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ABSTRACT
Cooperatively shared wide-area 
omputing platforms, su
h as PlanetLab, provide a large poolof geographi
ally distributed resour
es whi
h 
an be utilized for building highly available ands
alable servi
es. In this thesis, we present me
hanisms and models for building autonomi
allys
alable and resilient servi
es on su
h platforms. In su
h platforms resour
es at a node areallo
ated to 
ompeting users on fair-share basis, without any reserved resour
e 
apa
ities forany user. There is no platform-wide resour
e manager for the pla
ement of users on di�erentnodes. The users independently sele
t nodes for their appli
ations. Moreover, a node 
anbe
ome unavailable at any time due to 
rashes or shutdown. Our fo
us is on the PlanetLabplatform whi
h exempli�es the platform level 
hara
teristi
s 
onsidered here. Building s
alableservi
es in su
h environments poses unique 
hallenges due to 
u
tuations in the available resour
e
apa
ities and node 
rashes. The servi
e load may surge in a short time due to 
ash 
rowds.We present here models for estimating the servi
e 
apa
ity under varying operating 
onditions.Autonomi
 s
aling of servi
e 
apa
ity is performed by dynami
 
ontrol of the degree of servi
erepli
ation based on the estimated servi
e 
apa
ity and the observed load. This requires sele
tionof appropriate nodes for the pla
ement of new repli
as. Furthermore adaptive load distributionme
hanisms are needed be
ause of the varying servi
e 
apa
ities of the individual repli
as. Wepresent the experimental evaluations of these me
hanisms on PlanetLab.
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Chapter 1
Introdu
tion
The availability of large s
ale distributed infrastru
tures su
h as 
loud and grid 
omputing plat-forms [Douglis and Foster, 2003℄ gives opportunity for shared 
omputing and servi
e hostingwhere servi
es and appli
ations 
an utilize the large pool of resour
e provided by su
h plat-forms. Unlike dedi
ated hosting, where entire pool of resour
es are dedi
ated to a single servi
eor appli
ation, in shared hosting platforms the available 
omputing resour
es are 
on
urrentlyused by many appli
ations and servi
es. In su
h platforms often multiple appli
ations may be
o-hosted on a single physi
al ma
hine. Cloud platforms su
h as Amazon EC2 [Amazon, ℄ or Mi-
rosoft Azure [Mi
rosoft, ℄ are examples of a type of shared hosting platforms where the hostedservi
es and appli
ations are allo
ated resour
es with 
ertain 
apa
ity guarantees. We 
onsiderthe shared 
omputing platforms whi
h do not provide any resour
es or resour
e abstra
tionswith �xed 
apa
ity guarantees. In su
h shared platforms appli
ations may be 
o-hosted ona node and su
h appli
ations would 
ompete for resour
es available on that node. The plat-form level resour
e management would allo
ate resour
es on fair-share basis to the 
ompetingappli
ations and there is no reservation of resour
es. Examples of su
h platforms in
lude Plan-etlab [Bavier et al., 2004℄ and Grid 
omputing environments. In su
h platforms, typi
ally theunused resour
e 
apa
ities at a node 
an 
u
tuate due to the resour
e demands of the appli
a-tions hosted on that node. However, the abundan
e of 
omputing resour
es provided by su
hplatforms 
an be utilized to build s
alable and highly available servi
es. The goal of our work
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2is to utilize the resour
es provided by su
h platform for elasti
 and dynami
 s
aling of servi
es.
1.1 Chara
teristi
s of Shared Hosting PlatformsWe des
ribe here the 
hara
teristi
s of the kind of shared hosting platforms in question andstate our assumptions about the platform level resour
e provisioning poli
ies.� No provision of �xed resour
e 
apa
ity: Typi
ally su
h platforms provide a 
oop-eratively shared pool of resour
es whi
h are used by the platform users. However, theseplatforms do not provide any dedi
ated resour
es or resour
e abstra
tions with �xed 
a-pa
ity guarantees to the users. There is no reservation of resour
e 
apa
ities.� No 
entral resour
e manager: In su
h platforms, there is no 
entral resour
e manageror s
heduler whi
h 
an do platform-wide resour
e allo
ation in order to balan
e the resour
eutilization and load. The users deploying the appli
ations sele
t the nodes to be used. Asingle node 
an 
o-host many appli
ations or servi
es of multiple users and they 
ompetefor the resour
es available on that node.� Fair-share based resour
e allo
ation: The resour
es on a single node are allo
atedon fair-share basis to 
ompeting users. For example, in Planetlab a user is given a sli
eon ea
h node and the resour
es are allo
ated to sli
es on fair-share basis. An appli
ation
an 
onsume the unused resour
es on a node as long as the other users do not 
ompete forit. However, the unused resour
e 
apa
ities on a node 
an 
u
tuate due to the 
u
tuatingresour
e demands of the appli
ations hosted on it. Moreover, the number of users usingthe node 
an also 
hange dynami
ally. Due to this, there is no guarantee of the resour
e
apa
ities available to a servi
e.� La
k of guarantees of node availability: Availability of nodes is also not guaranteed.A node may be shutdown at any point of time, or it may 
rash due to software or hardwarefailures, or it may be
ome unavailable due to network 
onne
tivity issues. Sin
e theplatform does not provide any guarantees, the 
rash or unavailability of a node would resultin unavailability of the servi
e or servi
e 
omponent hosted on it and abrupt redu
tion inthe servi
e 
apa
ity.



