
Autonomi Mehanisms for Building Salable Servies inWide-Area Shared Computing Platforms

A THESISSUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOLOF THE UNIVERSITY OF MINNESOTABY

Vinit A. Padhye

IN PARTIAL FULFILLMENT OF THE REQUIREMENTSFOR THE DEGREE OFMASTER OF SCIENCE
Anand Tripathi

Feb, 2012



 Vinit A. Padhye 2012ALL RIGHTS RESERVED



ABSTRACT
Cooperatively shared wide-area omputing platforms, suh as PlanetLab, provide a large poolof geographially distributed resoures whih an be utilized for building highly available andsalable servies. In this thesis, we present mehanisms and models for building autonomiallysalable and resilient servies on suh platforms. In suh platforms resoures at a node arealloated to ompeting users on fair-share basis, without any reserved resoure apaities forany user. There is no platform-wide resoure manager for the plaement of users on di�erentnodes. The users independently selet nodes for their appliations. Moreover, a node anbeome unavailable at any time due to rashes or shutdown. Our fous is on the PlanetLabplatform whih exempli�es the platform level harateristis onsidered here. Building salableservies in suh environments poses unique hallenges due to utuations in the available resoureapaities and node rashes. The servie load may surge in a short time due to ash rowds.We present here models for estimating the servie apaity under varying operating onditions.Autonomi saling of servie apaity is performed by dynami ontrol of the degree of servierepliation based on the estimated servie apaity and the observed load. This requires seletionof appropriate nodes for the plaement of new replias. Furthermore adaptive load distributionmehanisms are needed beause of the varying servie apaities of the individual replias. Wepresent the experimental evaluations of these mehanisms on PlanetLab.

i



Contents
Abstrat iList of Tables ivList of Figures v1 Introdution 11.1 Charateristis of Shared Hosting Platforms . . . . . . . . . . . . . . . . . . . . . 21.2 Issues in building salable servies . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Researh Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Servie Capaity Estimation And Saling 102.1 Online Benhmarking of Workload . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Predition of Available Resoure Capaity . . . . . . . . . . . . . . . . . . . . . . 132.2.1 Impat of parameters wo and wp on predition performane . . . . . . . . 162.2.2 Impat of parameters wh and C on predition performane . . . . . . . . 172.3 Estimation of Servie Capaity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.4 Evaluation of Capaity Estimation Models . . . . . . . . . . . . . . . . . . . . . . 192.5 Dynami Capaity Saling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Prototype Framework 253.1 Overview of the Ellora Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ii



3.1.1 Registry Servie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.1.2 Servie Replia Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.1.3 Deployment Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2 Registry Servie Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.1 Primary-Bakup Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.2 Corretness of Primary-Bakup protool . . . . . . . . . . . . . . . . . . . 323.2.3 Reovery and Restart Mehanisms . . . . . . . . . . . . . . . . . . . . . . 334 Adaptive Load Distribution 354.1 Registry-Level Load Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2 Replia-Level Load Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 PlanetLab Monitoring Servie 405.1 Evaluation of Node Seletion using Basi Method . . . . . . . . . . . . . . . . . . 435.2 Evaluation of Node Seletion using the Pro�ling Method . . . . . . . . . . . . . . 456 Evaluations 496.1 Evaluation of Saling Mehanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 496.2 Evaluation of Fault Tolerane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 Conlusion 57Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



List of Tables
2.1 Datasets used for Evaluating Resoure Capaity Predition Model . . . . . . . . 152.2 Con�guration Parameters for Predition Model . . . . . . . . . . . . . . . . . . . 152.3 Comparison of Predition Performane for various values of wo and wp . . . . . . 162.4 Comparison of Predition Performane for various values of history window andon�dene level for CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.5 Comparison of Predition Performane for various values of history window andon�dene level for Network Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 175.1 Capaity Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.2 Datasets and their observation times . . . . . . . . . . . . . . . . . . . . . . . . . 435.3 Eligibility Period and Set Size Statistis for Basi Method . . . . . . . . . . . . 445.4 Eligibility Period and Set Size Statistis with Pro�ling . . . . . . . . . . . . . . . 456.1 Performane Statistis for Slak Level 30% . . . . . . . . . . . . . . . . . . . . . . 506.2 Performane Statistis for Slak Level 20% . . . . . . . . . . . . . . . . . . . . . . 516.3 Performane Statistis for Slak Level 10% . . . . . . . . . . . . . . . . . . . . . . 516.4 Replia Addition and Removal Statistis . . . . . . . . . . . . . . . . . . . . . . . 516.5 Performane Statistis for WorldCup workload . . . . . . . . . . . . . . . . . . . 54

iv



List of Figures
2.1 Distribution of predition ratio � and estimation ratio Æ . . . . . . . . . . . . . . 202.2 Algorithm for Capaity Saling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.1 Ellora Framework for the Deployment of Resilient and Salable Servies . . . . . 273.2 Servie Registry Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315.1 CDF of Eligibility Periods for CPU and Memory Requirements . . . . . . . . . . 465.2 CDF of Eligibility Periods for Combined Requirements . . . . . . . . . . . . . . . 475.3 CDF of Eligibility Periods Based on Pro�ling (for CPU requirements) . . . . . . 486.1 Response Times under 30% Slak with SPECWeb benhmark workload . . . . . 526.2 Response Times under 20% Slak with SPECWeb benhmark workload . . . . . 526.3 Response Times under 10% Slak with SPECWeb benhmark workload . . . . . 526.4 Capaity Generation under 30% Slak with SPECWeb benhmark workload . . . 536.5 Capaity Generation under 20% slak with SPECWeb benhmark workload . . . 536.6 Capaity Generation under 10% Slak with SPECWeb benhmark workload . . . 536.7 Response Times under WorldCup workload . . . . . . . . . . . . . . . . . . . . . 546.8 Capaity Generation under WorldCup workload . . . . . . . . . . . . . . . . . . . 546.9 Impat of Replia Crashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



Chapter 1
Introdution
The availability of large sale distributed infrastrutures suh as loud and grid omputing plat-forms [Douglis and Foster, 2003℄ gives opportunity for shared omputing and servie hostingwhere servies and appliations an utilize the large pool of resoure provided by suh plat-forms. Unlike dediated hosting, where entire pool of resoures are dediated to a single servieor appliation, in shared hosting platforms the available omputing resoures are onurrentlyused by many appliations and servies. In suh platforms often multiple appliations may beo-hosted on a single physial mahine. Cloud platforms suh as Amazon EC2 [Amazon, ℄ or Mi-rosoft Azure [Mirosoft, ℄ are examples of a type of shared hosting platforms where the hostedservies and appliations are alloated resoures with ertain apaity guarantees. We onsiderthe shared omputing platforms whih do not provide any resoures or resoure abstrationswith �xed apaity guarantees. In suh shared platforms appliations may be o-hosted ona node and suh appliations would ompete for resoures available on that node. The plat-form level resoure management would alloate resoures on fair-share basis to the ompetingappliations and there is no reservation of resoures. Examples of suh platforms inlude Plan-etlab [Bavier et al., 2004℄ and Grid omputing environments. In suh platforms, typially theunused resoure apaities at a node an utuate due to the resoure demands of the applia-tions hosted on that node. However, the abundane of omputing resoures provided by suhplatforms an be utilized to build salable and highly available servies. The goal of our work

1



2is to utilize the resoures provided by suh platform for elasti and dynami saling of servies.
1.1 Charateristis of Shared Hosting PlatformsWe desribe here the harateristis of the kind of shared hosting platforms in question andstate our assumptions about the platform level resoure provisioning poliies.� No provision of �xed resoure apaity: Typially suh platforms provide a oop-eratively shared pool of resoures whih are used by the platform users. However, theseplatforms do not provide any dediated resoures or resoure abstrations with �xed a-paity guarantees to the users. There is no reservation of resoure apaities.� No entral resoure manager: In suh platforms, there is no entral resoure manageror sheduler whih an do platform-wide resoure alloation in order to balane the resoureutilization and load. The users deploying the appliations selet the nodes to be used. Asingle node an o-host many appliations or servies of multiple users and they ompetefor the resoures available on that node.� Fair-share based resoure alloation: The resoures on a single node are alloatedon fair-share basis to ompeting users. For example, in Planetlab a user is given a slieon eah node and the resoures are alloated to slies on fair-share basis. An appliationan onsume the unused resoures on a node as long as the other users do not ompete forit. However, the unused resoure apaities on a node an utuate due to the utuatingresoure demands of the appliations hosted on it. Moreover, the number of users usingthe node an also hange dynamially. Due to this, there is no guarantee of the resoureapaities available to a servie.� Lak of guarantees of node availability: Availability of nodes is also not guaranteed.A node may be shutdown at any point of time, or it may rash due to software or hardwarefailures, or it may beome unavailable due to network onnetivity issues. Sine theplatform does not provide any guarantees, the rash or unavailability of a node would resultin unavailability of the servie or servie omponent hosted on it and abrupt redution inthe servie apaity.



3These harateristis raise a number of issues that need to be addressed to meet the availabilityand performane requirements of servies under widely varying load onditions. These issuesare disussed below.
1.2 Issues in building salable serviesThe lak of guarantees for resoure apaity and availability require agile and dynami salingmehanisms to ensure the availability and salability of a servie. The requirement of resilienyand salability both demand repliation and regeneration of servies or servie omponents.Repliation is required for servie saling under utuating load onditions as well as to ensurethe availability of the servie in ase of node rashes. Regeneration is required to restart thefailed replias or omponents. However, due to the intrinsi harateristis of these platforms anumber of issues need to be addressed in building salable servies on suh platforms as disussedbelow.The utuations in resoure apaities available at a node would a�et the request handlingapaity of the servie replia hosted on that node. This neessitates the need for estimatingthe request handling apaity of the replia at a given time aording to the resoure apaitiesavailable at that node. The models for estimating the servie apaity at a replia also needto onsider the workload pro�les to aurately estimate the average resoure demands of therequests. These workload harateristis may also hange with time. Furthermore, utuationsin resoure apaities also demand predition of resoure apaity that is likely to be availablein the near future.The load generated by the lients typially hanges with time and suh hanges an be signif-iant espeially in events suh as ash rowds [Arlitt and Jin, 1999, Bodik et al., 2010℄. Studiesdone by [Arlitt and Jin, 1999, Bodik et al., 2010℄ show that signi�ant hanges in lient work-load an our over the duration of few hours. The analysis presented in [Arlitt and Jin, 1999℄shows that inrease of up to �ve fold in the lient workload an our in the duration of oupleof hours. Building a salable servie requires dynami provisioning of servie apaity to meetthe urrent load demands by maintaining an appropriate number of servie replias to handle



4the lient requests. The servie deployment mehanisms need to ensure that the aggregate ser-vie apaity provided olletively by the servie replias is suÆient to handle the urrent andprojeted load onditions, but at the same time there should not be over-provisioning beyondsome level. This requires dynami reation of new replias or shutting down of some existingones.Beause the servie replias have di�erent servie apaities, whih typially utuate, weneed adaptive and agile mehanisms to distribute the lient requests aording to the apaitiesof individual replias. The distribution of lient requests to di�erent servie replias needs to bedetermined dynamially based on the apaities of all servie replias.The deployment of servie replias requires seletion of suitable nodes for hosting them.Suh a set of nodes needs to be piked based on their available resoure apaities and thelikelihood that they would remain suitable for servie hosting for some time in the near future.Furthermore, sine the network loations of servie replias would hange with time, suitablemehanisms are needed for lients to loate the urrently ative servie replias. Suh meha-nisms themselves must be highly available.
1.3 Researh ProblemThe unique harateristis of these autonomously managed platforms without any entralizedresoure management raise various researh questions that need to be addressed for buildingsalable and resilient servies under dynamially varying operating onditions. Spei�ally, weinvestigate the following issues� How to estimate the average resoure demands for handling a request? These averageresoure demands would depend on the harateristis of the workload, whih may hangewith time. The estimation of resoure demands of proessing a request in onjuntion withthe estimated resoure apaities available on a node would determine the servie apaityof the replia at that node.� How to predit the resoure apaity that is likely to be available (i.e. not used by otherusers) on a given node in the near future? Can the reent history of resoure usage on the



5node be utilized in guiding the predition models?� Due to the utuations in available resoure apaities as well as the lak of guaranteesof the node availabilities, suÆient servie apaity must be maintained to tolerate theservie apaity utuations as well as to meet the utuations in load demands. Sinethese utuations are unpreditable, a ertain amount of exess servie apaity mustbe maintained in the system. However, suh apaity should not be provisioned aboveertain limit to avoid overprovisioning. What are the di�erent models and mehanisms toprovision suÆient servie apaity without overprovisioning?� What are the mehanisms for lients to identify and loate the urrently ative replias?How to ensure the robustness of suh mehanisms? What is the impat of the unavailabilityof these mehanisms on the system performane?� Sine the request handling apaity of a replia may hange with time, the amount of lientload distributed to a servie replia must be proportional to the request handling apaityof the replia at that time. What are the tehniques that would adaptively distribute thelient load based on the servie apaities of the replias?� What are the di�erent strategies for seleting the nodes that are likely to remain suitablefor hosting the servie replias for a long duration?Our approah for addressing these issues is based on developing models for apaity esti-mation and servie apaity provisioning and then using these models to drive the dynamirepliation of the servie. We present here the models and autonomi mehanisms that wehave developed for dynami servie saling. We evaluated these models and mehanisms overPlanetlab environment. Spei�ally, our ontributions are in the following areas.1. Development of models for estimating average resoure demands of requests taking intoaount the hanging workload harateristis2. Models for prediting the resoure apaities likely to be available at a node in the nearfuture and using the predited resoure apaities to estimate the servie apaity thatwould be provided by that node;



