysis

We present here a preliminary analysis of the Datasets 1-
3. We considered different resource capacity requirements,
and at every probe interval in the trace (every 15 seconds)
we observed the fraction of the nodes that met the given
requirement. Table II shows the average and median values
for this data for Datasets 1-3. A node was considered to
meet the given requirement at any given point in the trace
if its currently available capacity at that point was greater
than the specified requirement. For CPU, we found that very
few nodes satisfied the requirements above 4GHz. Therefore
we considered available capacity requirements in the rangeof
1GHz to 4GHz. For memory, the requirement levels ranged
from 0.5GB to 2GB. Although there were many nodes with
total memory capacity of 3GB and above, the free memory
capacity at such nodes usually tends to be less than 3GB due
to memory usage of slices present on these nodes. Therefore,
we did not consider requirements of 3GB and above, as
very few nodes could satisfy these requirements. For network
bandwidth, the requirements were expressed in terms of the
sum of the usage of all the slices below some given thresholds,
which were set in the range of 1.4MBps to 0.2MBps. Note that
the requirement of 0.2MBps is more stringent, i.e. reflecting
higher unused bandwidth, than 1.4MBps requirement.

The above data gives an indication of how many nodes
can meet a given capacity requirement at a random point
in time, however, an important question is how long a node
continues to meet the given requirement after initially meeting
the requirement. It would indicate how long an application can
utilize a node selected from the pool of nodes satisfying the
given requirement. Also, since the duration for which a node
stays eligible would vary across nodes, it is important to select
nodes that would remain eligible for long durations.

IV. CHARACTERISTICS OFNODE RESOURCE

AVAILABILITY

In this section we present our study of node eligibility
characteristics for the purpose of building models for node

Requirement Dataset-1 Dataset-2 Dataset-3
Avg. Med. Avg. Med. Avg. Med.

1 GHz 0.35 0.42 0.61 0.70 0.42 0.47
2 GHz 0.28 0.36 0.54 0.60 0.36 0.40
3 GHz 0.21 0.29 0.43 0.52 0.22 0.29
4 GHz 0.15 0.20 0.32 0.38 0.13 0.16

0.5 GB 0.41 0.48 0.60 0.68 0.39 0.45
1 GB 0.38 0.41 0.51 0.57 0.30 0.37
2 GB 0.11 0.19 0.37 0.43 0.14 0.20

1.4MBps 0.56 0.69 0.70 0.72 0.47 0.50
1MBps 0.55 0.66 0.61 0.62 0.46 0.44

0.6MBps 0.54 0.63 0.54 0.53 0.45 0.43
0.2MBps 0.52 0.60 0.50 0.48 0.42 0.40

TABLE II
FRACTION OF NODES SATISFYING DIFFERENT RESOURCECAPACITY

REQUIREMENTS

selection. We perform this study using the Datasets 1-3.

A. Definition of Node Eligibility

We consider a node eligible for a given resource require-
ment based on its average available capacity for that type of
resource over the current data aggregation window. The basic
criterion for determining the eligibility of a node for a given
requirement is as follows. IfP is the average idle capacity on
a node over the current data aggregation window and� is its
standard deviation, then for a given resource requirementD
we select the node if it satisfies the following condition:P � 2 � � > D (1)

A node is dropped from the eligibility set if the currently
available capacity at that node falls below the resource re-
quirementD, i.e.P < D. The criterion in equation (1) is used
as a simple heuristic to select nodes by taking into account
the fluctuations in their resource availability in recent past.
Alternatively, one could use a simple criterion, such asP > D
to select nodes. However, in this case the nodes with available
resource capacity fluctuating around the requirement levelD
would frequently enter and leave the eligibility set, remaining
eligible for short durations only. Thus, to filter out such nodes
we consider the standard deviation.

During a particular data trace, a node may enter and leave
the eligibility set multiple times. We define theeligibility
period of a node, which is denoted by� , as the time between
its entry in the eligibility set and its subsequent departure
from the set. Theineligibility period, which is denoted byÆ, is defined as the duration between two consecutive eligi-
bility periods of a node. For the purpose of developing node
selection techniques, we study how node eligibility periods
are distributed. We first perform this study by considering the
requirements of different resource types separately. Thenwe
study node eligibility periods when requirements for multiple
resources are considered together.

B. Distribution of Eligibility and Ineligibility Periods

An important question that we wanted to address is to
determine how long a randomly selected node is likely to
remain eligible for a given requirement. For this purpose, we
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Bandwidth Requirement

50 percentile 70 percentile 90 percentile
1 GHz 1 - 3 mins 1 - 6 mins 10 - 17 mins
2 GHz 1 - 4 mins 1 - 6 mins 12 - 26 mins
3 GHz 2 - 4 mins 3 - 8 mins 11 - 69 mins
4 GHz 2 - 5 mins 5 - 26 mins 11 - 113 mins

0.5 GB 1 - 2 mins 1 - 4 mins 8 - 20 mins
1 GB 1 - 3 mins 1 - 4 mins 10 - 22 mins
2 GB 2 - 4 mins 2 - 9 mins 18 - 28 mins

1.4MBps 1 - 2 mins 1 - 3 mins 29 - 35 mins
1.0MBps 1 - 2 mins 1 - 3 mins 27 - 34 mins
0.6MBps 1 - 2 mins 1 - 4 mins 23 - 35 mins
0.2 MBps 2 - 3 mins 2 - 4 mins 22 - 36 mins

TABLE III
DISTRIBUTION OF ELIGIBILITY PERIODS FORDATASET 1-3

observed the probability density of the eligibility periods. The
expected duration for which a node selected randomly, at an
arbitrary point in time, would remain eligible is half of the
expected value of the eligibility period. We investigated eli-
gibility period distributions separately for CPU, memory,and
bandwidth requirements, for a range of resource requirement
levels. As a representative example, we show, for Dataset-
1, the probability density of eligibility periods for 2GHz
CPU capacity, 1GB memory, and 1MBps bandwidth usage
requirements in Figures 3, 4, and 5, respectively. Table III
shows min-max range for 50, 70, and 90 percentile values of
eligibility periods for Datasets 1-3. From this table and Figures
3, 4, and 5, we observe that the eligibility period values are
typically small (50 and 70 percentile values are typically below
10 mins). Hence, there is need for further discrimination of
nodes to eliminate nodes that are likely to remain eligible only
for short durations.