3These 
hara
teristi
s raise a number of issues that need to be addressed to meet the availabilityand performan
e requirements of servi
es under widely varying load 
onditions. These issuesare dis
ussed below.
1.2 Issues in building s
alable servi
esThe la
k of guarantees for resour
e 
apa
ity and availability require agile and dynami
 s
alingme
hanisms to ensure the availability and s
alability of a servi
e. The requirement of resilien
yand s
alability both demand repli
ation and regeneration of servi
es or servi
e 
omponents.Repli
ation is required for servi
e s
aling under 
u
tuating load 
onditions as well as to ensurethe availability of the servi
e in 
ase of node 
rashes. Regeneration is required to restart thefailed repli
as or 
omponents. However, due to the intrinsi
 
hara
teristi
s of these platforms anumber of issues need to be addressed in building s
alable servi
es on su
h platforms as dis
ussedbelow.The 
u
tuations in resour
e 
apa
ities available at a node would a�e
t the request handling
apa
ity of the servi
e repli
a hosted on that node. This ne
essitates the need for estimatingthe request handling 
apa
ity of the repli
a at a given time a

ording to the resour
e 
apa
itiesavailable at that node. The models for estimating the servi
e 
apa
ity at a repli
a also needto 
onsider the workload pro�les to a

urately estimate the average resour
e demands of therequests. These workload 
hara
teristi
s may also 
hange with time. Furthermore, 
u
tuationsin resour
e 
apa
ities also demand predi
tion of resour
e 
apa
ity that is likely to be availablein the near future.The load generated by the 
lients typi
ally 
hanges with time and su
h 
hanges 
an be signif-i
ant espe
ially in events su
h as 
ash 
rowds [Arlitt and Jin, 1999, Bodik et al., 2010℄. Studiesdone by [Arlitt and Jin, 1999, Bodik et al., 2010℄ show that signi�
ant 
hanges in 
lient work-load 
an o

ur over the duration of few hours. The analysis presented in [Arlitt and Jin, 1999℄shows that in
rease of up to �ve fold in the 
lient workload 
an o

ur in the duration of 
oupleof hours. Building a s
alable servi
e requires dynami
 provisioning of servi
e 
apa
ity to meetthe 
urrent load demands by maintaining an appropriate number of servi
e repli
as to handle