63. Models for provisioning the aggregate servie apaity in order to maintain some targetamount of exess apaity in the system.4. Mehanisms for adaptive load distribution of lient load aross servie replias;5. Mehanisms and protools for lients to aess the deployed servie replias.6. Prototype framework for building autonomially salable servies over the Planetlab en-vironment.We develop autonomi mehanisms for deploying and saling servies on suh platformsas well as distributing the load aording to the servie apaities of the individual replias.These mehanisms an be used and extended by servie developers to build highly available andsalable servies. We onsider servies and appliations that do not require omplex updatesynhronization protools and where weak onsisteny based update protools are appliable.Examples of suh servies inlude ontent distribution servies where the ontent updates arerelatively infrequent, and personal data sharing servies where an objet is updated by one lientbut read by many. For suh servies, the lient requests are overwhelmingly read-only in nature.Thus, our work here does not address issues related to update oordination protools. A serviean inlude any suitable update synhronization mehanism in its design.
1.4 Related Work� Cluster-based servies: Our goal of building salable and available servies over theInternet is similar to those for luster-based servies, but our underlying environmentis harateristially di�erent. The problems of building highly available and salableluster-based network servies have been addressed by many researh projets in thepast [Fox et al., 1997, Pai et al., 1998, Aron et al., 2000b, Shen et al., 2002b, Aron et al., 2000a,Zhou and Yang, 2006, Shen et al., 2002a℄. Soft state based reovery mehanisms for build-ing resilient omponents in large-sale systems was proposed and used in [Fox et al., 1997℄.In these systems, the lient requests are distributed by the front-end nodes to di�erentservers that are onneted to it by a high-speed loal area network. The available apai-ties at the servers are �xed, and utilized solely by the load plaed on them by the front-end



7nodes. Moreover, in the luster based systems the front-end has a good estimate of theload status of the bak-end servers. In our environment, there are no \front-end" nodesfor performing request distribution and load balaning operations, and the servie repliasare deployed over a wide-area network. Moreover, there is no guarantee of the availableresoure apaities on the nodes hosting the servie replias. Suh nodes are not under theontrol of the servie administrator, and they may be shutdown or beome unavailable atany time.� Dynami provisioning in shared platforms: Model-based approahes for autonomiprovisioning of servies using online internal models for haraterizing workload have beenstudied in [Doyle et al., 2003℄. That work foused on provisioning of storage resoures on ashared server luster. Our work has also taken a model based approah for resoure provi-sioning in a large-sale wide-area environment. We use models for haraterizing workloaddemands, apaity predition and aggregate servie apaity management. Our dynamiprovisioning model an be ompared to elasti resoure provisioning tehniques in loudplatforms. However, unlike loud platforms whih provide well provisioned resoures with�xed apaities, the PlanetLab environment does not provide any guarantees of resoureavailability. The dynami provisioning model developed by us addresses these hallenges.Resoure provisioning tehniques for a luster-based shared hosting platform using onlinepro�ling of an appliation's resoure onsumption are presented in [Urgaonkar et al., 2002℄.The fous of that work is on maximizing the utilization of the shared luster resoures.Rather than examining the problem of resoure management on a hosting platform fromthe viewpoint of platform provider, our work is foused on the management and ontrolof a servie deployment. The approah used by us for autonomi servie apaity man-agement inludes feedbak-based mehanisms ontrolling the degree of servie repliation.Suh ontrol system based approahes have been investigated in the past in web serverdesigns [Abdelzaher et al., 2002℄.� Dynami servie repliation and reloation: The notion of dynami servie repli-ation and reloation of a servie for fault-tolerane has been studied in the past inthe HydraNet-FT system [Shenoy et al., 2000℄. HydraNet-FT design requires speially



8equipped routers as rediretion points. Other researhers have developed server fault-tolerane tehniques based on TCP onnetion rediretion or migration [Sultan et al., 2002,Sultan et al., 2003, Marwah et al., 2003℄. Suh tehniques require ustomized modi�a-tions to the operating systems kernel or the routers. For direting lient requests to any ofthe replias of a servie over the Internet, approahes based on anyasting [Freedman et al., 2006,Wu et al., 2007, Zegura et al., 2000℄ have been proposed in the past. Various approahes tobuild this funtionality range from DNS level modi�ations [Shaikh et al., 2001℄, network-layer anyasting requiring router level modi�ations, or building a servie similar to DNSat the appliation level [Zegura et al., 2000℄. We present here a registry-based rediretionmehanisms whih operate at the appliation-level and does not require any modi�ationsto the existing network infrastruture. In ontrast, the DNS based and network level solu-tions [Partridge et al., 1993℄ are tedious to deploy and they are slow to reat to hanges inthe repliation on�guration [Shaikh et al., 2001℄ beause of addition or removal of repli-as. Our mehanisms are agile and able to reat quikly to suh hanges, as shown by ourevaluations.� Load distribution: The topi of load balaning [Shivaratri et al., 1992℄ tehniques hasbeen extensively studied in the past for environments where the proessing apaities ofnodes are onstant. In our environment, the servie apaities of the replias are typiallyutuating, and therefore the load distribution mehanisms have to be adaptive and agile.The load distribution mehanisms developed here address these needs.� Resoure monitoring in large sale systems: Several other researh projets, suhas CoMon [Park and Pai, 2006℄ and Sophia [Wawrzoniak et al., 2004℄, have investigatedmonitoring of PlanetLab nodes for their resoure onsumption. In Sophia system, eventaggregation and inferene model is presented. CoMon periodially ollets and providesnode-level statistis suh as the number of ative slies, per slie utilization of CPU, mem-ory, and bandwidth. A number of researh projets have analyzed this data for hara-terizing the resoure utilization [Oppenheimer et al., 2006, Cardosa and Chandra, 2008℄.The work in [Cardosa and Chandra, 2008℄ presents statistial methods for resoure dis-overy and for haraterization of nodes based on their resoure usage. It lassi�es



9nodes into di�erent groups based on the similarities in their resoure availability har-ateristis. The fous of the work in [Oppenheimer et al., 2006℄ was mainly on the har-aterization of resoure availability of the PlanetLab nodes based on long-term obser-vation data. Our fous is on haraterization of nodes based on their reent resoureavailability. In [Warns et al., 2008℄, analysis of the CoMon data is presented for har-aterizing node failures and availability. In ontrast to these previous works, our fousis on online monitoring and seletion of PlanetLab nodes for hosting servie replias.Dynami predition models for foreasting network performane have been investigatedin [Wolski et al., 1999, Wolski, 1998℄. We present here an online model for preditingavailable resoure apaities for nodes in PlanetLab environment based on their reentload onditions.



Chapter 2
Servie Capaity Estimation And
Saling
Aurate estimation of servie apaity at the replia level is ruial for appropriately saling theaggregate servie apaity in the system. The request handling apaity of a partiular repliaat a given time is based on the available apaities of the resoures on the replia's node andthe average resoure usage demand of a request. The estimation of servie apaity is neededto be done ontinuously sine the available resoure apaities and the workload harateristismay hange signi�antly with time. Our model for servie apaity estimation is based on thefollowing three aspets.� First, we estimate the average resoure usage demand of a request through online benh-marking of requests.� Seond, we develop a model for prediting the available resoure apaities at a node inthe near future based on the node's reent behavior.� Finally, we estimate servie apaity of the replia based on the predited available resoureapaity and the per request resoure usage demand.

10



112.1 Online Benhmarking of WorkloadFor estimating the average resoure usage demand of a request, eah servie replia performsontinuous monitoring of its resoure usage and workload. A servie replia ollets resoureusage information of di�erent types of resoure suh as CPU, memory and bandwidth. A serviereplia ollets two types of information, one is about its own resoure usage and the other isabout the umulative resoure usage of other appliations exeuting on that node. A replia'sown resoure usage information in onjuntion with the workload harateristis is used inestimating the average resoure requirement for handling a request. The information aboutumulative resoure usage of other appliations is used in estimating the available resoureapaities on that node. We assume that ertain mehanisms are provided by the platformto ollet suh information. In our experimental prototype over Planetlab this information isolleted by probing the Sliestat servie exeuting on that node. Based on suh informationeah servie replia maintains the following statistis for resoure usage at interval i.� pi - Average CPU usage (measured in MHz) of replia's own slie over the interval i. Itis alulated by observing the perentage CPU usage of replia's own slie and the node'sintrinsi CPU apaity measured in MHz. In determining a node's intrinsi CPU apaitywe take into onsideration the number of ores and the CPU speed.� mi - Average physial memory usage (measured in MB) of replia's own slie over theinterval i.� bi - Average bandwidth usage (measured in KBps) of replia's own slie over the intervali.For monitoring the workload harateristis, the following statistis are maintained for thei0th interval:� si - Number of requests served per seond.� ti - Average servie time per request. This is measured as the time sine the request wasreeived to the time when the response was sent.



12� ni - Average amount of per request data ommuniation over the network (number ofbytes sent and reeived).The above information is used for haraterizing the average resoure usage demand perrequest, as follows.� Dpi - Per request CPU onsumption, measured in terms of the number CPU yles requiredto servie a request. This is given by: Dpi = pi=si (2.1)
� Dmi - Per request inremental memory onsumption, measured in MB. This is the in-remental amount of memory required for handling a request sine some base amount ofmemory Bm is always used by a servie replia. The amount of base memory usage isgiven by the memory usage under no load ondition. We alulate the inremental perrequest memory requirement as follow:Dmi = (mi �Bm)=si (2.2)
� Dni - Per request network usage, it is same as the average amount of data sent and reeivedover the network for handling a request.Dni = ni (2.3)
To aurately apture the workload harateristis and the average resoure requirement ofproessing a request, we need to estimate these per-request demands over a suÆiently largesample of requests. In order to determine that a suÆient number of samples is olleted, weontinuously alulate the sample mean and variane of the per-request resoure demands forurrently observed requests and then using the Student's t-distribution we determine the numberof samples required suh that the population mean is within the 5% margin of the sample meanwith 95% on�dene. We assume that the hanges in workload harateristis tend to be gradualover the duration of �ve minutes. Therefore, we onsider the average of per-request resouredemand values over past �ve minutes interval in estimating the servie apaity. The averagevalues of the above per-request resoure demand measures omputed over the past �ve minutes



13are represented by Dp and Dm. Similarly, per request network usage Dn is obtained based onthe �ve minute average of the ni values.
2.2 Predition of Available Resoure CapaityThe problem that we address here is how to estimate for a given resoure the amount of itsapaity that is likely to be available (i.e. not used by other users) in the near future withsome given probability. In order to predit the resoure apaity that is likely to be availablein the near future we need to observe the utuations in the available resoure apaities overtime. To haraterize suh utuations, for eah resoure type we observe the average availableresoure apaities over some period, alled observation period (wo) and the average availableresoure apaity over some period in the immediate future, alled predition period (wp). Wethen alulate the ratio of average available resoure apaity Rwp observed over wp to averageavailable resoure apaity Rwo observed over wo. We all this ratio the apaity modulationratio (�). � = RwpRwo (2.4)A apaity modulation ratio greater than 1 indiates inrease in the available resoure apaityby some fration and a ratio value less than 1 indiates derease in the available resoureapaity. P [� � x℄ is the probability that the average available resoure apaity over thenext predition period wp is at least Rwo � x. Therefore, to predit the fration of the availableresoure apaity that is likely to be available with a spei�ed on�dene level C, we alulatex suh that P [� � x℄ = C. We use wp as the period for the predition yle and also as theontrol and reporting interval for periodi exeution of servie apaity estimation and salingmehanisms.The predition of the available resoure apaity needs to be done for individual nodes.This is beause we observed that the utuations in the available resoure apaities vary forindividual nodes depending on their load onditions. This neessitates the need for a dynamimodel that predits the available apaities for individual nodes based on their urrent loadonditions. We assume that while the available resoure apaity itself may hange signi�antlyover short durations, suh hanges (that is the � values) are statistially preditable over duration