We also investigated how ineligibility periods are dis-
tributed. The nodes which never became eligible for a given
requirement were not considered in this measurement. Ta-
ble IV shows the min-max range for probability mass of
ineligibility period less than 15, 30 and 60 seconds across
Datasets 1-3. We do not show these values separately for
different requirement levels as we observed that these values
did not vary significantly across different requirement levels.

We observe that with significant probability (greater than
0.5) the ineligibility period values are below 30 seconds.
This indicates that there is high probability that a node is
likely to become eligible again within 30 seconds after it

P[Æ � 15 sec] P[Æ � 30 sec] P[Æ � 1 min]
CPU 0.35 - 0.52 0.50 - 0.70 0.71 - 0.84

Memory 0.42 - 0.57 0.60 - 0.79 0.80 - 0.88
Network Bandwidth 0.40 - 0.55 0.65 - 0.75 0.79 - 0.87

TABLE IV
DISTRIBUTION OF INELIGIBILITY PERIODS FORDATASETS 1-3

becomes ineligible. Thus, if an application can tolerate such
short ineligibility periods, it can make use of the node for a
longer period.

C. Node Eligibility Characteristics

We investigate here how the nodes behave in terms of their
eligibility periods. The distributions shown in Figures 3,4,
and 5 are the distributions of individual eligibility periods for
all the nodes. As a node may become eligible multiple times
during the observation period, it may have multiple values for
eligibility periods. Thus, in the above distributions, a node
that became eligible more number of times contributed more
samples than the nodes that became eligible less number of
times. Moreover, a node that tends to stay eligible for a long
time is likely to contribute less number of samples than a
node that tends to stay eligible for a short time but enters the
eligibility set frequently. Thus, to study the individual node
behavior, we consider the median value of a node’s eligibility
periods as its representative eligibility period. We denote the
median eligibility periodof a node by�. In Figures 6, 7,
and 8, as a representative example we show the cumulative
distribution (CDF) of nodes’� values for Dataset 1 for CPU,
memory, and bandwidth requirements, respectively. Table V
presents the statistics for node median eligibility periods and
set sizes for this dataset.

In this table, theunique nodescolumn gives the number
of nodes that became eligible during the entire duration of
the observation for the corresponding resource requirement.
The statistics given in the tables for a specific requirement
correspond to the unique nodes for that requirement. For
example, in case of 2GHz CPU capacity requirement the
average eligibility period of 152 minutes is the average of
218 nodes’ median eligibility periods. Similarly, in Figure 6
the CDF for 2GHZ CPU requirement is the distribution of 218
nodes’ median eligibility periods. We observe that typically
the median values for the nodes’ median eligibility periods
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Eligibility Period (�) Unique Eligibility
(minutes) Nodes Set Size

Avg Median Std Dev Avg Std Dev
CPU

1GHz 218 36 432 246 75.1 37.86
2GHz 152 36 319 218 54.2 35
3GHz 129 30 265 182 42.5 25.1
4GHz 136 47 275 136 32.8 20.8

Memory
0.5GB 554 147 923 199 109 51.3
1GB 540 147 919 179 91.8 44
2GB 251 73 338 102 22.1 11.9

Network bandwidth
1.4MBps 529 103 761 256 168.8 67.8
1.0MBps 503 97 741 256 168.7 67.8
0.6MBps 450 91 651 256 168.2 67.8
0.2MBps 351 84 454 256 167 67.7

TABLE V
NODE MEDIAN ELIGIBILITY PERIOD AND SET SIZE FOR DATASET 1

tend to be always less than the average values. The standard
deviation also tends to be high, comparable to the average
values (coefficient of variation is between 0.89 to 2.17). This
indicates that some nodes tend to exhibit significantly large
eligibility periods. From these statistics, we can observethat,
for all resource types, generally the median and average values
for node median eligibility period (�) tend to decrease with
increase in the resource requirement levels. However, thiscan
not be taken as a rule as one can observe that sometimes
increase in the level of a requirement may lead to increase in
the median or average value of�, as in the case of 3GHz and
4GHz requirements. We find that this is because the nodes
that become eligible for a lower requirement level for short
durations may not qualify for a higher requirement level.
Thus, sometimes in case of higher requirement levels fewer
nodes may become eligible but they may remain eligible for
longer durations. For all resource types and requirements,
the eligibility set size always decreases with increase in the
requirement level. This is to be expected as the nodes that
become eligible for a higher requirement level must also be
eligible for a lower requirement level. We find that typically
the eligibility periods are smaller for CPU requirements as
compared to memory and network bandwidth requirement.
This indicates that the available capacity tends to fluctuate
more for CPU than for memory and network bandwidth.

D. Relation between Node Eligibility and Ineligibility Periods

Another aspect that we investigated for characterizing nodes
is how their eligibility periods and ineligibility periodsare
related. For this purpose, we measure the average eligibility
period and average ineligibility period of a node. The ratioof
a node’s average eligibility period to its average ineligibility
period gives the relative availability of the node. Figures9, 10,
and 11 show, separately for CPU, memory, and bandwidth, the
scatter graphs of average eligibility and ineligibility periods for
Dataset-1. We considered the mid-range values for requirement
levels; CPU requirement of 2GHz, memory requirement of
1GB, and bandwidth requirement of 1MBps. We observe that
the nodes can be classified in three groups based on their
eligibility and ineligibility periods. The first group contains
nodes which tend to have large ineligibility periods and small
eligibility periods. The second group of nodes tend to have
small eligibility and ineligibility periods, indicating that they
frequently enter and leave the eligibility set. The third group
of nodes, which we consider as ’high-quality’ nodes, tend to
have small ineligibility periods and large eligibility periods.