4the 
lient requests. The servi
e deployment me
hanisms need to ensure that the aggregate ser-vi
e 
apa
ity provided 
olle
tively by the servi
e repli
as is suÆ
ient to handle the 
urrent andproje
ted load 
onditions, but at the same time there should not be over-provisioning beyondsome level. This requires dynami
 
reation of new repli
as or shutting down of some existingones.Be
ause the servi
e repli
as have di�erent servi
e 
apa
ities, whi
h typi
ally 
u
tuate, weneed adaptive and agile me
hanisms to distribute the 
lient requests a

ording to the 
apa
itiesof individual repli
as. The distribution of 
lient requests to di�erent servi
e repli
as needs to bedetermined dynami
ally based on the 
apa
ities of all servi
e repli
as.The deployment of servi
e repli
as requires sele
tion of suitable nodes for hosting them.Su
h a set of nodes needs to be pi
ked based on their available resour
e 
apa
ities and thelikelihood that they would remain suitable for servi
e hosting for some time in the near future.Furthermore, sin
e the network lo
ations of servi
e repli
as would 
hange with time, suitableme
hanisms are needed for 
lients to lo
ate the 
urrently a
tive servi
e repli
as. Su
h me
ha-nisms themselves must be highly available.
1.3 Resear
h ProblemThe unique 
hara
teristi
s of these autonomously managed platforms without any 
entralizedresour
e management raise various resear
h questions that need to be addressed for buildings
alable and resilient servi
es under dynami
ally varying operating 
onditions. Spe
i�
ally, weinvestigate the following issues� How to estimate the average resour
e demands for handling a request? These averageresour
e demands would depend on the 
hara
teristi
s of the workload, whi
h may 
hangewith time. The estimation of resour
e demands of pro
essing a request in 
onjun
tion withthe estimated resour
e 
apa
ities available on a node would determine the servi
e 
apa
ityof the repli
a at that node.� How to predi
t the resour
e 
apa
ity that is likely to be available (i.e. not used by otherusers) on a given node in the near future? Can the re
ent history of resour
e usage on the



5node be utilized in guiding the predi
tion models?� Due to the 
u
tuations in available resour
e 
apa
ities as well as the la
k of guaranteesof the node availabilities, suÆ
ient servi
e 
apa
ity must be maintained to tolerate theservi
e 
apa
ity 
u
tuations as well as to meet the 
u
tuations in load demands. Sin
ethese 
u
tuations are unpredi
table, a 
ertain amount of ex
ess servi
e 
apa
ity mustbe maintained in the system. However, su
h 
apa
ity should not be provisioned above
ertain limit to avoid overprovisioning. What are the di�erent models and me
hanisms toprovision suÆ
ient servi
e 
apa
ity without overprovisioning?� What are the me
hanisms for 
lients to identify and lo
ate the 
urrently a
tive repli
as?How to ensure the robustness of su
h me
hanisms? What is the impa
t of the unavailabilityof these me
hanisms on the system performan
e?� Sin
e the request handling 
apa
ity of a repli
a may 
hange with time, the amount of 
lientload distributed to a servi
e repli
a must be proportional to the request handling 
apa
ityof the repli
a at that time. What are the te
hniques that would adaptively distribute the
lient load based on the servi
e 
apa
ities of the repli
as?� What are the di�erent strategies for sele
ting the nodes that are likely to remain suitablefor hosting the servi
e repli
as for a long duration?Our approa
h for addressing these issues is based on developing models for 
apa
ity esti-mation and servi
e 
apa
ity provisioning and then using these models to drive the dynami
repli
ation of the servi
e. We present here the models and autonomi
 me
hanisms that wehave developed for dynami
 servi
e s
aling. We evaluated these models and me
hanisms overPlanetlab environment. Spe
i�
ally, our 
ontributions are in the following areas.1. Development of models for estimating average resour
e demands of requests taking intoa

ount the 
hanging workload 
hara
teristi
s2. Models for predi
ting the resour
e 
apa
ities likely to be available at a node in the nearfuture and using the predi
ted resour
e 
apa
ities to estimate the servi
e 
apa
ity thatwould be provided by that node;