14of few minutes. Therefore, our dynami model for resoure apaity predition is based onobserving the history of � values over some period alled history window (wh). Our preditionmodel estimates the umulative distribution (CDF) of the � values observed over a slidingwindow of period wh and alulates the value x for some given on�dene level C, suh thatP [� � x℄ = C. This value is used to estimate the resoure apaity for the next preditionperiod. For example, suppose that xi is the value alulated, as desribed above, at the ithpredition yle for CPU resoure. Let pi be the observed average available CPU apaity overthe immediately preeding observation period of wo duration at the i'th predition yle. Thepredited CPU apaity Pi for the following predition period wp is estimated as:Pi = pi � xi (2.5)The goodness of the predition model an be determined by observing the ratio of resoureapaity observed to be available in a given interval to the apaity predited for that interval.We all it the predition ratio (�). A value of � lose to 1 indiates that the observed apaity islose to the predited apaity, whereas values higher or lower than 1 indiate underpreditionand overpredition, respetively. Sine, in the equation (2.5), xi is hosen suh that P [� �xi℄ = C, we expet that the resoure apaity observed to be available during the immediatelyfollowing predition period wp is at least pi � xi with probability C. Therefore, we expet thatP [� � 1℄ = C. Using this observation, the goodness of the predition model an be evaluatedbased on the value of � at whih this required on�dene C is ahieved.The performane of the predition model would depend on the spei� values on�gured forthe di�erent parameters - wh, wo, wp, and the level of on�dene used to selet the � value forpredition. An important question is how to hoose the values for these parameters. For thepredition period parameter (wp), we want it to be of small duration (around 60-90 seonds).The apaity predition over 60 or 90 seonds would guarantee that the requests would beompleted within that period and the baklog of requests would not build over minutes range.This is desirable, sine we want the response times to be in few seonds range. However, a verysmall predition period is also not desirable. This is beause the monitoring and servie salingfuntions would be performed at every predition interval. A very small predition period maynot be adequate enough for exeuting the saling funtions. For the higher values of on�dene



15level parameter C, P [� � 1℄ is higher and hene it may result in signi�ant underpredition.Similarly, a lower on�dene level may overpredit the resoure apaity signi�ant number oftimes.For evaluating the performane of the resoure apaity predition model under variousparameters, we olleted the traes of approximately 300 Planetlab nodes. These traes inludethe available apaity information of various resoure types olleted every 10 seonds for eahnode. This evaluation is independent of the load imposed on a deployed servie by its lientsas the resoure apaity predition model depends only on the available resoure apaities ofindividual nodes. Table 5.2 desribes the datasets we used for this evaluation. Table 2.2 showsthe values on�gured for di�erent parameters for omparative evaluation. We addressed thefollowing questions in this evaluation� How to determine the length of the observation period wo and the predition period wp?� What is the impat of the parameter history window wh on the predition performane?� How to determine the value of the on�dene level parameter C?
Table 2.1: Datasets used for Evaluating Resoure Capaity Predition ModelDataset Time Duration Number of NodesDataset1 Feb 11-12, 2011 38 hours 291Dataset2 Ot 25-28, 2010 3 days 257Dataset3 Sep 1-2, 2010 18 hours 305

Table 2.2: Con�guration Parameters for Predition ModelParameter Name Valueshistory window (wh) (10,20,30,40,50,60) minsobservation period (wo) (1,3,5) minspredition period (wp) (30,60,90) seson�dene level (60%,70%,80%,90%)



162.2.1 Impat of parameters wo and wp on predition performaneTo determine the length of wo and wp, we �rst �xed the length of the wp to be 1 minute andobserved the impat of wo on predition performane. For evaluating the predition performane,we observed the CDF of the predition ratio. Sine the predition ratio value lose to 1 isdesirable, we determined the goodness of predition in terms of the probability mass between0.9 and 1.1. We evaluated the predition performane with the wo values of 1, 3, and 5 minutes.We observed that larger observation periods result in less aurate predition. This data isshown in Table 2.3 for Dataset1 for CPU and network bandwidth. Similarly, we evaluated thepredition performane for wp values of 30 and 90 seonds. We observed that wo and wp value of1 minute give better predition performane. We observed similar trends for all other datasets.
Table 2.3: Comparison of Predition Performane for various values of wo and wpobservation period (wo) predition period (wp) P [0:9 � � � 1:1℄CPU Network Bandwidth5 min 1 min 0.236 0.823 min 1 min 0.247 0.821 min 1 min 0.262 0.831 min 30 ses 0.254 0.833 min 90 ses 0.249 0.82

Table 2.4: Comparison of Predition Performane for various values of history window andon�dene level for CPUhistory window on�dene level P[� � 0:95℄ P[� � 1:5℄ Di�erene30 70 0.32 0.88 0.5640 70 0.32 0.89 0.5760 70 0.31 0.89 0.5730 80 0.22 0.76 0.5440 80 0.22 0.78 0.5660 80 0.21 0.75 0.5430 90 0.13 0.66 0.5340 90 0.12 0.65 0.5360 90 0.11 0.66 0.55



17
Table 2.5: Comparison of Predition Performane for various values of history window andon�dene level for Network Bandwidthhistory window on�dene level P[� � 0:95℄ P[� � 1:5℄ Di�erene30 70 0.32 1.0 0.6840 70 0.32 1.0 0.6860 70 0.31 1.0 0.6930 80 0.22 1.0 0.7840 80 0.22 1.0 0.7860 80 0.21 1.0 0.7930 90 0.12 0.98 0.8640 90 0.11 0.98 0.8760 90 0.11 0.99 0.88
2.2.2 Impat of parameters wh and C on predition performaneThe seond question we addressed in our evaluation was how to determine the size of the historywindow (wh). For the history window parameter, we did not want it to be very large as a largerwindow may not be able to apture the utuations ourring over a short duration. Therefore,the maximum history window size we on�gured in this evaluation was 60 minutes. As disussedearlier, for the on�dene level parameter the goodness of the predition model an be evaluatedby observing the value of � at whih the required on�dene level C is ahieved, that is the valuex suh that P [� � x℄ = C. We observed that for all wh values exept for 10 and 20 minutesthis was ahieved at � value of approximately 0.95. For wh values of 10 and 20, the requiredon�dene level was ahieved for � values of 0.9 and 0.92 respetively. We also observed thatwh value of 60 minutes performs better in ahieving this required on�dene level but only withmarginal improvements over wh values of 30, 40, and 50 minutes. This data is shown in Table 2.4for Dataset1 for CPU apaity. Table 2.5 shows the same data for network bandwidth apaity.For evaluating the e�et of on�dene level parameter C , we observed the amount of under-predition in terms of the probability of � being greater than 1.5. We observed that for CPUresoure the higher on�dene levels result in signi�ant underpredition. For example, as shownin Table 2.4, for the on�dene level of 90 the predition ratio was greater than 1.5 for 33% ofthe times. We an observe from Table 2.4 and Table 2.5 that on�dene level of 70% gives lessunderpredition than other on�dene levels for CPU apaity. However, for network bandwidththe on�dene level parameter does not have any e�et on amount of underpredition. In this



18ase on�dene level of 90% is more desirable sine it gives less overpredition. We observedsimilar trends for history window and on�dene level parameters for all other datasets.Based on these observations, we make the following onlusions� Observation period wo and predition period wp of 1 minute give more aurate preditionthan other values.� Window size of 60 minutes gives better auray in ahieving required on�dene levelbut only with marginal improvements ompared to window size of 30, 40 and 50 minutes.Window size of 10 and 20 minutes gives signi�antly lower auray in ahieving therequired on�dene level.� For CPU resoure the on�dene level of 70% is desirable as it gives less underpreditionthan other values. However, for network bandwidth the amount of underpredition isless for all the values of on�dene level parameter and therefore, for network bandwidthon�dene level of 90% is more desirable sine it gives less overpredition.
2.3 Estimation of Servie CapaityThe apaity estimation model and online benhmarking model desribed above are used inestimating the request handling apaity of a replia at a partiular time. We use the averageresoure demand of a request estimated through online benhmarking and the predited availableapaity for eah type of resoure in determining the maximum number of requests that an behandled based on eah type of resoure. This estimation also indiates the bottlenek resoureand the maximum number of requests that an be handled by the replia at that time.A servie replia predits the available apaity at eah interval i and alulates the following� Pi - predited available CPU apaity for next observation interval� Mi - predited available memory apaity for next observation interval� Bi - predited available bandwidth for next observation interval� ri - Maximum number of request that an be handled per seond predited for the nextobservation interval



19The predited available apaity of a partiular type of resoure together with the averageresoure usage demand of a request for that type of resoure an be used to determine themaximum number of requests that an be handled based on that type of resoure. For example,the maximum number of request that an be servied per seond based on CPU apaity (rp)an be alulated as follow rp = Pi=Dp (2.6)Similarly, the maximum number of request that an be served per seond based on preditedavailable bandwidth is given by rn = Bi=Dn (2.7)We an alulate number of request based on memory (rm) in a similar way. The maximumnumber of request ri that an be handled per seond is then alulated by taking the minimumvalue of rp, rn and rm Our urrent work has mainly foused on CPU, network, and memorydemand of the workload beause in o�ine benhmarking of our workload we found that thenetwork and CPU were the bottlenek resoures most of the time, and �le I/O was never foundto be the bottlenek. However, further work needs to be done for developing �le I/O resouredemand model in this framework. This would require aess to I/O utilization data from thehost environment.
2.4 Evaluation of Capaity Estimation ModelsThe evaluation of the servie apaity estimation model presented above is performed for twoaspets. The �rst aspet of our evaluation is the auray of this model in prediting the servieapaity for the next observation interval. The seond aspet is to evaluate how aurately theestimated servie apaity reets the atual request handling apaity of the servie replia.Preisely, this aspet is related to the evaluation of the benhmarking models in auratelyapturing the resoure requirement of a request.We refer to the servie apaity predited for a partiular interval i as model-based preditedservie apaity (�i). The servie apaity atually observed aording to our model duringinterval i is alled model-based observed servie apaity (
i). The 
i value is alulated based



20on the resoure apaity observed to be available during interval i. The atual servie apaity(ai) of the servie replia during interval i is the maximum number of requests that ould besuessfully handled without ausing saturation. For evaluating the performane of the servieapaity estimation models we de�ne two measures. One is the servie apaity predition ratio(�), whih is alulated as � = 
i=�i (2.8)And the other measure is the estimation ratio (Æ), whih is alulated asÆ = ai=�i: (2.9)The atual request handling apaity of a servie replia during a partiular interval an only bedetermined by generating load lose to the saturation point. We observed that in our testbedenvironment queuelengths lose to 10 for a servie replia indiated operating onditions loseto the saturation point. For determining the saturation apaity during an interval, we imposedsuÆient load on eah replia to operate at queuelength of 10, but imposed admission ontrol soit did not inrease beyond this number. The sustained rate at eah interval indiates the atualservie apaity during that interval.We deployed over 100 servie replias on di�erent PlanetLab nodes and observed the dis-tribution of � and Æ values. We used E-ommere workload spei�ations of SPECweb2009benhmark [SPEC, ℄ to generate the lient workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

ratio value

estimation_ratio
prediction_ratio

Figure 2.1: Distribution of predition ratio � and estimation ratio Æ



21Figure 2.1 shows the distribution of over 3000 observations of the � values and the distributionof Æ values of around 500 observations. The average Æ value was observed to be 1.22 and themedian was 1.14. This means that on average the atual servie apaity is 22% more thanthe predited value. We also observed that the probability of the atual apaity being lowerthan the predited value was 0.28, and about 70% of the predited apaity was available withprobability lose to 1.
2.5 Dynami Capaity SalingOur goal here is to develop models and autonomi mehanisms for dynami saling of aggregateservie apaity based on the servie apaities estimated by eah servie replia and the ur-rently observed load onditions. The main objetive of the apaity management model is tomaintain suÆient aggregate servie apaity under events suh as: utuating servie apai-ties of individual servie replias, replia rashes, and utuating load onditions. Moreover, theapaity management model should not over-provision the servie apaity beyond some level.Towards these goals, the apaity saling models and mehanisms need to address the fol-lowing questions:� How muh aggregate servie apaity should be maintained in order to tolerate utuationsin available resoure apaities, lient load and events suh as replia rashes?� Under what onditions additional apaity should be generated?� When to redue the provisioned servie apaity in order to avoid over-provisioning?Our apaity management model is based on the notion of apaity slak, whih attemptsto maintain a ertain amount of exess apaity in the system with respet to the urrentlyobserved lient load. Maintaining suh additional servie apaity in the system ensures thatthe lient load an be suessfully handled under the utuating onditions desribed above.We de�ne target slak fration (fs) as the fration of the apaity that must be maintainedas slak. Suh a slak apaity must be maintained based on the urrently observed load. Let Lbe the urrent load, measured in number of requests per seond. Let C be the aggregate servie