The scatter graph for CPU shown in Figure 9 shows that the
nodes with large average eligibility periods tend to have small
average ineligibility periods. There is also a large numberof
nodes which tend to have small eligibility periods but with
large variations in ineligibility periods. This indicatesthat
some nodes tend to have more frequent fluctuations in their
CPU usage. In contrast the scatter graph, in Figure 10, for
memory shows that the nodes with large eligibility periods can
also have relatively large ineligibility periods. This indicates
less frequent variations in memory utilization. In case of
network bandwidth usage the ineligibility periods tend to be
of short durations. This can be explained based on the bursty
nature of network usage.

To differentiate high quality nodes from other nodes we
observe the ratio of a node’s average eligibility period to
its average ineligibility period. We find that the nodes with
average eligibility period above certain threshold tend to
have higher value for this ratio than the nodes with average
eligibility period below the threshold. We examined this ratio
for different threshold values ranging from 5 to 60 minutes.
We show the results of this study for Datasets-1 in Table VI. In
this table,rl denotes the median value of this ratio for nodes
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Fig. 9. Node Eligibility and Ineligibility Periods
for 2GHz CPU Requirement
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Fig. 10. Node Eligibility and Ineligibility Periods
for 1GB Memory Requirement
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Fig. 11. Node Eligibility and Ineligibility Periods
for Bandwidth Usage 1MBps

CPU (2GHz) Memory (1GB) Bandwidth (1MBps)
threshold rl rh rl rh rl rh
5 mins 0.05 4.7 0.67 94 0.82 261.1
10 mins 0.15 13 0.9 129.6 3.4 282
20 mins 0.16 22 2 133 4.1 315.1
30 mins 0.89 48 2.2 155.5 6.5 348.2
60 mins 1.37 101 3.8 193.6 20.5 347

TABLE VI
NODE DISCRIMINATION BASED ON RELATION BETWEEN NODE

ELIGIBILITY AND INELIGIBILITY PERIODS

with average eligibility periods below the given threshold, andrh denotes the median ratio for nodes above the threshold. For
example, in case of 2GHz CPU capacity requirement with the
threshold of 20 minutes, the nodes with average eligibility
period more than 20 minutes have the median value of 22 for
this ratio, and for the nodes below this threshold the median
value of the ratio is 0.16.

We find that for network bandwidth, with threshold of 5
minutes one can find nodes with very large value (around
260) ofrh, i.e. their average eligibility periods are significantly
larger than their average ineligibility periods. For memory one
can find high quality nodes with threshold of 10 minutes. For
CPU, with the threshold of 20 minutes one can find nodes that
haverh value 22, i.e. with 50% probability a selected node will
have average eligibility period at least 22 times higher than its
average ineligibility period. Similar trends were observed for
the other two datasets.

The observations presented in this study indicate that there
is a need to discriminate amongst nodes to select high quality
nodes for a given requirement.

E. Residual Eligibility Period

In order to select high quality nodes, we wanted to in-
vestigate whether the recent eligibility period profile of a
node can indicate the likelihood that the node would remain
eligible for a long duration. As discussed earlier, Figures3,
4, and 5 show that with significant probability the eligibility
periods tend be of short durations. This motivates the need
for observing how long a node has remained eligible before
selecting it for inclusion in the eligibility set. We define�(t)
as theresidual eligibility periodof a node. It is measured as
the residual eligibility period after the node has been eligible

for a duration oft units. This means, for a residual eligibility
period�(t) = � � t, i.e. �(0) = � .

Table VII shows the average residual period for different
values of thresholdt for Dataset-1. We can observe that for
all threshold values, the average residual eligibility period
is much larger than the average eligibility period� . This
indicates that if a node’s eligibility period exceeds certain
threshold then it is likely to remain eligible for a long duration.
We also observe that the average residual eligibility period
increases with increase in threshold values. This indicates that
the distribution of eligibility periods is not memoryless.

F. Multi-dimensional Resource Requirements

We present here characteristics of resource availability when
multiple resource requirements are considered together. In this
case, a node is considered eligible as long it satisfies all
the specified resource requirements. A node is dropped from
the eligibility set when it fails to satisfy any of the resource
requirements. We consider three multi-dimensional conjoined
requirements by taking low, medium and high requirement
levels for each of the resource types (CPU, memory and band-
width). Thus, in this study we consider following requirements
as the representative cases.

1) low (1GHz CPU, 0.5GB memory, 1MBps bandwidth);
2) medium (2GHz CPU, 1GB memory, 0.6MBps band-

width);
3) high (4GHz CPU, 2GB Memory, 0.2MBps bandwidth).

The node median eligibility periods for these requirementsare
given in Table VIII for Dataset-1.

We wanted to investigate which resource dominates the node
eligibility when multiple resource requirements are considered
together. For this purpose, we observed the number of times
a node is dropped from the eligibility set or it is not added
to the set because the requirement for one resource type is
not satisfied but the requirements for other two resource types
are satisfied. In this table theresource unavailabilityindicates
the percentage of the times this occurs for the given resource
type. This data gives indication regarding the dominating
resource type in case of multi-dimensional requirements. For
example, in case of low requirement (1GHz CPU, 0.5GB
memory, 1MBps bandwidth), the value 60.2 for CPU resource
indicates that 60.2% of times a node was dropped from



t = 5 mins t = 10 mins t = 15 mins
Requirement Avg. �(0) P[� � t] Avg. �(t) P[� � t] Avg. �(t) P[� � t] Avg. �(t)

1GHz 10.59 0.84 60.8 0.89 83.2 0.90 93.2
2GHz 10.55 0.85 57.2 0.88 73.7 0.89 82.1
3GHz 10.52 0.86 60.39 0.90 77.7 0.91 86.3
4GHz 11.7 0.88 78 0.92 105.7 0.93 117.2