63. Models for provisioning the aggregate servi
e 
apa
ity in order to maintain some targetamount of ex
ess 
apa
ity in the system.4. Me
hanisms for adaptive load distribution of 
lient load a
ross servi
e repli
as;5. Me
hanisms and proto
ols for 
lients to a

ess the deployed servi
e repli
as.6. Prototype framework for building autonomi
ally s
alable servi
es over the Planetlab en-vironment.We develop autonomi
 me
hanisms for deploying and s
aling servi
es on su
h platformsas well as distributing the load a

ording to the servi
e 
apa
ities of the individual repli
as.These me
hanisms 
an be used and extended by servi
e developers to build highly available ands
alable servi
es. We 
onsider servi
es and appli
ations that do not require 
omplex updatesyn
hronization proto
ols and where weak 
onsisten
y based update proto
ols are appli
able.Examples of su
h servi
es in
lude 
ontent distribution servi
es where the 
ontent updates arerelatively infrequent, and personal data sharing servi
es where an obje
t is updated by one 
lientbut read by many. For su
h servi
es, the 
lient requests are overwhelmingly read-only in nature.Thus, our work here does not address issues related to update 
oordination proto
ols. A servi
e
an in
lude any suitable update syn
hronization me
hanism in its design.
1.4 Related Work� Cluster-based servi
es: Our goal of building s
alable and available servi
es over theInternet is similar to those for 
luster-based servi
es, but our underlying environmentis 
hara
teristi
ally di�erent. The problems of building highly available and s
alable
luster-based network servi
es have been addressed by many resear
h proje
ts in thepast [Fox et al., 1997, Pai et al., 1998, Aron et al., 2000b, Shen et al., 2002b, Aron et al., 2000a,Zhou and Yang, 2006, Shen et al., 2002a℄. Soft state based re
overy me
hanisms for build-ing resilient 
omponents in large-s
ale systems was proposed and used in [Fox et al., 1997℄.In these systems, the 
lient requests are distributed by the front-end nodes to di�erentservers that are 
onne
ted to it by a high-speed lo
al area network. The available 
apa
i-ties at the servers are �xed, and utilized solely by the load pla
ed on them by the front-end



7nodes. Moreover, in the 
luster based systems the front-end has a good estimate of theload status of the ba
k-end servers. In our environment, there are no \front-end" nodesfor performing request distribution and load balan
ing operations, and the servi
e repli
asare deployed over a wide-area network. Moreover, there is no guarantee of the availableresour
e 
apa
ities on the nodes hosting the servi
e repli
as. Su
h nodes are not under the
ontrol of the servi
e administrator, and they may be shutdown or be
ome unavailable atany time.� Dynami
 provisioning in shared platforms: Model-based approa
hes for autonomi
provisioning of servi
es using online internal models for 
hara
terizing workload have beenstudied in [Doyle et al., 2003℄. That work fo
used on provisioning of storage resour
es on ashared server 
luster. Our work has also taken a model based approa
h for resour
e provi-sioning in a large-s
ale wide-area environment. We use models for 
hara
terizing workloaddemands, 
apa
ity predi
tion and aggregate servi
e 
apa
ity management. Our dynami
provisioning model 
an be 
ompared to elasti
 resour
e provisioning te
hniques in 
loudplatforms. However, unlike 
loud platforms whi
h provide well provisioned resour
es with�xed 
apa
ities, the PlanetLab environment does not provide any guarantees of resour
eavailability. The dynami
 provisioning model developed by us addresses these 
hallenges.Resour
e provisioning te
hniques for a 
luster-based shared hosting platform using onlinepro�ling of an appli
ation's resour
e 
onsumption are presented in [Urgaonkar et al., 2002℄.The fo
us of that work is on maximizing the utilization of the shared 
luster resour
es.Rather than examining the problem of resour
e management on a hosting platform fromthe viewpoint of platform provider, our work is fo
used on the management and 
ontrolof a servi
e deployment. The approa
h used by us for autonomi
 servi
e 
apa
ity man-agement in
ludes feedba
k-based me
hanisms 
ontrolling the degree of servi
e repli
ation.Su
h 
ontrol system based approa
hes have been investigated in the past in web serverdesigns [Abdelzaher et al., 2002℄.� Dynami
 servi
e repli
ation and relo
ation: The notion of dynami
 servi
e repli-
ation and relo
ation of a servi
e for fault-toleran
e has been studied in the past inthe HydraNet-FT system [Shenoy et al., 2000℄. HydraNet-FT design requires spe
ially