22apaity whih is the sum of the estimated servie apaities of the individual servie repliasmeasured as the maximum number of requests that an be served by eah replia per seond.In order to maintain the desired apaity slak, C should always satisfy the following riteria.C � L � (1 + fs) (2.10)When the aggregate servie apaity is not suÆient to satisfy the target slak requirement,additional servie apaity should be generated by adding new servie replias. However, theslak apaity must also be maintained below ertain level to avoid over-provisioning. Therequirements of maintaining the required slak apaity as well as avoiding overprovisioningmay result in frequent addition and removal of replias due to the utuations in the aggregateservie apaity. This would make the system unstable. To avoid this problem, we enfore thatthe aggregate servie apaity should be redued only when it exeeds ertain level alled as highwatermark (fh). Therefore, the aggregate servie apaity C maintained in the system shouldsatisfy the following riteria. C < L � (1 + fh) (2.11)The aggregate servie apaity an redue abruptly due to the rash of a servie replia. Thisabrupt redution in the apaity an be signi�ant if the rashed replia ontributed signi�antfration of the aggregate servie apaity and therefore the resulting aggregate servie apaitymay not be able to handle the urrent load onditions. For this purpose, we enfore that theaggregate apaity should not fall below ertain level due to the rash of a single replia. Werefer to this level as low watermark (fl). Let Cm be the maximum amount of servie apaityamongst the individual servie replias, then the following ondition ensures that the system isnot 1-replia rash vulnerable. C � Cm � L � (1 + fl) (2.12)Based on the apaity management model desribed above, the apaity saling is performedas desribed in 2.2. At every ontrol interval the aggregate servie apaity and total lientload is alulated using the apaity and load information provided by eah replia. If theurrent aggregate servie apaity does not satisfy the riteria spei�ed by equations (2.10) and(2.12), then the suÆient amount of additional apaity required to satisfy these two riteria



23
C= total apaity of all repliasL= total load of all repliasCmax= Capaity of the largest apaity replia;if (C < L � (1 + fs)) fCadd = L � (1 + fs)� C;addCapaity(Cadd);gelse if (C � Cmax < L � (1 + fl)) fCadd = L � (1 + fl)� (C � Cmax);addCapaity(Cadd);gelse if (C > L � (1 + fh)) fwhile (C > L � (1 + fh)) fr= getMinCapaityReplia(); /*remove lowest apaity replia*/Cnew = C- r.apaityif (Cnew > L � (1 + fs) ^ Cnew � Cmax > L � (1 + fl)) f/* Removal will not ause 1-replia rash vulnerability */removeReplia(r);C = Cnew;gg

Figure 2.2: Algorithm for Capaity Saling
is generated. If the urrent aggregate servie apaity is beyond the high watermark, then thelowest apaity replia is marked for removal to redue the apaity. However, it is only removedif the remaining aggregate servie apaity still satis�es the onditions given by equations (2.10)and (2.12). In our prototype framework, the apaity saling funtions are performed by aspeial omponent alled as DeploymentManager Agent (DA). The details of the DA funtionsare desribed in Chapter 3The level of the apaity slak provisioned a�ets the availability and performane of theservie that the lients would experiene. However, higher apaity slak would also inreasethe deployment osts. The three parameters of this model { target slak, high watermark, andlow watermark { a�et the ost-performane trade-o�s. We evaluated the ost-performanetrade-o�s for di�erent levels of apaity slak. These evaluations are presented in Chapter 6In this hapter we presented online models for workload benhmarking and predition of avail-able resoure apaity. The workload benhmarking model estimates the average per-requestresoure requirement. The online predition model predits for a given resoure the apaity



24likely to be available in next predition yle with a given on�dene level. The predited re-soure apaities along with the per-request resoure demands are used to predit the servieapaity for the next predition yle. We also presented here a model for saling servie a-paity based on the notion of apaity slak whih tries to maintain some exess apaity in thesystem.



Chapter 3
Prototype Framework
We present here the prototype framework alled Ellora, whih we have built for evaluatingthe models and mehanisms presented earlier for building salable servies. We have builtthe Ellora framework over Planetlab. However, the arhitetural omponents and deploymentframework of Ellora an be used for servie deployment over any shared hosting platforms thathave the harateristis desribed earlier. We assume that ertain platform level mehanismsfor extrating and monitoring resoure usage information are provided. For example Planetlabprovides Sliestat data for eah node whih gives the information about resoure usage of variousslies hosted on that node. Mehanisms whih provide suh information are required for servieapaity estimation. Our framework does not depend on the availability of aggregate or globalinformation about the available resoure apaities or node availabilities.
3.1 Overview of the Ellora FrameworkServie saling in Ellora is ahieved through dynami repliation of servie omponents anddynami adjustment of the degree of repliation. The degree of repliation is adjusted basedon the servie apaities of the deployed replias and the load onditions. Dynami repliationis driven by the apaity saling models presented earlier. For deployment, repliation andregeneration of servie replias or omponents we use the mobile agent tehnology. For this

25



26purpose, we use the Ajanta [Tripathi et al., 1999℄ framework for programming and deployingmobile agents.Figure 3.1 shows the organization of the servie deployment environment of Ellora. A serviereplia is implemented as a servie agent whih is a mobile agent implemented using Ajantasystem. A servie agent an be reated and dispathed to a remote node for exeution. It anbe remotely ontrolled, and terminated if needed. Agents an be loated and aessed usingtheir loation-independent names, whih are based on the URN (Uniform Resoure Naming)sheme [Sollins and Masinter, 1994℄. Using the URN of an agent, aess to its RMI interfaeis obtained. The Ajanta Name Servie provides this faility. An agent an also ommuniateusing TCP onnetions. The servie agents provide TCP-based interfae to the lients.
3.1.1 Registry ServieA Registry Servie is used for maintaining the urrent on�guration information for eah de-ployed servie. For eah deployed servie, the registry servie maintains a reord ontaining thelist of all replia agents, their network addresses, and their urrently estimated servie apaities.Eah servie in our system is assigned a unique servie-id (SID), and the reord for a servieis queried or updated using this id. The primary funtion of the registry is to diret a lientto one of the replias. Eah replia periodially reports to the registry its estimated servieapaity. Based on the reently reported servie apaities, it determines the fration of thetotal load that should be direted to it. The probability of seleting a replia is proportional toits load fration. The load distribution frations are updated ontinuously based on the periodireports from the replias. A replia is onsidered as rashed if no reports are reeived in threeonseutive periods. The loations of the registry servie replias themselves may hange withtime, and for that purpose, as a bootstrap mehanism, several \lightweight" Registry Loatorsare provided at some well-known network loations.The lients query the Registry Servie for loating a servie replia. On reeiving a queryfrom a lient, it selets a replia and returns to the lient its network address. The lient thensends its requests diretly to this servie replia. Whenever a lient fails to ontat a replia, itone again queries the registry.



27

Service
Replica

Node

Agent

Service
Replica

Agent

Service
Deployment

Node

.....
Replication
Control

Agent

Node

(Primary) (Backup2)

Registry Service

(1) Registry Query

Periodic Reports

(2) Request

Elastic Pool of Service Replicas

User−Level Service Deployment

Replica Replica
Agent

Deployment
Recovery
Agent

RegistryRegistry Registry

(Backup1)
Replica

Registry

PlanetLab Environment

PlanetLab Node
Monitoring

Name Service

Service

Clients of Deployed Service Registy Locators

Node

Agent
Recovery Ajanta

Platinum

Figure 3.1: Ellora Framework for the Deployment of Resilient and Salable Servies
3.1.2 Servie Replia AgentThe servie replia agent omponent of Ellora provides the basi building-blok for onstrutinga repliated servie. It is extended by servie developers to inlude request proessing logi andservie-spei� repliation management protools. The servie agent performs several generifuntions entral to the servie deployment model of Ellora. The servie agents inlude meha-nisms for monitoring the available resoure apaities and estimating the servie apaity. Eahservie replia exhanges periodi heart-beat messages for deentralized group on�gurationmanagement. These messages also inlude the load information to be used for load balaning.The heart-beat period T is set suh that wp = k �T , for k � 1. In our experiments wp is set to 1minute and T is set to 10 seonds. A servie agent ontains mehanisms to monitor its load, andit also inludes mehanisms to detet overload or saturation onditions. Based on the observedload onditions a servie replia agent makes autonomi deisions suh as shedding lient loadby redireting the lients to other servie replia agents. The details of these mehanisms arepresented in Chapter 4.



283.1.3 Deployment AgentFor eah deployed servie, Ellora reates a speial agent, alled Deployment Agent (DA), whosefuntion is to perform dynami ontrol of the degree of the servie repliation. It reates andlaunhes the servie replia agents, and also detets their rashes. Eah servie replia agentsends a report message to the DA at eah ontrol yle of wp period, ontaining informationabout the number of requests reeived in the urrent yle and the estimated servie apaity forthe next yle. Using this information, the DA determines the aggregate load and the estimatedaggregate servie apaity. The load information reported by servie replias may not indiatethe atual aggregate servie load as it does not indiate the requests for whih the lients failedto onnet to the servie replia. As for eah failed request a lient would perform registryrelookup, the number of lookup indiates the number of failed requests. Therefore, DA queriesthe servie registry to get the number of lookups performed in the given yle and determinesthe aggregate servie load by taking into aount the number of registry lookups.Based on the slak apaity model presented earlier, the DA deides if it should add moreservie apaity or redue the existing apaity. If additional apaity is needed, DA alulatesthe additional amount of apaity that needs to be generated and requests a list of available nodesfrom the monitoring servie whih satisfy ertain minimum resoure apaity requirements. Themonitoring servie also provides information about the urrently observed available resoureapaities at those nodes. Based on the available resoure apaities, the DA piks a set of highapaity nodes. The DA uses the paket probe method [Paxson, 1998℄ to ensure that the seletednodes have suÆient end-to-end bandwidth. It also alulates the average resoure demands ofa request from the resoure demands values reported by the individual servie replias. Theseaverage resoure demands are used as seed values to assess the approximate servie apaitythat would be provided if the new servie replias are deployed on the seleted hosts. Based onthis alulation, the DA reates one or more servie replia agents on the appropriate nodes.When the apaity is to be redued, the DA selets the lowest apaity servie agent and sendsa `terminate` message to the agent.The DA uses the periodi reports from the servie replia agents to detet their rashes.If no report is reeived from a replia in the urrent period, the DA suspets it as failed and



29marks its ontribution to aggregate apaity as zero. However, for suh replias it still uses theload value in the last report reeived from that replia. If no reports are reeived from a serviereplia agent for a ertain number of intervals, the DA probes the agent. If the probe fails, itremoves the failed agent from its on�guration list. The DA then heks the aggregate servieapaity to determine if a new agent needs to be reated.A failure of the DA results in the absene of the apaity saling and the repliation ontrolfuntions for the servie. The DA funtions by maintaining as soft state the information aboutits urrent on�guration of servie replias, the urrent load and the estimated servie apaity.This state is based on the reently reeived reports from the servie agents. The DA does notmaintain any state on the stable storage. On rashes, this agent is simply restarted on anyavailable node. For deteting the rash of the DA and to perform its restart, we pair it withanother agent alled Reovery Agent (RA). The DA-RA pair of agents exeute on di�erent hostsand they exhange periodi heart-beat messages. Eah agent in the pair is responsible for therelaunh of the other. The Reovery Agent has no other funtions to perform, so it is a relativelya lightweight agent.During the time when the DA is not available, at eah reporting yle the servie repliaagents would fail to make an RMI onnetion with the DA. In ase of suh RMI failures, theyrelookup the Ajanta Name Servie for the DA and try one more. When the DA is restarted,it updates its RMI information with the Ajanta Name Servie. In the next reporting yle, theservie agents would be able to ommuniate with this restated DA. After one yle of reporting,the DA has omplete information about all of the servie replia agents and it is fully funtionalat that point.The plaement of servie replias requires seletion of suitable nodes based on their availableresoure apaities. In order to pro�le nodes based on their resoure usage behavior, we needaurate estimation of their resoure usage harateristis. We have developed a system Platinumfor monitoring PlanetLab nodes for their available apaities. It monitors available resoureapaities on every node and assists the DA in seleting suitable nodes for deployment of serviereplias. The details of this system are presented in Chapter 5



303.2 Registry Servie DesignThe Registry Servie is a ritial omponent beause its presene is important for the lientsto loate any of the urrently operational replia agents of the target servie. We design thisservie using the deployment mehanisms desribed above. The general mehanisms underlyingthe resilieny of this servie are the same as those used for user-deployed servies in Ellora,exept for some bootstrap mehanism for the lients to loate this servie initially.The Registry Servie is implemented using a repliated group of Registry Agents. The replia-tion management of registry agents is based on the primary-bakup model [Budhiraja et al., 1993,Wiesmann et al., 2000℄. The deployment and repliation of this servie is dynamially ontrolledusing the Registry Deployment Agent (Registry DA). To loate the registry agents, the lientsontat the Registry Loators whih run at known loations. The registry loators are lightweightomponents and are used by lients only for bootstrapping purpose to loate the registry agents.The registry loators periodially query the Registry DA or any urrently deployed registryagents to get the list of the urrently deployed registry agents. A lient an also query registryservie agent to obtain the urrent on�guration of the deployed registry agents.
3.2.1 Primary-Bakup ModelThe group of repliated registry agents operates in the primary-bakup mode, with the bakupagents operating in the ative mode. All periodi reports from the servie replias are sent to theprimary registry agent. However, a read request suh as lient query for servie replia lookupan be served by any of the registry agents. The updates are propagated to the bakup agentsin a lazy manner, sequentially from one replia agent to the next, in a daisy-haining fashion.Due to this lazy update propagation, a registry agent may have its registry data bit lagging fora few seonds, however, suh inonsistenies are not ritial to performane, as demonstrated inour evaluations.The group of registry agents is dynamially on�gured in an ordered set, where the �rstagent in the set is the primary while the other agents are ative bakups. The registry updatesare propagated to the agents in this order. The registry servie agents oordinate amongstthemselves in peer-to-peer manner and maintain the on�guration in deentralized way. The



31on�guration is hanged when an existing registry agent rashes or a new one joins the group.The on�guration hanges are identi�ed by monotonially inreasing version numbers. Theprimary agent is responsible for making the on�guration hange deisions and ommuniatingthe new on�guration to the other registry agents.