0.5GB 14.6 0.84 78.9 0.88 96.4 0.89 104.5
1GB 14.9 0.85 85.35 0.89 103.7 0.91 111.93
2GB 17.2 0.84 92.1 0.88 112.2 0.90 121.8

1.4MBps 10.64 0.85 59.4 0.90 87.2 0.92 100.7
1MBps 10.63 0.85 59.3 0.90 87.2 0.92 100.6

0.6MBps 10.64 0.85 59.2 0.90 86.7 0.92 100.1
0.2MBps 10.52 0.86 57.8 0.90 84.3 0.92 97.4

TABLE VII
RESIDUAL ELIGIBILITY PERIOD (IN MINUTES) FOR DIFFERENT THRESHOLDS

Requirement Levels
low medium high

Node Median Eligibility Period
Avg (Med) 68 (35) 49.5 (25) 21.9 (9)

Std. dev 8.98 6.4 12.1
Unique nodes 125 118 31

Eligibility Set Size
Avg 113 83.5 25.1

Std. dev 48.9 39.4 16.8
Resource Unavailability (%)

CPU 60.2 65.6 16.4
memory 29 28 77.7

bandwidth 10.8 6.4 4.9

TABLE VIII
NODE ELIGIBILITY FOR MULTI -DIMENSIONAL REQUIREMENTS

the eligibility set or was not added to the set because it
did not satisfy CPU requirement but the requirements for
memory and bandwidth were satisfied. From this data we can
observe that typically the CPU requirements dominates the
node eligibility for low and medium level of requirements.
However, the memory requirements starts dominating for high
level of requirements i.e. 2GB and above. We can see that the
bandwidth requirements were the least dominating compared
to CPU and memory.

G. Summary of Resource Availability Characteristics

We summarize here the important observations regarding
node eligibility characteristics. These observations guide us in
developing the node selection techniques presented in the next
section.� The eligibility periods (� ) tend to have long-tailed dis-

tributions. The nodes show wide variations in terms of
their eligibility periods and some nodes tend to show
significantly large eligibility periods.� The ineligibility periods (Æ) tend to be of short dura-
tions (typically 50% values are less than 30 seconds),
indicating that if an application can tolerate such short
ineligibility periods it may be able to use a node for a
longer duration without relocating. However, it is impor-
tant to understand for what fraction of its residency time
at a node its resource requirement is satisfied. We address
this question in the next section.� Nodes can be distinguished based on their eligibility and

ineligibility periods. Some nodes tend to have very small
ineligibility periods and large eligibility periods. This
indicates that there is a need to discriminate among nodes
to identify high quality nodes.� The nodes that remain eligible for certain duration tend
to show long average residual eligibility periods. Thus,
the nodes can be distinguished by observing how long
they have remained eligible.� When requirements for multiple resource types are con-
sidered together, the node eligibility is typically domi-
nated by CPU requirements, but memory resource starts
dominating in case of 2GB or higher requirements.
Bandwidth requirement is the least dominating factor
compared to CPU and memory.

V. HEURISTICS FORNODE SELECTION AND APPLICATION

PLACEMENT

We present here the techniques that we developed for
selecting nodes which are likely to remain eligible for long
durations for a given requirement. We utilize the node eligi-
bility characteristics presented in the previous section to build
heuristics for selecting nodes. We evaluate these techniques
on Datasets 4-10 and demonstrate their benefits in selecting
nodes that remain eligible for longer durations compared to
the basic selection method presented in Section IV-A.

A. Profiling Based Node Selection

In the previous section, we discussed the need to discrimi-
nate nodes to identify the ’high quality’ nodes which are likely
to remain eligible for a long duration. For selecting such high
quality nodes, we investigated the methods for discriminating
nodes based on their eligibility periods. Based on these meth-
ods, we develop profiling approaches for selecting nodes for
a given requirement.

The first aspect we use for discriminating nodes is their
current eligibility periods. In the previous section we showed
that if a node remains eligible for a certain duration then its
residual eligibility period tends to be large (refer Table VII).
Thus, by observing the node eligibility periods for a short
duration, such as 5 minutes, one can find nodes that are likely
to remain eligible for long durations. Another aspect that we
consider for selecting nodes is their past eligibility periods for



a given requirement. For this purpose, we determine the con-
ditional probability that the node’s eligibility period exceeds
a given threshold provided that its previous eligibility period
exceeded that threshold. We measured this for various resource
requirements and resource types for Datasets 1-3. We observed
that for the threshold value of 30 minutes, with probability
greater than 0.3 the eligibility period value exceeded the
threshold given that the previous eligibility period exceeded
the threshold. For threshold of 60 minutes, this conditional
probability was in the range 0.4 to 0.6. This means that
selecting nodes based on this criterion can give at least 30%
probability of a selected node remaining eligible for at least
30 minutes.

Based on the above two criteria, we develop a profiling
approach for node selection as follows. We use the basic cri-
terion given in equation (1), in Section IV-A, for determining a
node’s eligibility for a given requirement. We then maintain a
subset of these nodes as theprofiled set. We add a node to the
profiled set if it satisfies any of the following two conditions:

1) The node has remained eligible for a certain duration
(set to 5 minutes in our experiments, using the data in
Table VII as the basis).

2) The previous eligibility period of the node is greater than
certain threshold (we set it to 30 minutes).

We measured the duration for which a node stays in the
profiled set as theprofiled eligibility periodof that node. We
observed the distribution of the profiled nodes’ median eligi-
bility periods. For the purpose of illustrating the performance
benefit of the profiling approach over the basic approach,
we show in Table IX the statistics for profiled node median
eligibility periods for Dataset-1. We then evaluate the general
applicability of this approach using Datasets 4-10. We can
compare the statistics shown in Table IX to those shown in
Table V for basic eligibility periods. We can observe that the
profiling approach gives longer node median eligibility periods
than the basic approach and the improvement ranges from a
factor of 6 to 20. As expected, the average size of the profiled
set is smaller than the basic eligibility set. Thus, the pool
of nodes selected by the profiling approach is smaller but it
contains “high quality” nodes which remain eligible for long
durations.