8equipped routers as redire
tion points. Other resear
hers have developed server fault-toleran
e te
hniques based on TCP 
onne
tion redire
tion or migration [Sultan et al., 2002,Sultan et al., 2003, Marwah et al., 2003℄. Su
h te
hniques require 
ustomized modi�
a-tions to the operating systems kernel or the routers. For dire
ting 
lient requests to any ofthe repli
as of a servi
e over the Internet, approa
hes based on any
asting [Freedman et al., 2006,Wu et al., 2007, Zegura et al., 2000℄ have been proposed in the past. Various approa
hes tobuild this fun
tionality range from DNS level modi�
ations [Shaikh et al., 2001℄, network-layer any
asting requiring router level modi�
ations, or building a servi
e similar to DNSat the appli
ation level [Zegura et al., 2000℄. We present here a registry-based redire
tionme
hanisms whi
h operate at the appli
ation-level and does not require any modi�
ationsto the existing network infrastru
ture. In 
ontrast, the DNS based and network level solu-tions [Partridge et al., 1993℄ are tedious to deploy and they are slow to rea
t to 
hanges inthe repli
ation 
on�guration [Shaikh et al., 2001℄ be
ause of addition or removal of repli-
as. Our me
hanisms are agile and able to rea
t qui
kly to su
h 
hanges, as shown by ourevaluations.� Load distribution: The topi
 of load balan
ing [Shivaratri et al., 1992℄ te
hniques hasbeen extensively studied in the past for environments where the pro
essing 
apa
ities ofnodes are 
onstant. In our environment, the servi
e 
apa
ities of the repli
as are typi
ally
u
tuating, and therefore the load distribution me
hanisms have to be adaptive and agile.The load distribution me
hanisms developed here address these needs.� Resour
e monitoring in large s
ale systems: Several other resear
h proje
ts, su
has CoMon [Park and Pai, 2006℄ and Sophia [Wawrzoniak et al., 2004℄, have investigatedmonitoring of PlanetLab nodes for their resour
e 
onsumption. In Sophia system, eventaggregation and inferen
e model is presented. CoMon periodi
ally 
olle
ts and providesnode-level statisti
s su
h as the number of a
tive sli
es, per sli
e utilization of CPU, mem-ory, and bandwidth. A number of resear
h proje
ts have analyzed this data for 
hara
-terizing the resour
e utilization [Oppenheimer et al., 2006, Cardosa and Chandra, 2008℄.The work in [Cardosa and Chandra, 2008℄ presents statisti
al methods for resour
e dis-
overy and for 
hara
terization of nodes based on their resour
e usage. It 
lassi�es



9nodes into di�erent groups based on the similarities in their resour
e availability 
har-a
teristi
s. The fo
us of the work in [Oppenheimer et al., 2006℄ was mainly on the 
har-a
terization of resour
e availability of the PlanetLab nodes based on long-term obser-vation data. Our fo
us is on 
hara
terization of nodes based on their re
ent resour
eavailability. In [Warns et al., 2008℄, analysis of the CoMon data is presented for 
har-a
terizing node failures and availability. In 
ontrast to these previous works, our fo
usis on online monitoring and sele
tion of PlanetLab nodes for hosting servi
e repli
as.Dynami
 predi
tion models for fore
asting network performan
e have been investigatedin [Wolski et al., 1999, Wolski, 1998℄. We present here an online model for predi
tingavailable resour
e 
apa
ities for nodes in PlanetLab environment based on their re
entload 
onditions.