A1 A2 . . . . . . . . AnA3

. . . . . . . .

Service Replicas

Legends

Heart−beat Messages

Periodic Reports

Update Propogation

Primary Backups

Registry Replicas

Figure 3.2: Servie Registry Arhiteture
For deteting the rashes of the registry agents, eah agent sends periodi heart-beat messagesto the downstream agent that follows it in the ordered set. Therefore, if there are n registryagents denoted by A1 to An, where A1 is the primary, then agent Ai sends heart-beat messagesto agent Ai+1. The failure of an agent is deteted by its downstream agent if the heart-beatmessages are not reeived for some period, i.e. Ai detets failure of Ai�1. One the failure of anagent is deteted, the primary agent is noti�ed of the failure. The primary agent then removesthe failed agent from the group, and sends on�guration hange message along with the newon�guration to the urrent group members, and also to the Registry DA. If a primary agentannot ontat a registry agent while updating the new on�guration, it marks it as failed andthe agent is removed from the group on�guration. In order to detet simultaneous failures ofmultiple agents, when an agent detets the failure of its upstream neighbor it also probes otherupstream agents to hek if they are failed. This is performed in following manner. When Aidetets failure of Ai�1, in the same yle it also probes other upstream agents from Ai�2 until



32it �nds an agent whih is not failed. It then reports all the intermediate failed agents to theprimary agent. Thus failures of multiple agent an be deteted in a single yle. The failure ofprimary agent is deteted by the �rst bakup agent and upon deteting the primary failure the�rst bakup agent (if it is running) assumes the role of primary. The new primary then reportsthe failure of the primary and the new on�guration to other agents. If �rst k agents are failedthen the k + 1th agent assumes the role of primary agent.
3.2.2 Corretness of Primary-Bakup protoolWe want to ensure that the following properties hold to guarantee the orretness of primary-bakup mode of operation.� P1: Only one agent should be primary at any given time� P2: All the agents in the repliated group should have the same view of the group on�g-uration.We assume that network level partitions do not our. As disussed in our protool all thegroup on�guration hanges are reported by primary to all other agents. Therefore, a bakupagent's view of the urrent group on�guration hanges only when the primary reports a newgroup on�guration. Hene ensuring the property P1 would also ensure that P2 holds.In ase of false detetion of primary failure due to network onnetivity issues the �rst bakupagent would assume primary role while the primary is still running. In suh ases our protoolensures that only one agent ats as primary agent as follow. The �rst bakup agent (if notrashed) would assume the primary agent is failed and report the new on�guration to otheragents. All the other agents would now onsider this �rst bakup agent as the new primaryagent. When the old primary ontats any of the agents, it is noti�ed of the new primary agent.The old primary then ontats the new primary agent. The old primary is then put at the endof the ordered list and the new primary agent noti�es all the agents of the new on�guration.We an see that in ase of simultaneous failures of �rst k agents in the order this protool wouldalso guarantee that only one agent (k + 1'th agent) ats as the primary agent. Thus it ensuresthat no two agents ats as the primary agent and hene properties P1 and P2 are satis�ed.



33During the update propagation, if a registry agent rashes after it has reeived an updatebut before propagating the update to the downstream agent then the update would not bepropagated to the remaining agents. In ase of Registry Servie, the updates are basiallyinformation about servie replia loation, load, et. Sine suh information is overwritten byperiodi updates from servie replias, a lost update an be tolerated in this ase. Therefore, wedo not address the issue of lost updates here. However, mehanisms using sequened updatesand pulling the updates after group on�guration hanges an be implemented to avoid the lostupdate problems.
3.2.3 Reovery and Restart MehanismsAll the omponents of the Registry Servie { suh as Registry DA, Registry Loators or RegistryAgents { are lightweight and require minimal or no hekpointing. The fault tolerane andreovery of these omponents is disussed below.The rash of a registry agent is reported by the primary registry agent to the Registry DAfor immediate reovery of the failed agent, whih then launhes a new agent. The new agentontats the primary agent in order to join the group. It joins at the last index in the groupon�guration and starts with an empty registry. Therefore, it waits for one reporting ylebefore it starts responding to the lient queries. During this period it redirets the lient queriesto other replias. After one reporting yle, it has information about all of the di�erent deployedservies and their replias. If a servie replia agent of some deployed servie fails to ontat theprimary registry agent during a reporting yle, it ontats any of the other registry agents toget the new on�guration of the Registry Servie. After that it attempts to ommuniate withthe new primary agent for the Registry Servie.The failure and reovery of the Registry DA is handled using the Reovery Agent mehanismas disussed in the previous setion. The Registry DA does not require any hekpointing. Whilethe Registry DA is down, the Registry Servie is still available. The registry agents an performthe group management funtions in absene of the Registry DA. The only problem while theRegistry DA is down is that no new agent an be reated if any existing agent fails.



34When a registry loator is started, it ontats the Registry DA to get the urrent on�gura-tion of registry agents. The URN of the Registry DA is the only information needed to exeuteit. A registry loator periodially refreshes its view of the urrent on�guration of the RegistryServie by querying any of the registry agents.In this hapter we presented experimental framework we developed over PlanetLab for eval-uation of our servie saling models and mehanisms. In this framework, the servie deploymentand saling funtions are performed by the Deployment Agent reated for eah servie. Wedeveloped a registry servie whih is aessed by lients to loate the urrently deployed serviereplias. The fault-tolerane and high availability of this servie itself is realized through salingand resilieny mehanisms provided for user-deployed servies. The di�erent omponents of ourframework suh as the Deployment Agent or registry servie operate by maintaining soft-statewhih an be easily generated upon their reovery.



Chapter 4
Adaptive Load Distribution
We address in this hapter the problem of how to distribute the load aording to the servieapaities of replias whih may utuate signi�antly over time. As disussed earlier, the u-tuations in servie apaities of the individual servie replias neessitate the need for adaptiveload distribution. In our system model, a lient �rst queries a Registry Servie for aessing apartiular servie. In response to the lient query, the Registry Servie selets one of the repliaand returns its network address to the lient. The lient then sends subsequent requests to thatservie replia. A registry lookup is performed again by the lient only after some number ofrequests. We have two di�erent levels at whih load distribution is performed:� Registry-Level: This is the load distribution performed by the registry while seleting theservie replias for lient queries. Sine a registry lookup is performed by the lient onlyafter a ertain duration, this level of load distribution operates at relatively oarse level.� Replia-Level: For more �ne-grain distribution of load, eah servie replia performs theload distribution based on its urrent load onditions.The load distribution at replia-level is essential for two reasons. First, sine the servie apai-ties of replias an utuate within short duration, load distribution mehanisms whih operateat replia-level are needed for more adaptive load distribution. Seond, with the replia-levelmehanisms the load distribution an be performed even when the registry servie is unavailable.

35



364.1 Registry-Level Load DistributionThe load distribution at registry level is performed based on the servie apaities of the in-dividual servie replias. For a balaned distribution of load, eah replia should handle thefration of the load proportional to its servie apaity. We de�ne fration of the load thatshould be distributed to a partiular replia as the load distribution fration(�) of that replia.This load distribution fration is given by the fration of the total servie apaity provided bythat replia. Thus for replia k, if Ck is the servie apaity, then load distribution fration �kof that replia is given by �k = CkPni=1 Ci (4.1)At every ontrol interval eah servie replia reports its servie apaity to the registryservie. Based on this reported servie apaity, registry servie alulates the load distributionfration for eah replia. When a lient performs a lookup, the registry servie selets one ofthe replias randomly with the probability of the seletion of a replia being proportional to itsload distribution fration.
4.2 Replia-Level Load DistributionAt a replia-level the load distribution is primarily performed by redireting the load to anotherservie replia. A replia may beome overloaded due to the utuations in its servie apaity ordue to an inrease in the lient load distributed to it. In suh ases, the replia needs to redireta fration of its load to another replia. For this purpose, we have following mehanisms of loadrediretion at replia-level.1. Request Rediretion: A servie replia may rediret a single request to another replia.This is also alled temporary rediretion, sine the subsequent requests are sent to theoriginal servie replia.2. Client Rediretion: A servie replia may also rediret the lient permanently to anotherreplia. The lient then sends the subsequent requests to the new replia until it performsthe registry lookup again.



373. Fored Lookup: A servie replia may fore the lient to perform registry lookup again.For the purpose of load rediretion, the load distribution mehanisms at the replia levelneed to address following questions:� How to detet an overload situation?� How to �nd the target replias for the rediretion of load?� When to perform request rediretion, lient rediretion or fored lookup?The �rst problem is related to aurately assessing the urrent load onditions at a replia.For this purpose, we develop a token-based model for e�etively haraterizing the load andservie apaities. In this model tokens represent the maximum number of requests that an beservied by a replia during a ontrol interval. As desribed in Setion 2, in eah ontrol intervali a servie replia estimates its servie apaity for the next period, represented by ri (as numberof requests per seond). This represents the estimated maximum request handling rate over thenext interval. Based on this rate, at the beginning of an interval, the replia omputes thenumber of tokens Ti representing the maximum number of requests that it an handle over thatinterval. A token is onsumed every time a request is served. In ase of balaned load onditions,the tokens will be onsumed at a uniform rate. An overload ondition is suspeted if the tokensare onsumed at a rate higher than the estimated rate. Similarly, a replia is onsidered to beunderloaded when the token onsumption rate is signi�antly below the estimated servie rate.At time t from the beginning of the urrent interval, a replia an detet if it's overloaded byobserving the number of tokens onsumed by that time. If xt is the number of tokens onsumedby time t, then the replia is onsidered overloaded ifxt > ri � t (4.2)Similarly the replia is onsidered underloaded ifxt << ri � t (4.3)In ase of balaned load situations xt is lose to ri � t.When a replia detets an overload situation, it needs to deide if it should perform request-rediretion or lient-rediretion. In our model, a replia performs request-rediretion in ase of



38low overload onditions. A lient-rediretion is performed in ase of high overload onditions,whih happen when the number of redireted requests exeed some threshold. In order to �ndtarget replias for rediretion, the replia needs information about load onditions of other repli-as. For this purpose, every heart-beat period the replias exhange load information suh as thenumber of requests served, the number of tokens left and the urrent load status (underloaded,overloaded et). Only the replias whih have underload status are onsidered as rediretiontargets by a replia. For eah suh potential target replias, the replia alulates the maximumnumber of requests that an be redireted to that target replia in the given interval, alled asthe as the rediretion quota of that target replia. The rediretion quota of a target replia isalulated as follow. Let N be the total number of replias in the system, and Tk be the numberof tokens remaining of the target replia k then rediretion quota qk for the target replia k isalulated as qk = Tk(N=2) (4.4)This rediretion quota is alulated by onsidering that some other replias may also redirettheir requests to the given target replia. Therefore, we assume that the remaining number oftokens of a target replia an be onsumed equally by the potential number of replias who mayperform load rediretion. Furthermore, we assume that on average half of the total number ofreplias may be overloaded so we divide the remaining number of tokens of a target replia byN=2.For lient rediretion, only the target replias with rediretion quota more than ertain limit(we set this limit to 100) are onsidered. When a replia deides to rediret a request or alient it selets a replia from the list of target replias in round-robin manner. For requestrediretion, it sends a 'request-rediretion' message to the lient along with the network addressof the seleted target replia. In ase of lient rediretion, it sends a 'lient-rediretion' messageand the network address of the seleted replia. If a replia an not �nd any target replias forrediretion or if it has already exhausted the rediretion quota of eah target replia, it deidesto fore the lient to perform registry lookup again. A `re-lookup` message is sent to the lientin this ase.