To measure the benefit of profiling across other datasets
(Datasets 4-10), for each dataset we compared the median val-
ues of the node median eligibility period (�) using profiling-
based selection and basic selection method. We measured the
profiling improvement factor (fp) as the ratio of the median
value of � obtained with profiling to the median value of�
obtained with basic selection method. For example, we can see
from Table IX and Table V thatfp for 1GHz CPU requirement
is equal to 19.6. We do not measure how eligibility period
improves per node, because the profiling approach selects a
smaller set of nodes and hence many of the nodes that get
selected in basic selection method do not get selected in
profiling method. Therefore the per node improvement can
not be measured for all the nodes. To observe the effect on

Profiled Eligibility Period Unique Profiled Eligibility
(minutes) Nodes Set Size

Avg Median Std Dev Avg Std Dev
CPU

1 GHz 1280 707 2505 177 61 27.6
2 GHz 2016 806 2807 142 54 25.4
3 GHz 1335 554 2050 105 35 18.5
4 GHz 1505 645 2156 80 28 15.6

Memory
0.5GB 2207 1193 2661 184 72 30.6
1GB 2196 1193 2697 166 62 27.6
2GB 2028 1207 2487 63 21 9.37

Network bandwidth
1.4MBps 2103 918 2810 247 94 37.7
1.0MBps 2075 918 2788 247 95 38.8
0.6MBps 2054 909 2800 247 94 37.7
0.2MBps 1763 829 2417 247 94 40.3

TABLE IX
PROFILED NODE MEDIAN ELIGIBILITY PERIODS AND SET SIZES FOR

DATASET-1fp Set size reduction(%)
min max min max

CPU
1 Ghz 5.01 10.11 50 59
2 Ghz 7.89 18.01 50 55
3 Ghz 8.48 29.8 30 66
4 Ghz 7.21 11.7 50 58

Memory
0.5GB 1.15 5.81 20 82
1 GB 1.15 8.42 30 83
2 GB 2.37 7.79 50 79

Network Bandwidth
1.4Mbp 1.12 5.12 38 53
1Mbps 1.51 5.09 37 60

0.6Mbps 1.21 4.47 40 57
0.2Mbps 1.30 5.18 41 60

TABLE X
IMPROVEMENT ACHIEVED USING PROFILING APPROACH FORDATASETS

4-10

eligibility set size due to profiling, we measure the percentage
reduction in the set size. This is measured as the percentage
decrease in the median value of the set size from basic
selection to profiling-based selection. We measured thefp and
set size reduction for each of the seven datasets. Table X shows
the min and max value for the above two measures across
Datasets 4-10. From this data, we can see that the profiling-
based node selection approach typically gives longer eligibility
periods compared to the basic selection approach, confirming
our earlier observation.

B. Benefit of Ineligibility Toleration

We discussed earlier the motivation for tolerating short
ineligibility periods. We evaluated the benefit of this approach
by observing how the eligibility periods increase by tolerating
short ineligibility periods of duration�. For this, we used the
same criterion as equation (1) to select the nodes, however,a
node is dropped from the eligibility set only if the currently
available resource capacity at that node remains below the
specified requirement for duration greater than�.

Table XI shows the node eligibility period statistics using
this approach for Dataset-1 to show the relative benefits in



Node Median Eligibility Period (�) (minutes)� = 15 secs � = 30 secs � = 1 min
Avg (Med) � Avg (Med) � Avg (Med) �

GHz CPU
1 813 (104) 0.99 888 (112) 0.98 933 (116) 0.95
2 539 (50) 0.99 583 (52) 0.97 627 (55) 0.93
3 481 (40) 0.99 525 (42) 0.97 539 (44) 0.93
4 511 (63) 0.99 560 (67) 0.98 592 (72) 0.94

GB Memory
0.5 895 (406) 0.99 923 (430) 0.96 941 (449) 0.93
1 875 (367) 0.99 919 (389) 0.94 927 (417) 0.91
2 459 (196) 0.99 478 (202) 0.94 481 (209) 0.92

MBps Network bandwidth
1.4 819 (284) 0.99 837 (296) 0.98 860 (317) 0.98
1.0 793 (277) 0.99 816 (283) 0.98 848 (306) 0.98
0.6 740 (274) 0.99 801 (276) 0.98 831 (299) 0.97
0.2 731 (269) 0.99 794 (273) 0.98 822 (293) 0.97

TABLE XI
NODE MEDIAN ELIGIBILITY PERIODS (�) WITH TOLERATION FOR

DATASET-1

comparison to the data shown in Table V for this dataset for
the basic approach. Note here that the eligibility period in
this case indicates the duration for which an application can
use a node by tolerating ineligibility periods of durationsup
to �. The goodness fraction, denoted by�, is the fraction
of the eligibility period for which the node satisfied the given
resource requirement. For example, a� value of 0.99 indicates
that the node met the given requirement for 99% of the
eligibility period duration and the remaining 1% amounts to
the ineligibility periods of duration less than or equal to�.
We show in this table the average and median values for
node median eligibility periods (�) and the median value
of �. We observe that the eligibility period values increase
significantly using the toleration approach. For example, in
case of 1GHz CPU capacity requirement the average� value
increased from 218 minutes (refer Table V) to 813 minutes
with goodness fraction of 0.99 with toleration of just 15
seconds of ineligibility periods.