Chapter 2
Servi
e Capa
ity Estimation And
S
aling
A

urate estimation of servi
e 
apa
ity at the repli
a level is 
ru
ial for appropriately s
aling theaggregate servi
e 
apa
ity in the system. The request handling 
apa
ity of a parti
ular repli
aat a given time is based on the available 
apa
ities of the resour
es on the repli
a's node andthe average resour
e usage demand of a request. The estimation of servi
e 
apa
ity is neededto be done 
ontinuously sin
e the available resour
e 
apa
ities and the workload 
hara
teristi
smay 
hange signi�
antly with time. Our model for servi
e 
apa
ity estimation is based on thefollowing three aspe
ts.� First, we estimate the average resour
e usage demand of a request through online ben
h-marking of requests.� Se
ond, we develop a model for predi
ting the available resour
e 
apa
ities at a node inthe near future based on the node's re
ent behavior.� Finally, we estimate servi
e 
apa
ity of the repli
a based on the predi
ted available resour
e
apa
ity and the per request resour
e usage demand.

10



112.1 Online Ben
hmarking of WorkloadFor estimating the average resour
e usage demand of a request, ea
h servi
e repli
a performs
ontinuous monitoring of its resour
e usage and workload. A servi
e repli
a 
olle
ts resour
eusage information of di�erent types of resour
e su
h as CPU, memory and bandwidth. A servi
erepli
a 
olle
ts two types of information, one is about its own resour
e usage and the other isabout the 
umulative resour
e usage of other appli
ations exe
uting on that node. A repli
a'sown resour
e usage information in 
onjun
tion with the workload 
hara
teristi
s is used inestimating the average resour
e requirement for handling a request. The information about
umulative resour
e usage of other appli
ations is used in estimating the available resour
e
apa
ities on that node. We assume that 
ertain me
hanisms are provided by the platformto 
olle
t su
h information. In our experimental prototype over Planetlab this information is
olle
ted by probing the Sli
estat servi
e exe
uting on that node. Based on su
h informationea
h servi
e repli
a maintains the following statisti
s for resour
e usage at interval i.� pi - Average CPU usage (measured in MHz) of repli
a's own sli
e over the interval i. Itis 
al
ulated by observing the per
entage CPU usage of repli
a's own sli
e and the node'sintrinsi
 CPU 
apa
ity measured in MHz. In determining a node's intrinsi
 CPU 
apa
itywe take into 
onsideration the number of 
ores and the CPU speed.� mi - Average physi
al memory usage (measured in MB) of repli
a's own sli
e over theinterval i.� bi - Average bandwidth usage (measured in KBps) of repli
a's own sli
e over the intervali.For monitoring the workload 
hara
teristi
s, the following statisti
s are maintained for thei0th interval:� si - Number of requests served per se
ond.� ti - Average servi
e time per request. This is measured as the time sin
e the request wasre
eived to the time when the response was sent.



12� ni - Average amount of per request data 
ommuni
ation over the network (number ofbytes sent and re
eived).The above information is used for 
hara
terizing the average resour
e usage demand perrequest, as follows.� Dpi - Per request CPU 
onsumption, measured in terms of the number CPU 
y
les requiredto servi
e a request. This is given by: Dpi = pi=si (2.1)
� Dmi - Per request in
remental memory 
onsumption, measured in MB. This is the in-
remental amount of memory required for handling a request sin
e some base amount ofmemory Bm is always used by a servi
e repli
a. The amount of base memory usage isgiven by the memory usage under no load 
ondition. We 
al
ulate the in
remental perrequest memory requirement as follow:Dmi = (mi �Bm)=si (2.2)
� Dni - Per request network usage, it is same as the average amount of data sent and re
eivedover the network for handling a request.Dni = ni (2.3)
To a