39We also investigated a model based on haraterizing the overload onditions as high and lowoverload and underload onditions as high and low underload based on ertain thresholds. Inthis model a replia would perform lient rediretion only when it is in high overload onditionand it would only selet replias in low underload ondition for lient rediretion. However,we observed that this model only ompliated the load distribution mehanisms and did notperform well. We realized that the load rediretion based on the rediretion quota provides more�ne-grain and balaned load distribution.For evaluating the load distribution mehanisms, we observe the deviation of the load sharedby eah replia from its expeted load during eah ontrol interval. Let �k be load distributionfration of replia k for a given interval alulated using equation 4.4. Let Sk be the number ofrequests served by that replia in that interval and L be the total lient load. Then the loaddeviation (�k) of replia k is alulated as follow�k = jSk � (�k � L)j (4.5)The overall deviation in load distribution aross all replias alled as the distribution deviation(�)is alulated in terms of the fration of the total load that deviated from expeted distribution.It is alulated as follow: � = Pni=1 �i=2L (4.6)The details of the evaluation of load distribution mehanisms are presented in Chapter 6. In thisevaluation we also observe the impat of unavailability of servie registry on the performane ofload distribution mehanisms. Our load distribution mehanisms are agile in adapting to u-tuations in servie apaities and load onditions as well as hanges in repliation on�gurationas demonstrated in our evaluations.In this hapter we desribed the mehanisms for adaptive load distribution aross the ser-vie replias. These mehanisms operate at registry and replia level. We developed a tokenbased model for �ne-grain distribution of load at replia level. Based on this token model, themehanisms at replia level perform load rediretion to balane the load aross servie replias.



Chapter 5
PlanetLab Monitoring Servie
We have developed Platinum - a system for monitoring PlanetLab nodes for their availableapaities for various resoure suh as CPU apaity, memory and network bandwidth. We ob-serve that CoMon [Park and Pai, 2006℄, the node monitoring servie provided by the PlanetLab,annot be used for our purposes diretly. This is beause of the following reasons. We are inter-ested in the average values for these resoure apaities, and also in their variation over time.CoMon provides average values over system-de�ned monitoring intervals of one minute and �veminutes. In our experiments, we need node-level resoure utilization data that is olleted at ahigher frequeny (suh as at every 10-20 seonds) and aggregated to determine statistis overon�gurable observation intervals. This is important in order to obtain aurate measurementsof a node's behavior over suh intervals. The resoure usage information of PlanetLab nodesprovided by CoMon is relatively oarse grain for this purpose.The Platinum node monitoring system is used to selet nodes based on their available re-soure apaities for hosting servie replias. The DeploymentManager Agent (DA) queriesthis servie to obtain the list of eligible nodes for deploying servie replias. We also use thisservie to study the resoure usage harateristis of PlanetLab nodes. The Platinum servieollets the data about resoure onsumption of every monitored node by probing its SlieS-tat [Park and Pai, 2006℄ data every periodi interval (in our experiments we set this interval to10 seonds). We ompute the available resoure apaity at a node for a partiular resoure

40



41type as the di�erene between the node's intrinsi resoure apaity and the total usage for thatresoure for all the slies running on that node. We measure the average and variane of theavailable resoure apaities over a sliding window of on�gurable interval (we use interval valueof 5 minutes).We selet a set of nodes that have the average available resoure apaity greater than agiven requirement. These nodes de�ne the eligibility set for the given requirement. The size ofthe eligibility set at a partiular time for a given requirement indiates the number of nodessatisfying the given requirement at that time. A node is dropped from the eligibility set whenit fails to satisfy the given resoure requirement. The eligibility period of a node for a givenresoure requirement is measured as the time between the node's entry in the eligibility set forthat resoure requirement and departure from the eligibility set. A node may enter and leavethe eligibility set multiple times during the observation period. Thus a node may have multipleeligibility periods. For suh nodes, we onsider the average value of their individual eligibilityperiods.We investigated the following two approahes for seleting a node for inlusion in the eligi-bility set for a given requirement:
Basi Method: If C is the average idle apaity on a node and � is its standard deviation, thenfor a given resoure requirement R we selet the node if it satis�es the following ondition:C � 2 � � > R (5.1)A node is dropped from the eligibility set if the idle apaity at that node falls below theresoure requirement R. When onsidering the CPU and memory requirements together forseleting nodes, we selet the node only if it satis�es the above ondition for both the CPUrequirement and the memory requirement. We drop a node from the eligibility set, if either theavailable CPU apaity or available memory apaity on that node falls below R, the require-ment threshold.
Pro�ling-based Method: In this approah we wanted to eliminate those node that show highlyfrequent and signi�ant variation in their available apaity for a given requirement. In this



42approah we build a pro�led eligibility set from the basi eligibility set onstruted using thebasi approah presented above. The following rules are used for inluding a node in the pro�ledeligibility set. The rules use a parameter T , whih is a time period value. We set it to 30 minutesin our experiments. A node in the basi eligibility set is onsidered for inlusion in the pro�ledeligibility set if its previously observed eligibility period was greater than T minutes. If thepreviously observed eligibility period of the node was less than T , then we inlude this node inthe pro�led set only after it has been in the basi eligibility set for the past T minutes. When anode is dropped from the basi eligibility set, it is also removed from the pro�led eligibility set.In this approah, the eligibility period of a node is de�ned as the duration for whih it remainsin the pro�led eligibility set for a ontiguous interval.We observe the distribution of eligibility set and eligibility periods for various resoure re-quirements to haraterize the resoure availability in PlanetLab environment. We performthis study for CPU apaity requirements, memory requirements as well as CPU and memoryonjoined requirements. For network bandwidth, the SlieStat servie provides only averagebandwidth usage over 1 minute, 5 minutes and 15 minutes. We need the resoure usage dataover a higher frequeny to determine the average idle apaity as well as its standard deviation.The �rst important goal of this study is to ompare the distribution of eligibility periods forCPU requirements with that of memory requirements. The key questions in this study are :How the size of eligibility set varies over time? How does the behavior of nodes vary for CPUand memory requirements? Do the nodes show more availability in terms of larger eligibilityperiod and eligibility set size for memory requirements than those for CPU requirements? Theseond goal of this study is to determine whether the node availability is dominated by eitherthe CPU requirement or the memory requirement, when both CPU and memory requirementsare onsidered together. We also want to see if any relationship between the average eligibility ofa node and the fration of the time it is present in the eligibility set. Finally, another importantgoal of this work is to investigate how seleting nodes based on their reent pro�le a�ets theexpeted eligibility periods.



435.1 Evaluation of Node Seletion using Basi MethodWe present here the distribution of eligibility periods and eligibility set sizes for a spetrum ofresoure requirements seleted using the basi method.In the experiments disussed here we monitored about 200 PlanetLab nodes for their availableresoure apaities at di�erent time periods. Table 5.1 shows the apaity requirements usedin these experiments. We present here the observations for two datasets olleted for durationof approximately 3 to 4 days. Dataset-1 was olleted for duration of 75 hours from November18-21, 2009 and Dataset-2 was olleted for duration of 98 hours from Deember 1-4, 2009.During the period for whih the Dataset-1 was olleted, the monitored PlanetLab nodes werehighly loaded while in the ase of Dataset-2 they were relatively lightly loaded.
CPU 1GHz, 2GHz, 3GHz, 4GHzMemory 512MB, 1GB, 2GB, 3GBCPU+Memory (1GHz + 512MB), (2GHz + 1GB)(3GHz + 2GB), (4GHz + 1GB)Table 5.1: Capaity Requirements

Dataset Time Duration Number of NodesDataset-1 November 18-21, 2009 75 hours 200Dataset-2 Deember 1-4, 2009 97 hours 200Table 5.2: Datasets and their observation times
Figure 5.1 shows the CDFs of eligibility periods for CPU and memory apaity requirementsfor the datasets mentioned above. Table 5.3 presents statistis suh as average, median andstandard deviation for eligibility periods and eligibility set sizes for Dataset-1 and Dataset-2.From Table 5.3, we observe that typially the median values for the eligibility periods tend tobe always less than the average values. The standard deviation also tends to be high, omparableto the average values. This indiates that some nodes tend to exhibit signi�antly large eligibilityperiods. This also indiates that the available resoure apaities at a node may utuatesigni�antly, and there is a large variation of eligibility periods aross the nodes.



44The impat of memory requirements on node eligibility an be understood from the statistispresented in Table 5.3 and the umulative distributions given in Figure 5.1. We found that veryfew nodes ould satisfy memory requirement of 3GB. We an observe that nodes show higheligibility periods and eligibility set sizes for memory requirements than CPU requirements.This indiates that typially the available CPU apaity varies signi�antly ompared to theavailable memory. The impat of ombined CPU and memory requirements an be observedby omparing the umulative distributions of eligibility periods given for the ombined require-ment in Figure 5.2 with those for the orresponding CPU and memory requirements shown inFigure 5.1. We observe that the distributions of eligibility periods for ombined requirementstend to be lose to the distribution of orresponding CPU requirements indiating that theavailability of nodes for ombined CPU and memory requirements is dominated by the CPUrequirement.To understand the distribution of eligibility set sizes we look at the statistis presented inTable 5.3. We �nd that the eligibility set sizes derease with the inreasing apaity require-ments. However, one annot draw suh a generalization for eligibility periods. We observedthat for a higher apaity requirement, fewer number of nodes beome eligible but some of themremain in the set for a long time. We also observe that the variation in eligibility set sizes tendsto be small. This indiates that there is always some onstant number of nodes that an satisfya given requirement. For example, in ase of the 4GHz CPU requirement there are always morethan 18 nodes available, and for 2GHz at least 36 nodes were in the eligibility set.
Dataset-1 Dataset-2Eligibility Period Eligibility Eligibility Period Eligibility(minutes) Set Size (minutes) Set SizeAvg Median Std Dev Avg Std Dev Avg Median Std Dev Avg Std Dev1GHz CPU 315 46 472 103 9.29 522 145 874 64 15.32GHz CPU 103 34 221 51 6.24 367 50 553 35 6.43GHz CPU 218 31 376 38 3.15 423 356 412 30 4.024GHz CPU 163 40 284 25 3.72 799 359 1362 21 3.01GB Memory 650 438 494 105 2.7 1061 1022 578 84 8.42GB Memory 335 284 281 34 1.75 910 787 564 20 5.02GHz+1GB 119 48 256 30 4.8 392 53 552 20 5.063GHz+2GB 218 108 305 13 1.0 518 577 502 5 1.7Table 5.3: Eligibility Period and Set Size Statistis for Basi Method



455.2 Evaluation of Node Seletion using the Pro�ling MethodThe results of our evaluations of the pro�ling approah for Dataset-1 and Dataset-2 are shownin Figure 5.3 and Table 5.4. We present the CDF of eligibility period for CPU requirements inFigure 5.3 and statistis for eligibility period and set size for both CPU and memory requirementsin Table 5.4. These results show a lear and remarkable bene�t of using pro�ling. For example,omparing the eligibility period values for the 2GHz requirement for Dataset-1 using the basimethod with those with the pro�led method, one an notie that the average period inreasesfrom 103 to 496 minutes, and the median value also inreases from 34 to 258 minutes. Asexpeted, the eligibility set sizes are always smaller in ase of the pro�led approah. This meanswe have a smaller set of nodes in the eligibility set but they are of higher \quality", i.e. theyare likely to meet the given requirement for a longer time. In the data presented in Table 5.4,there was only one ase where the values for the eligibility period using the pro�led methodwere smaller than those with the basi method. This ourred for 1GB memory requirement inase of Dataset-1. We have not found any lear explanation for this ase. Nonetheless, there islear evidene otherwise that the pro�ling method identi�es better quality nodes for the givenrequirement.
Dataset-1 Dataset-2Eligibility Period Eligibility Eligibility Period Eligibility(minutes) Set Size (minutes) Set SizeAvg Median Std Dev Avg Std Dev Avg Median Std Dev Avg Std Dev1GHz CPU 740 359 895 50.46 16.4 786 195 1107 42.8 16.492GHz CPU 496 258 512 20.67 9.42 951 216 1287 34.6 83GHz CPU 552 386 557 15.6 8 1312 709 1681 24.3 5.54GHz CPU 356 134 452 11.9 4.6 1406 1129 1567 12.45 2.721GB Memory 455 340 393 28.39 14.4 2203 2126 1398 72.9 22.82GB Memory 957 1241 541 12.47 6.31 2469 2310 1232 21.74 6.952GHz+1GB 701 711 481 12.33 6.52 983 347 1127 26.93 7.283GHz+2GB 885 1160 599 4.95 2.82 1784 1784 1790 5.46 1.7Table 5.4: Eligibility Period and Set Size Statistis with Pro�ling

We found similar observations for other datasets olleted at di�erent times. Based on theseobservations we found that the pro�ling approah selets nodes whih satisfy a given resourerequirement for a longer duration ompared to the basi method of node seletion.