We evaluated this approach using Datasets 4-10 to validate
its general applicability. For this purpose, we observed for
each node, the ratio of its median eligibility period (�) with
toleration to the median eligibility period without toleration.
We refer this ratio astoleration improvement factor(ft). We
observed this ratio for all nodes across Datasets 4-10 to verify
whether the toleration approach is beneficial in case of these
datasets as well. Table XII shows the 25, 50 and 75 percentile
values for this ratio. We also show the median value of
goodness fraction(�) in this table. In this observation, the�
value was set to 30 seconds. We can observe that the approach
of tolerating short ineligibility periods gives longer eligibility
periods. Thus, if an application can tolerate short ineligibility
periods it can continue to make use of a node for a long
duration without the need to relocate.

C. Utilization of Node Selection Techniques

The node selection techniques presented in this section do
not require any global platform-wide monitoring service and
they are also not intended for building any central schedul-

ft � (median)
25 percentile 50 percentile 75 percentile

CPU
1 GHz 1.18 2.75 9.54 0.97
2 GHz 1.06 1.42 5.33 0.98
3 GHz 1.05 1.29 4.01 0.96
4 GHz 1.04 1.25 4.00 0.92

Memory
0.5 GB 1.87 3.70 12.27 0.97
1 GB 1.72 3.47 9.89 0.96
2 GB 1.33 2.57 7.74 0.93

Network Bandwidth
1.4 MBps 1.43 2.31 8.82 0.98
1 MBps 1.37 2.19 7.79 0.97

0.6 MBps 1.23 2.09 6.36 0.96
0.2 MBps 1.21 2.01 6.07 0.96

TABLE XII
IMPROVEMENT ACHIEVED USING TOLERATION APPROACH WITH� = 30

SECONDS

ing and resource allocation mechanism for the underlying
platform. A user can utilize these techniques for selecting
nodes for deploying an application by performing short term
monitoring of a set of potential nodes to identify high quality
nodes. For this purpose, the users can themselves run the Plat-
inum monitoring system in their environment. The profiling
approach requires resource usage monitoring for only about
30 minutes.

The techniques presented in this section can be used for se-
lecting nodes for deploying both applications and services. For
long running services, dynamic relocation is required as the
placement decisions made at the time of the initial deployment
can become ill-suited after some time due to the fluctuations
in resource availability at the selected nodes. However, the
node selection techniques presented above can be used to
select high quality nodes for replica placement to reduce
the number of migrations. Moreover, if the relocation cost
is high then the approach of toleration can be used to avoid
unnecessary migrations. We have used these techniques in our
work on building resource-aware migratory services [24] and
autonomically scalable services [21] in such environments.

VI. N ODE-LEVEL RESOURCECAPACITY PREDICTION

We address here the problem of how to predict for a given
resource at a node the amount of its idle capacity that is
likely to be available (i.e. not used by other users) in the near
future with some given probability. The prediction of available
capacity can be useful for an application to estimate how much
additional capacity is likely to be available beyond its resource
requirements. Specifically, we address the problem that for
some given confidence levelC, how to predict the resource
capacityR for a particular resource type such that the available
capacity over some period in the near future is at leastR with
probabilityC.

We present here an online model for prediction of available
resource capacity. On PlanetLab we observed that the fluc-
tuations in the available resource capacities depend on the
node’s load conditions. This requires a dynamic prediction
model that takes into account the node’s load conditions. Our



prediction method is based on observing the fluctuations in the
available resource capacities over time. To characterize such
fluctuations, for each resource type we observe the average
available resource capacityRwo over some period, called
observation period (wo), and the average available resource
capacityRwp over a period in the immediate future, called
prediction period (wp). We define thecapacity modulation
ratio (�) as � = Rwp=Rwo (2)

A capacity modulation ratio greater than 1 indicates increase
in the available resource capacity by some fraction, and a
value less than 1 indicates a decrease.P [� � x℄ is the
probability that the average available resource capacity over
the next prediction periodwp is at leastRwo �x. Therefore, to
predict the fraction of the available resource capacity that is
likely to be available with a specified confidence level C, we
determinex such thatP [� � x℄ = C. We observe that while
the available resource capacity itself may change significantly
over short durations, such changes (that is the� values) are
statistically predictable over durations of several minutes (in
range of 30-60 minutes). Therefore, our dynamic model for
resource capacity prediction is based on observing the history
of � values over some period, calledhistory window (wh). Our
prediction model estimates the cumulative distribution (CDF)
of the � values observed over a sliding window of periodwh and calculates the valuex for some given confidence
level C, such thatP [� � x℄ = C. This value is used to
estimate the resource capacity for the next prediction period.
For example, suppose thatxi is the value calculated, as
described above, at theith prediction cycle for CPU resource.
Let pi be the observed average available CPU capacity over
the immediately preceding observation period ofwo duration
at theith prediction cycle. The predicted CPU capacityPi for
the following prediction periodwp is estimated as:Pi = pi � xi (3)

The goodness of the prediction model can be determined
by considering the ratio of resource capacity observed to be
available in a given interval to the capacity predicted for that
interval. We call it theprediction ratio (�). A value of �
close to 1 indicates that the observed capacity is close to
the predicted capacity, whereas values higher or lower than
1 indicate underprediction and overprediction, respectively.
Since, in equation (3),xi is chosen such thatP [� � xi℄ = C,
we expect that the resource capacity observed to be available
during the immediately following prediction periodwp is at
least pi � xi with probability C. Therefore, we expect thatP [� � 1℄ = C. Based on this observation, the goodness of
the prediction model can be evaluated based on the value of� at which this required confidenceC is achieved.

We evaluated the impact of the different parameters –wh,wo, wp, and C – on the performance of the prediction model
for Datasets 1-3. An important question is how to choose the
values for these parameters. For the confidence level parameterC, a high value of C would result in underprediction, and a

low value would cause overprediction.
To determine the impact of the lengths ofwo andwp on the

prediction model, we observed� for these datasets with thewo
values of 1, 3, and 5 minutes, andwp values of 0.5, 1, and 1.5
minutes. Since a� value close to 1 is desirable, we determined
the goodness of prediction in terms of the probability mass of� values between 0.9 and 1.1. For CPU, network bandwidth,
and memory, we observed that for all collected datasetswo
andwp values of 1 minute give better prediction performance
than other values, However, the sensitivity of the prediction
performance towo andwp parameter values was marginal.