urately 
apture the workload 
hara
teristi
s and the average resour
e requirement ofpro
essing a request, we need to estimate these per-request demands over a suÆ
iently largesample of requests. In order to determine that a suÆ
ient number of samples is 
olle
ted, we
ontinuously 
al
ulate the sample mean and varian
e of the per-request resour
e demands for
urrently observed requests and then using the Student's t-distribution we determine the numberof samples required su
h that the population mean is within the 5% margin of the sample meanwith 95% 
on�den
e. We assume that the 
hanges in workload 
hara
teristi
s tend to be gradualover the duration of �ve minutes. Therefore, we 
onsider the average of per-request resour
edemand values over past �ve minutes interval in estimating the servi
e 
apa
ity. The averagevalues of the above per-request resour
e demand measures 
omputed over the past �ve minutes



13are represented by Dp and Dm. Similarly, per request network usage Dn is obtained based onthe �ve minute average of the ni values.
2.2 Predi
tion of Available Resour
e Capa
ityThe problem that we address here is how to estimate for a given resour
e the amount of its
apa
ity that is likely to be available (i.e. not used by other users) in the near future withsome given probability. In order to predi
t the resour
e 
apa
ity that is likely to be availablein the near future we need to observe the 
u
tuations in the available resour
e 
apa
ities overtime. To 
hara
terize su
h 
u
tuations, for ea
h resour
e type we observe the average availableresour
e 
apa
ities over some period, 
alled observation period (wo) and the average availableresour
e 
apa
ity over some period in the immediate future, 
alled predi
tion period (wp). Wethen 
al
ulate the ratio of average available resour
e 
apa
ity Rwp observed over wp to averageavailable resour
e 
apa
ity Rwo observed over wo. We 
all this ratio the 
apa
ity modulationratio (�). � = RwpRwo (2.4)A 
apa
ity modulation ratio greater than 1 indi
ates in
rease in the available resour
e 
apa
ityby some fra
tion and a ratio value less than 1 indi
ates de
rease in the available resour
e
apa
ity. P [� � x℄ is the probability that the average available resour
e 
apa
ity over thenext predi
tion period wp is at least Rwo � x. Therefore, to predi
t the fra
tion of the availableresour
e 
apa
ity that is likely to be available with a spe
i�ed 
on�den
e level C, we 
al
ulatex su
h that P [� � x℄ = C. We use wp as the period for the predi
tion 
y
le and also as the
ontrol and reporting interval for periodi
 exe
ution of servi
e 
apa
ity estimation and s
alingme
hanisms.The predi
tion of the available resour
e 
apa
ity needs to be done for individual nodes.This is be
ause we observed that the 
u
tuations in the available resour
e 
apa
ities vary forindividual nodes depending on their load 
onditions. This ne
essitates the need for a dynami
model that predi
ts the available 
apa
ities for individual nodes based on their 
urrent load
onditions. We assume that while the available resour
e 
apa
ity itself may 
hange signi�
antlyover short durations, su
h 
hanges (that is the � values) are statisti
ally predi
table over duration