46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400
Mean Node Eligibility Period (mins)

1GHz

2GHz

3GHz

4GHz

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz(a) Based on CPU Requirement for Dataset-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400
Mean Node Eligibility Period (mins)

512MB

1GB

2GB

Mem Threshold = 2048 MB
Mem Threshold = 1024 MB

Mem Threshold = 512 MB(b) Based on Memory Requirement for Dataset-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000
Mean Node Eligibility Period (mins)

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz() Based on CPU Requirement for Dataset-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500
Mean Node Eligibility Period (mins)

Mem Threshold = 2048 MB
Mem Threshold = 1024 MB

Mem Threshold = 512 MB(d) Based on Memory Requirement for Dataset-2Figure 5.1: CDF of Eligibility Periods for CPU and Memory Requirements



47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400
Mean Node Eligibility Period (mins)

1GHz+512MB

2GHz+1GB

3GHz+2GB

4GHz+1GB

Combined CPU+Memory Threshold = 4000 MHz, 1024 MB
Combined CPU+Memory Threshold = 3000 MHz, 2048 MB
Combined CPU+Memory Threshold = 2000 MHz, 1024 MB

Combined CPU+Memory Threshold = 1000 MHz, 512 MB(a) For Dataset-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000
Mean Node Eligibility Period (mins)

Combined CPU+Memory Threshold = 4000 MHz, 1024 MB
Combined CPU+Memory Threshold = 3000 MHz, 2048 MB
Combined CPU+Memory Threshold = 2000 MHz, 1024 MB

Combined CPU+Memory Threshold = 1000 MHz, 512 MB(b) For Dataset-2Figure 5.2: CDF of Eligibility Periods for Combined Requirements



48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400
Mean Node Eligibility Period (mins)

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz(a) Based on CPU Requirement for Dataset-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000
Mean Node Eligibility Period (mins)

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz(b) Based on CPU Requirement for Dataset-2Figure 5.3: CDF of Eligibility Periods Based on Pro�ling (for CPU requirements)



Chapter 6
Evaluations
In this hapter we present the system-level evaluation of the autonomi servie saling meh-anisms. Our �rst goal here is to evaluate the salability of the dynami apaity provisioningmodels and mehanisms The seond goal is to evaluate the fault-tolerant aspet of our system.Spei�ally, we measure impat of replia rashes, performane of failure detetion and reoverymehanisms, and impat of registry unavailability on load distribution.
6.1 Evaluation of Saling MehanismsWe evaluated the salability of our system under load onditions similar to ash-rowds. Weobserved the impat of slak apaity level on the salability and performane of the system.Our main performane measure in these evaluations was the average and 90-perentile responsetimes observed by the lients. The load distribution mehanisms were evaluated by observingdistribution deviation (�).For this evaluation, the workload harateristis as well as the �le set at the server side weregenerated aording to the spei�ation of SPECweb2009 E-ommere benhmark [SPEC, ℄. Thetotal number of �les on the server was around 15,000 with average �le size of 16KB, variane of18.5KB, and median and max sizes of 16.2KB and 40.5KB, respetively. The average �le sizefor lient requests was 2.8KB with variane of 5.5KB and median size of 1.3KB. For salability

49



50evaluation we generated ash rowd onditions as follow. During the initial phase, alled thelow load phase, we indued a onstant load of 200 requests/seond for 30 minutes. In theseond phase, alled the ash-rowd phase, the lient load was inreased every minute by 20requests/seond until it reahed up to ten-fold, i.e. 2000 requests/seond. The load was thenkept onstant at this level for about 30 minutes. We refer to it as high load phase. We measuredthe performane of the system in all three phases. We also observed the ratio of the load on theregistry to the total servie load. Sine the lients were on�gured to perform registry lookupafter every 100 requests, we expeted this ratio to be at least 0.01. A registry load ratio valuegreater than 0.01 indiates registry relookups performed by lients due to onnetion failures orfored lookups issued by servie replias.In PlanetLab, if a slie transfers more than total of 10 GB data in a day on a single node,its bandwidth is apped at a low rate. Sine suh ases would a�et our apaity estimation,we programmed the replias to measure the amount of total data they have ommuniated. Ifa servie replia performs more than 9 GB of data ommuniation, it is shut-down and a newservie replia on a di�erent host is reated. The Deployment Agent keeps trak of the nodeswhih have exhausted their data ommuniation limit and suh nodes are not used for hostingreplias for that partiular day. This limitation is spei� to PlanetLab environment only andhene does not a�et our apaity models in general.First, we present our evaluation of the impat of slak apaity levels. We evaluated theperformane of slak apaity model for target slak levels of 30%, 20% and 10%. For 30%slak the low and high watermarks were set to 10% and 50% respetively. For 20%, they wereset to 10% and 30%, whereas for 10% target slak low and high watermarks were 0% and 20%respetively. Table 6.1,6.2, and 6.3 presents the results of this evaluation for these slak levelsfor low load, ash-rowd, and high load phases denoted by P1, P2, and P3 respetively.
Table 6.1: Performane Statistis for Slak Level 30%30% slak (fl=10%, fh=50%)Response Time(ses) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 0.466 0.538 0.812 0.13 0.15 0.028ash rowd (P2) 0.972 0.875 1.42 0.14 0.12 0.059high load (P3) 0.934 0.316 1.13 0.16 0.11 0.037



51
Table 6.2: Performane Statistis for Slak Level 20%20% slak (fl=10%, fh=30%)Response Time(ses) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 1.34 1.26 2.35 0.16 0.13 0.024ash rowd (P2) 1.91 1.89 4.51 0.16 0.08 0.068high load (P3) 2.32 8.23 4.11 0.14 0.25 0.041
Table 6.3: Performane Statistis for Slak Level 10%10% slak (fl=0%, fh=20%)Response Time(ses) � registry load ratioAvg Std.Dev 90 %ile Avg Std.Devlow load (P1) 0.956 1.91 2.09 0.18 0.42 0.033ash rowd (P2) 4.54 5.41 5.50 0.16 0.15 0.119high load (P3) 2.57 0.698 4.07 0.29 0.17 0.067
Table 6.4: Replia Addition and Removal Statistis30% slak 20% slak 10% slakP1 P2 P3 P1 P2 P3 P1 P2 P3Avg. 5 19 44 6 16 32 5 20 25repliasAdded 3 43 10 6 40 7 4 39 5Removed 1 6 5 4 16 4 3 19 4

Figure 6.1 shows the 90-perentile response times observed every 1 minute for 30% slak.Figure 6.2 and 6.3 show the same data for 20% and 10% slak. We an observe that slak level of30% performs better in terms of response times in all three phases; the average and 90-perentileresponse times were bounded and only inreased by a fator of two with ten-fold inrease in theload. From Figures 6.2 and 6.3 we an observe that slak level of 20% and 10% performedpoorly in the ash-rowd phase. In this phase the average response times inreased by a fatorof four for both 20% and 10% slak. Figure 6.4, 6.5, and 6.6 show the apaity generationand number of replias for 30%, 20%, and 10% slak levels. Table 6.4 presents the statistis ofreplia reation and removal for these slak levels. We did not observe any node rashes in theseexperiments. For target slak of 30%, the average slak apaity provisioned was 42% whereasfor target slak of 20% and 10% the average slak apaity was 27% and 16% respetively. The



52

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 2

 4

 6

 8

 10
L

oa
d 

(N
um

be
r 

of
 R

eq
ue

st
s 

pe
r 

m
in

ut
e)

R
es

po
ns

e 
tim

e 
in

 s
ec

s

Time (in mins)

load
Response time

Figure 6.1: Response Times under 30%Slak with SPECWeb benhmark work-load
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 2

 4

 6

 8

 10

L
oa

d 
(N

um
be

r 
of

 R
eq

ue
st

s 
pe

r 
m

in
ut

e)

R
es

po
ns

e 
tim

e 
in

 s
ec

s

Time (in mins)

load
Response time

Figure 6.2: Response Times under 20%Slak with SPECWeb benhmark work-load

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 2

 4

 6

 8

 10

L
oa

d 
(N

um
be

r 
of

 R
eq

ue
st

s 
pe

r 
m

in
ut

e)

R
es

po
ns

e 
tim

e 
in

 s
ec

s

Time (in mins)

load
Response time

Figure 6.3: Response Times under 10%Slak with SPECWeb benhmark work-loadregistry load ratio was greater than 0.01 during all the phases and it inreased in ash-rowdphase ompared to the low load phase. The average � value observed for 30% slak was 0.138indiating that on average 13.8% of the load deviated from the target distribution. Suh a levelof distribution deviation is tolerable sine the additional apaity maintained in the system isat least 30% for this slak level. For 20% and 10% the average � value was 16% and 20%. For10% slak the average deviation of 20% may not be tolerable beause of the smaller slak value.We found similar observations for other experiment runs.We also evaluated the salability of our system with a di�erent workload resembling the work-load harateristis of 1998 World Cup website presented in [Arlitt and Jin, 1999℄. We generatedthe �les at server side resembling the �le size distribution given in [Arlitt and Jin, 1999℄. Theaverage �le size at the server side was 9.7KB with standard deviation of 9.6KB and median



53

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 10

 20

 30

 40

 50

 60
L

oa
d 

/ C
ap

ac
ity

N
um

be
r 

of
 R

ep
lic

as

Time (in mins)

load
capacity

replica count

Figure 6.4: Capaity Generation under30% Slak with SPECWeb benhmarkworkload
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 10

 20

 30

 40

 50

 60

L
oa

d 
/ C

ap
ac

ity

N
um

be
r 

of
 R

ep
lic

as

Time (in mins)

load
capacity

replica count

Figure 6.5: Capaity Generation under20% slak with SPECWeb benhmarkworkload

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100 120 140 160
 0

 10

 20

 30

 40

 50

 60

L
oa

d 
/ C

ap
ac

ity

N
um

be
r 

of
 R

ep
lic

as

Time (in mins)

load
capacity

replica count

Figure 6.6: Capaity Generation under10% Slak with SPECWeb benhmarkworkload4.1KB. The average �le size for lient requests was 5.3KB with standard deviation 3.1KB andmedian 2.2KB. The ash rowd load was generated as disussed above. The slak level on�g-ured for this experiment was 30%. Table 6.5 presents the results of this experiment. Figure 6.7and Figure 6.8 show the 90 perentile response times and apaity generation respetively.
6.2 Evaluation of Fault ToleraneFor evaluating the fault tolerane aspet of our system, we onduted following experiments.First we evaluated the impat of servie replia rashes on the lient side performane. Seondwe evaluated the impat of unavailability of the registry servie on the load distribution. Finallywe evaluated the failure detetion and reovery mehanisms of the registry servie.



54
Table 6.5: Performane Statistis for WorldCup workload30% slak (fl=10%, fh=50%)Response Time(ses) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 2.56 1.91 3.09 0.11 0.34 0.03ash rowd (P2) 5.8 6.11 7.61 0.19 0.25 0.065high load (P3) 4.73 4.68 5.7 0.17 0.21 0.038

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  20  40  60  80  100 120 140 160
 0

 2

 4

 6

 8

 10

L
oa

d 
(N

um
be

r 
of

 R
eq

ue
st

s 
pe

r 
m

in
ut

e)

R
es

po
ns

e 
tim

e 
in

 s
ec

s

Time (in mins)

load
Response time

Figure 6.7: Response Times under World-Cup workload
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  20  40  60  80  100 120 140 160
 0

 20

 40

 60

 80

 100

 120

L
oa

d 
/ C

ap
ac

ity

N
um

be
r 

of
 R

ep
lic

as

Time (in mins)

load
capacity

replica count

Figure 6.8: Capaity Generation underWorldCup workload
For evaluating the replia rash reovery mehanisms and to observe the impat of repliarashes on performane, we injeted periodi rashes of randomly seleted replias. We indueda lient load of 400 requests/seond, and at every 30 minutes we injeted a rash of a randomlyhosen replia. We observed the 90-perentile values for response times over one minute intervals.This data is shown in Figure 6.9. The slak level set for this experiment was 30% with low andhigh watermarks values of 10% and 50%. The replia rashes were deteted within two reportingintervals (i.e. 2 minutes) and additional apaity was generated within 30-60 seonds. The 90-perentile response times during normal onditions with no rashes were observed to be in therange of 0.4 to 0.7 seonds. From Figure 6.9 we an observe that the 90-perentile responsetimes inreased immediately after the replia was rashed but beame normal again withinthree intervals. Sine our apaity model ensures the system is not 1-replia rash vulnerable,ertain amount of extra apaity (10% in this ase) would be still available after the repliarash. The inrease in 90-perentile response times after the replia rash was mainly due to thelients whih aessed the failed replia and had to timeout and relookup the registry.