To determine the impact of the history window (wh) size, we
observed the value of� at which the required confidence levelC is achieved, i.e.x such thatP [� � x℄ = C. We evaluated
this forwh values ranging from 10 to 60 minutes. We observed
that for allwh values above 20 minutes this was achieved at�
value of approximately 0.95. This data is shown for Dataset-
2 in Table XIII as a representative example. That means the
model is overpredicting by about 5%, i.e. at least 95% of the
predicted capacity would be available with probability C. Forwh values of 10 and 20, the required confidence level was
achieved for� values of 0.9 and 0.92, respectively. We also
observed thatwh value of 60 minutes performs better, but only
with marginal (about 4%) improvements overwh values of 30,
40, and 50 minutes. The prediction performance for network
bandwidth and memory showed similar trends.

For evaluating the effect ofC, we considered the amount of
underprediction in terms of the probability of� being greater
than 1.5. Since for all resource types, we achieve the required
confidence level with approximately 5% error, the amount of
overprediction is decided by theC value we set. As shown in
Table XIII, for CPU resource we can observe that the amount
of underprediction increases with increase in confidence level.
However, for network bandwidth and memory, confidence
level had relatively less impact on underprediction, sincefor
all C values the underprediction was limited to 50%. This
behavior occurs because typically the CPU usage can fluctuate
significantly compared to memory and network bandwidth.
The memory usage is relatively stable i.e. fluctuates less over
a short time compared to CPU usage. In case of network
bandwidth, the usage tends to be bursty in nature, so when
there is no burst of data communication the bandwidth usage
tends to be relatively stable. Therefore, for CPU capacity
one can bias the prediction model towards underprediction
or overprediction by choosing the confidence level whereas,
for network bandwidth and memory setting higher confidence
level is more desirable.

We evaluated the accuracy of our prediction model across
Datasets 4-10 for various confidence levels. We fixed the
model parameter values aswh = 30 minutes andwo = wp = 1
minute. For each of the seven datasets, we observed the
probability P[� � 0:95] for various confidence levels for
CPU, memory and bandwidth. Table XIV shows min and max
values for P[� � 0:95] across the seven datasets. We do not
show this data separately for CPU, memory and bandwidth
as we observed that for any given confidence level the value



wh C P[� � 0:95] P[� � 1:5] P[0:95 < � � 1:5]

CPU
30 70 0.32 0.88 0.56
60 70 0.31 0.89 0.57
30 80 0.22 0.76 0.54
60 80 0.21 0.75 0.54
30 90 0.13 0.66 0.53
60 90 0.11 0.66 0.53

Memory
30 70 0.32 0.99 0.67
60 70 0.30 0.99 0.69
30 80 0.22 0.98 0.76
60 80 0.21 0.98 0.77
30 90 0.12 0.97 0.84
60 90 0.11 0.97 0.85

Network Bandwidth
30 70 0.32 1.0 0.68
60 70 0.31 1.0 0.69
30 80 0.22 1.0 0.78
60 80 0.21 1.0 0.79
30 90 0.12 0.98 0.86
60 90 0.11 0.99 0.88

TABLE XIII
PREDICTION PERFORMANCE FOR VARIOUS VALUES OFwh AND C

of P[� � 0:95] did not change significantly across different
resource types. This can also be seen from Table XIII. We
can observe from Table XIV that the required confidence is
achieved approximately at prediction ratio of 0.95 for any
specified confidence level, confirming our earlier observation.

confidence levelC P[� � 0:95]
min max

70 0.273 0.324
75 0.249 0.259
80 0.191 0.227
85 0.139 0.165
90 0.110 0.134
95 0.067 0.071

TABLE XIV
PREDICTION ACCURACY ACROSSDATASETS 4-10

Based on these observations, we make the following con-
clusions:� For any given confidence levelC, our prediction model

predicts the resource capacity that is likely to be available
(i.e. unused) over the next interval with probabilityC
with 95% accuracy i.e. the available resource capacity is
at least 95% of the predicted capacity with probabilityC.� For CPU capacity higher confidence level results in
higher underprediction. However, for network bandwidth
and memory, confidence level has relatively less impact
on amount of underprediction. Therefore, it is desirable
to set high confidence level for memory and network
bandwidth.� The sensitivity of the prediction performance towo andwp values in the range of 1 to 5 minutes is marginal.
Similarly, we found that forwh values higher than 20
minutes the impact of the parameter values is marginal.

We have used this prediction model in our work on build-
ing autonomically scalable services over the PlanetLab plat-
form [21]. The focus of that work was on dynamically adding

and removing service replicas based on the estimated request
handling capacities of service replicas and the observed load.
In that work, we used the above prediction model for predict-
ing the resource capacities likely to be available at a replica’s
host over the next 1-minute interval. A service replica period-
ically predicts the resource capacity likely to be available for
different resource types such as CPU, memory and network
bandwidth. It also monitors its request load and estimate the
average resource requirement for processing a request. The
predicted resource capacities and the estimated average per-
request resource demands are then used to estimate the service
capacity, i.e. the request handling capacity of the replicaover
the next 1-minute interval. Using the operational analysis
technique, the replica identifies the bottleneck resource and
then estimates the maximum number of requests that it can
serve over the next interval. Based on the estimated request
handling capacities of the replicas, the service deployment
framework dynamically adds or removes the service replicas
to maintain enough aggregate service capacity to handle the
request load. The estimated request handling capacities ofthe
replicas are also used for load balancing of requests across
replicas. We used the node selection techniques described
earlier for dynamic placement of service replicas.

VII. R ELATED WORK

Characterization of resource usage and availability in coop-
eratively pooled shared computing platforms has been studied
extensively in the past. Available capacity estimation based
on idle machine availability in Desktop Grid environments
have been studied in past [18], [17]. A great deal of previous
work [19], [12], [13], [10], [11], [7] has provided charac-
terization and statistical models for resource availability in
Desktop Grid systems and public resource computing systems
such as SETI@home. In all these previous approaches, the
resource availability for task executions was defined based
on host reachability, CPU availability to guest processes and
keyboard/mouse activities of users. We study here resource
availability characteristics based on a node’s eligibility for a
particular requirement based on the idle resource capacities
available on that node. This way of characterizing resource
availability is more appropriate for the platforms like Plan-
etLab because unlike Desktop Grids or volunteer computing
systems, the resources on a PlanetLab node are allocated
in fair-share manner to all competing users. Work presented
in [20] provided a general characterization of resource usage
of nodes in the PlanetLab platform in the context of service
and application placement. The primary goal of our work is
to develop node selection techniques for application placement
and dynamic relocation and our study of resource availability
characteristics was driven by this goal. The work presented
in [25] provided characterization of node availability in Plan-
etLab based on MTTF and MTTR measures. As compared to
that work, our focus is on available capacities on node and
their eligibility for various requirement levels.

The work in [4] presents machine learning based techniques
for grouping nodes based on similarities in their resource usage



characteristics. The main focus of that work is on scalable
management of long historical resource usage information for
statistical resource selection over various time intervals. In
contrast to that work, the focus of our work is on selecting
nodes which continue to meet given resource requirements
for long durations. Our profiling method for selecting nodes
requires resource usage information over a short history period
of up to 30 minutes only, and hence management of resource
usage information is not a significant issue.

Resource availability and capacity prediction has been stud-
ied extensively in the past [27], [28], [29], [18], [17], [6],
[23], [9]. In [23] the authors provided a prediction model
based on semi-Markov process to predict resource availability
in fine-grained cycle sharing systems. Systems for perform-
ing online prediction such as the Network Weather Service
(NWS) [29] and RPS [6] provide various prediction meth-
ods based on moving mean/median prediction, time series,
and auto-regressive prediction methods. In [20] the authors
also presented preliminary analysis of applying differentpre-
dictions methods provided in NWS for predicting resource
capacities in the PlanetLab environment. In contrast to the
previous approaches, our prediction model is developed based
on the observed characteristics of resource usage on PlanetLab
nodes. The problem addressed in our prediction model is
slightly different from the previous approaches; we address
the problem of predicting the resource capacity likely to be
available in the near future with some specified confidence
level. By specifying the confidence level one can specify
the desired reliability of the prediction. Moreover, instead of
considering the actual capacity values, our prediction model is
based on observing the distribution of relative change in the
available capacity from one interval to the next interval.

In the past, several systems [15], [22], [1], [26], [14],
[5] have been developed for resource monitoring and node
selection in large-scale wide-area shared computing platforms.
The primary focus of the designs of these systems was on scal-
ability of node monitoring and resource selection techniques
and efficient management of resource usage information. The
system for node monitoring presented in this paper was
primarily intended for experimental purpose and hence the
scalability issues of the monitoring system are not the primary
focus of our work.

VIII. D ISCUSSION ANDCONCLUSION

We have presented in this paper techniques for selecting
nodes for application placement in a cooperatively pooled
shared computing environment such as the PlanetLab platform.
Our techniques are based on the characteristics of resource
availability on PlanetLab nodes.

We first provided a basic selection method for determining
eligibility of a node for a given requirement. We observed
distribution of eligibility and ineligibility periods to develop
heuristics for node selection. Our study shows that the recent
eligibility period is typically a good indicator for selecting
nodes and when a node remains eligible for certain duration it
typically tends to continue to be eligible for a long duration.

We also studied the relation between a node’s eligibility
period and ineligibility period. We observed that the nodes
with average eligibility period above certain threshold tend to
show significantly higher eligibility periods compared to their
ineligibility periods. We used these observations to develop
a profiling approach for selecting nodes. Our profiling-based
node selection techniques select nodes that tend to remain
eligible for significantly longer durations compared to the
basic selection method. The profiling techniques require re-
source usage information for only about 30 minutes. Thus, an
application deployers would need to monitor nodes only for
short time before selecting nodes for deployment.

We observed that the ineligibility periods are typically
of short durations and hence an application can benefit by
tolerating such short lapses in its host node’s ability to meet
the resource requirements. Our experiments show that by toler-
ating ineligibility periods of up to 30 seconds, an application
can continue to use a node for a long duration without the
need to relocate and still have the required resource capacity
available with high probability, which was observed to be over
90% in our experiments.

We presented here an online model for predicting the
resource capacities likely to be available at a node in the
near future with some given confidence level. Our experiments
showed that for any desired confidence level, this model can
predict capacity with 95% accuracy. Moreover, for CPU capac-
ity, we observed that a higher confidence level results in higher
underprediction. Hence, in case of CPU capacity, setting the
confidence level is a trade-off between underprediction and
overprediction. However, in case of memory and network
bandwidth the underprediction is always limited. Therefore
setting a high confidence level is more desirable for memory
and network bandwidth. This prediction model can be used by
applications and services for predicting their service capacities
as demonstrated by our work in [21].

Our techniques can be used by application developers for
intelligent selection of nodes for application placement in
such cooperatively shared environments. We demonstrated that
using these node selection techniques certain level of guar-
antee of resource availability can be achieved even when the
underlying environment does not provide any such guarantees.
Moreover, such a level of resource availability guarantee can
be achieved even in the absence of any centralized resource
manager, through self selection of nodes by application de-
ployers. Thus, such cooperatively pooled environments canbe
built for shared computing with softer guarantees of resource
availability as an alternative to using utility computing plat-
forms such as Clouds. Such a model of shared computing
is useful when the applications do not require strict capacity
guarantees with the advantage that more number of users and
applications can be supported through cooperative sharingof
the resources.
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