55

 0

 10000

 20000

 30000

 40000

 50000

 0  20  40  60  80  100  120  140  160
 0

 2

 4

 6

 8

 10

L
oa

d 
/ C

ap
ac

ity

R
es

po
ns

e 
tim

e 
in

 s
ec

s

Time (in mins)

load
capacity

Response time
replica crashes

Figure 6.9: Impat of Replia Crashes
For evaluating the impat of registry unavailability on the load distribution we shutdownthe Registry Servie every 15 minutes and kept it unavailable for 10 minutes. We performedthis experiment with 30% target slak and indued a onstant load of 400 requests per seond.The average � value for the period when the registry was available was observed to be 15.9%,whereas the average � value was 26.2% for the period when registry was not available. Thisinrease in deviation may be tolerable due to the 30% slak apaity, however any new lientwould not be able to loate servie replias if the Registry Servie is not available.In evaluating the fault tolerane mehanisms of the registry servie we wanted to measurethe performane of failure detetion and reovery mehanisms and to hek the the orretnessof group management protools under various failure onditions. We deployed 5 registry agentson PlanetLab nodes. To evaluate the fault tolerane and reovery of registry agent failures,periodially a randomly seleted registry agent was terminated. We observed that the failure ofa replia is deteted within 30 seonds and it requires additional 30 to 40 seonds for generatinga new registry agent and updating the new on�guration to all the registry agents.To test the reovery mehanisms in ase of multiple simultaneous failures, we terminatedmultiple registry agents at the same time. We injeted failures of the primary and its k � 1immediate suessor agents. In these ases the k + 10th registry agent orretly deteted thesefailures and assumed the role of the new primary. We also tested the system under atastrophi



56failures where all registry agents exept one were terminated. In these ases within 3 heart-beatperiods the failures of all these agents were deteted, and it took about 100 seonds additionalfor the new on�guration with �ve registry agents to be operational.For update requests, we measured the time taken to propagate the updates to all the registryagents. The average value for the update propagation delay was observed to be 23.7 seondsfor 5 registry agents. We also measured the distribution of lient requests aross the deployedregistry agents. As a lient would randomly pik a registry agent for lookup, all the deployedregistry agents are expeted to share equal amount of load. Thus for 5 registry agents theexpeted fration of load shared by eah agent is 0.2. We observed that average deviation fromthis expeted fration of load was 6% for the duration of 2 hours with total 19 registry agentrashes.The experiments desribed above performed evaluation of the integrated system and mea-sured the overall performane and salability of all the mehanisms disussed earlier suh asservie apaity estimation, apaity saling and load distribution mehanisms.



Chapter 7
Conlusion
We have demonstrated here the performane of the autonomi mehanisms we developed forbuilding salable servies on shared omputing platforms without any node availability guaran-tees and resoure apaity reservations.Dynami repliation of servie omponents is essential in suh environments to ope withthe utuations in available resoure apaities as well as utuations in lient load. We havepresented here a model for servie saling through dynami ontrol of the degree of servierepliation. This model is based on maintaining a ertain level of slak (exess) apaity inthe system. We evaluated the impat of di�erent slak levels on servie performane. Sine theresoure apaity available at a node is not guaranteed, we need online models for prediting theresoure apaity likely to be available in the near future at a given node as well as estimatingthe request handling apaity of the servie replia hosted on that node. We presented here amodel for prediting resoure apaity available on a node based on its reently observed loadonditions. We developed an online model for workload benhmarking to apture the per-requestresoure requirements. For adaptive load distribution, we developed mehanisms whih operateat the registry as well as replia level. We developed a token-based model for �ne-grain loadbalaning aross the servie replias based on their servie apaities.For experimental evaluation of our servie saling mehanisms, we developed a frameworkover the PlanetLab. The omponents of this framework are designed for resilieny by relying

57



58on soft-state based operations. We evaluated the performane of our servie saling models andmehanisms using this framework. Following are the important onlusions of our work.� In this paper we presented an online model for prediting resoure apaities likely to beavailable in the near future. Our experiments showed that for any desired on�dene level,our dynami predition model an predit available resoure apaity with 95% auray.� We demonstrated here the bene�ts of the apaity slak model. We showed salable per-formane with 30% slak for a workload exhibiting ash rowds with ten-fold inrease inthe load.� We presented here mehanisms for adaptive load distribution whih operate at two levels;registry-level (entralized) and replia-level (deentralized). These mehanisms limit theload deviation to around 15% even under onditions suh as ash rowds. The loaddistribution mehanisms at replia level an distribute load with 75% auray even whenthe registry servie is unavailable.In summary, our work demonstrates that a large number of shared resoures without anyguarantee of available resoure apaities an be utilized for building autonomially salable andresilient servies.



Bibliography
[Abdelzaher et al., 2002℄ Abdelzaher, T. F., Shin, K. G., and Bhatti, N. (2002). Performaneguarantees for web server end-systems: A ontrol-theoretial approah. IEEE Trans. ParallelDistrib. Syst., 13(1):80{96.[Amazon, ℄ Amazon. Amazon e2, http://aws.amazon.om/e2/.[Arlitt and Jin, 1999℄ Arlitt, M. and Jin, T. (1999). Workload Charaterization of the 1998World Cup Web Site. URL http://www.hpl.hp.om/tehreports/1999/HPL-1999-35R1.html.[Aron et al., 2000a℄ Aron, M., Drushel, P., and Zwaenepoel, W. (2000a). Cluster reserves: Amehanism for resoure management in luster-based network servers. In In Proeedings ofthe ACM SIGMETRICS Conferene, pages 90{101.[Aron et al., 2000b℄ Aron, M., Sanders, D., Drushel, P., and Zwaenepoel, W. (2000b). Salableontent-aware request distribution in luster-based networks servers. In ATEC '00: Proeed-ings of the annual onferene on USENIX Annual Tehnial Conferene.[Bavier et al., 2004℄ Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Pe-terson, L., Rosoe, T., Spalink, T., and Wawrzoniak, M. (2004). Operating System Supportfor Planetary-sale Network Servies. In NSDI'04: Pro.of the 1st Symp. Networked SystemsDesign and Implementation, pages 253{266.[Bodik et al., 2010℄ Bodik, P., Fox, A., Franklin, M. J., Jordan, M. I., and Patterson, D. A.(2010). Charaterizing, modeling, and generating workload spikes for stateful servies. InProeedings of the 1st ACM symposium on Cloud omputing, pages 241{252.

59



60[Budhiraja et al., 1993℄ Budhiraja, N., Marzullo, K., Shneider, F. B., and Toueg, S. (1993).The Primary-Bakup Approah. In Mullender, S., editor, The Primary-Bakup Approah,pages 199{216. ACM.[Cardosa and Chandra, 2008℄ Cardosa, M. and Chandra, A. (2008). Resoure Bundles: UsingAggregation for Statistial Wide-Area Resoure Disovery and Alloation. In DistributedComputing Systems, 2008. ICDCS '08. The 28th International Conferene on, pages 760{768.[Douglis and Foster, 2003℄ Douglis, F. and Foster, I. (2003). The Grid Grows Up. IEEEInternet , pages 24{26.[Doyle et al., 2003℄ Doyle, R. P., Chase, J. S., Asad, O. M., Jin, W., and Vahdat, A. M. (2003).Model-based resoure provisioning in a web servie utility. In USITS'03: Proeedings of the4th onferene on USENIX Symposium on Internet Tehnologies and Systems, pages 57{71.[Fox et al., 1997℄ Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P. (1997).Cluster-based salable network servies. SIGOPS Oper. Syst. Rev., 31(5):78{91.[Freedman et al., 2006℄ Freedman, M. J., Lakshminarayanan, K., and Mazi�eres, D. (2006). OA-SIS: Anyast for Any Servie. In NSDI'06: Proeedings of the 3rd onferene on 3rd Sympo-sium on Networked Systems Design & Implementation, Berkeley, CA, USA. USENIX Assoi-ation.[Marwah et al., 2003℄ Marwah, M., Mishra, S., and Fetzer, C. (2003). TCP Server Fault Toler-ane using Connetion Migration to a Bakup Server. In Proeedings of IEEE Intl. Conf. onDependable Systems and Networks (DSN), pages 373{382.[Mirosoft, ℄ Mirosoft. Mirosoft azure, http://www.mirosoft.om/windowsazure/.[Oppenheimer et al., 2006℄ Oppenheimer, D., Chun, B., Patterson, D., Snoeren, A. C., andVahdat, A. (2006). Servie Plaement in a Shared Wide-Area Platform. In ATEC '06:Proeedings of the Annual Conferene on USENIX '06 Annual Tehnial Conferene, pages273{288, Berkeley, CA, USA.



61[Pai et al., 1998℄ Pai, V. S., Aron, M., Banga, G., Svendsen, M., Drushel, P., Zwaenepoel, W.,and Nahum, E. (1998). Loality-aware request distribution in luster-based network servers.SIGPLAN Not., 33(11):205{216.[Park and Pai, 2006℄ Park, K. and Pai, V. S. (2006). CoMon: A Mostly-salable MonitoringSystem for PlanetLab. SIGOPS Oper. Syst. Rev., 40(1):65{74.[Partridge et al., 1993℄ Partridge, C., Mendez, T., and Milliken, W. (1993). RFC 1546: HostAnyasting Servie.[Paxson, 1998℄ Paxson, V. (1998). On alibrating measurements of paket transit times. SIG-METRICS Perform. Eval. Rev., 26:11{21.[Shaikh et al., 2001℄ Shaikh, A., Tewari, R., and Agrawal, M. (2001). On the e�etiveness ofdns-based server seletion. In In Proeedings of IEEE Infoom.[Shen et al., 2002a℄ Shen, K., Tang, H., Yang, T., and Chu, L. (2002a). Integrated resouremanagement for luster-based Internet servies. In Pro.of the 5th Symposium on OperatingSystems Design and Implementation, pages 225{238.[Shen et al., 2002b℄ Shen, K., Yang, T., and Chu, L. (2002b). Cluster load balaning for �ne-grain network servies. In IPDPS '02: Proeedings of the 16th International Parallel andDistributed Proessing Symposium, page 93.[Shenoy et al., 2000℄ Shenoy, G., Satapati, S. K., and Bettati, R. (2000). HYDRANET-FT: Net-work Support for Dependable Servies. In ICDCS '00: Proeedings of the The 20th Interna-tional Conferene on Distributed Computing Systems ( ICDCS 2000), page 699, Washington,DC, USA. IEEE Computer Soiety.[Shivaratri et al., 1992℄ Shivaratri, N., Krueger, P., and Singhal, M. (1992). Load Distributingfor Loally Distributed Systems. IEEE Computer, 25(12):33{44.[Sollins and Masinter, 1994℄ Sollins, K. and Masinter, L. (1994). RFC 1737: FuntionalRequirements for Uniform Resoure Names. Available at URL http://www.is.ohio-state.edu/htbin/rf/rf1737.html.



62[SPEC, ℄ SPEC. SPECweb2009 benhmark. Available at URL http://www.spe.org/web2009/.[Sultan et al., 2003℄ Sultan, F., Bohra, A., and Iftode, L. (2003). Servie Continuations: AnOperating System Mehanism for Dynami Migration of Internet Servie Sessions. In SRDS,pages 177{186.[Sultan et al., 2002℄ Sultan, F., Srinivasan, K., Iyer, D., and Iftode, L. (2002). Migratory TCP:Connetion Migration for Servie Continuity in the Internet. In Proeedings of the 22nd Inter-national Conferene on Distributed Computing Systems (ICDCS'02), page 469, Washington,DC, USA. IEEE Computer Soiety.[Tripathi et al., 1999℄ Tripathi, A., Karnik, N., Vora, M., Ahmed, T., and Singh, R. (1999).Mobile Agent Programming in Ajanta. In Proeedings of the 19th International Confereneon Distributed Computing Systems, pages 190{197.[Urgaonkar et al., 2002℄ Urgaonkar, B., Shenoy, P., and Rosoe, T. (2002). Resoure overbook-ing and appliation pro�ling in shared hosting platforms. In OSDI '02: Proeedings of the 5thSymposium on Operating Systems Design and Implementation, pages 239{254.[Warns et al., 2008℄ Warns, T., Storm, C., and Hasselbring, W. (2008). Availability of GloballyDistributed Nodes. In Proeedings of the IEEE Symposium on Reliable Distributed Systems,pages 279{284.[Wawrzoniak et al., 2004℄ Wawrzoniak, M., Peterson, L., and Rosoe, T. (2004). Sophia: AnInformation Plane for Networked Systems. SIGCOMM Comput. Commun. Rev., 34(1):15{20.[Wiesmann et al., 2000℄ Wiesmann, M., Shiper, A., Pedone, F., Bettina, K., and Alonso, G.(2000). Database repliation tehniques: A three parameter lassi�ation. In Proeedings ofthe 19th IEEE Symposium on Reliable Distributed Systems, pages 206{215.[Wolski, 1998℄ Wolski, R. (1998). Dynamially Foreasting Network Performane using theNetwork Weather Servie. Cluster Computing, 1(1):119{132.[Wolski et al., 1999℄ Wolski, R., Spring, N. T., and Hayes, J. (1999). The network weatherservie: a distributed resoure performane foreasting servie for metaomputing. FutureGeneration Computer Systems, 15(5{6):757{768.



63[Wu et al., 2007℄ Wu, C.-J., Hwang, R.-H., and Ho, J.-M. (2007). A Salable Overlay Frameworkfor Internet Anyasting Servie. In SAC '07: Proeedings of the 2007 ACM Symposium onApplied Computing, pages 193{197, New York, NY, USA. ACM.[Zegura et al., 2000℄ Zegura, E. W., Ammar, M. H., Fei, Z., and Bhattaharjee, S. (2000).Appliation-layer Anyasting: A Server Seletion Arhiteture and Use in a Repliated WebServie. IEEE/ACM Transations on Networking, 8(4):455{466.[Zhou and Yang, 2006℄ Zhou, J. and Yang, T. (2006). Seletive early request termination forbusy internet servies. In WWW '06: Proeedings of the 15th international onferene onWorld Wide Web, pages 605{614.