14of few minutes. Therefore, our dynami
 model for resour
e 
apa
ity predi
tion is based onobserving the history of � values over some period 
alled history window (wh). Our predi
tionmodel estimates the 
umulative distribution (CDF) of the � values observed over a slidingwindow of period wh and 
al
ulates the value x for some given 
on�den
e level C, su
h thatP [� � x℄ = C. This value is used to estimate the resour
e 
apa
ity for the next predi
tionperiod. For example, suppose that xi is the value 
al
ulated, as des
ribed above, at the ithpredi
tion 
y
le for CPU resour
e. Let pi be the observed average available CPU 
apa
ity overthe immediately pre
eding observation period of wo duration at the i'th predi
tion 
y
le. Thepredi
ted CPU 
apa
ity Pi for the following predi
tion period wp is estimated as:Pi = pi � xi (2.5)The goodness of the predi
tion model 
an be determined by observing the ratio of resour
e
apa
ity observed to be available in a given interval to the 
apa
ity predi
ted for that interval.We 
all it the predi
tion ratio (�). A value of � 
lose to 1 indi
ates that the observed 
apa
ity is
lose to the predi
ted 
apa
ity, whereas values higher or lower than 1 indi
ate underpredi
tionand overpredi
tion, respe
tively. Sin
e, in the equation (2.5), xi is 
hosen su
h that P [� �xi℄ = C, we expe
t that the resour
e 
apa
ity observed to be available during the immediatelyfollowing predi
tion period wp is at least pi � xi with probability C. Therefore, we expe
t thatP [� � 1℄ = C. Using this observation, the goodness of the predi
tion model 
an be evaluatedbased on the value of � at whi
h this required 
on�den
e C is a
hieved.The performan
e of the predi
tion model would depend on the spe
i�
 values 
on�gured forthe di�erent parameters - wh, wo, wp, and the level of 
on�den
e used to sele
t the � value forpredi
tion. An important question is how to 
hoose the values for these parameters. For thepredi
tion period parameter (wp), we want it to be of small duration (around 60-90 se
onds).The 
apa
ity predi
tion over 60 or 90 se
onds would guarantee that the requests would be
ompleted within that period and the ba
klog of requests would not build over minutes range.This is desirable, sin
e we want the response times to be in few se
onds range. However, a verysmall predi
tion period is also not desirable. This is be
ause the monitoring and servi
e s
alingfun
tions would be performed at every predi
tion interval. A very small predi
tion period maynot be adequate enough for exe
uting the s
aling fun
tions. For the higher values of 
on�den
e



15level parameter C, P [� � 1℄ is higher and hen
e it may result in signi�
ant underpredi
tion.Similarly, a lower 
on�den
e level may overpredi
t the resour
e 
apa
ity signi�
ant number oftimes.For evaluating the performan
e of the resour
e 
apa
ity predi
tion model under variousparameters, we 
olle
ted the tra
es of approximately 300 Planetlab nodes. These tra
es in
ludethe available 
apa
ity information of various resour
e types 
olle
ted every 10 se
onds for ea
hnode. This evaluation is independent of the load imposed on a deployed servi
e by its 
lientsas the resour
e 
apa
ity predi
tion model depends only on the available resour
e 
apa
ities ofindividual nodes. Table 5.2 des
ribes the datasets we used for this evaluation. Table 2.2 showsthe values 
on�gured for di�erent parameters for 
omparative evaluation. We addressed thefollowing questions in this evaluation� How to determine the length of the observation period wo and the predi
tion period wp?� What is the impa
t of the parameter history window wh on the predi
tion performan
e?� How to determine the value of the 
on�den
e level parameter C?
Table 2.1: Datasets used for Evaluating Resour
e Capa
ity Predi
tion ModelDataset Time Duration Number of NodesDataset1 Feb 11-12, 2011 38 hours 291Dataset2 O
t 25-28, 2010 3 days 257Dataset3 Sep 1-2, 2010 18 hours 305

Table 2.2: Con�guration Parameters for Predi
tion ModelParameter Name Valueshistory window (wh) (10,20,30,40,50,60) minsobservation period (wo) (1,3,5) minspredi
tion period (wp) (30,60,90) se
s
on�den
e level (60%,70%,80%,90%)



162.2.1 Impa
t of parameters wo and wp on predi
tion performan
eTo determine the length of wo and wp, we �rst �xed the length of the wp to be 1 minute andobserved the impa
t of wo on predi
tion performan
e. For evaluating the predi
tion performan
e,we observed the CDF of the predi
tion ratio. Sin
e the predi
tion ratio value 
lose to 1 isdesirable, we determined the goodness of predi
tion in terms of the probability mass between0.9 and 1.1. We evaluated the predi
tion performan
e with the wo values of 1, 3, and 5 minutes.We observed that larger observation periods result in less a

urate predi
tion. This data isshown in Table 2.3 for Dataset1 for CPU and network bandwidth. Similarly, we evaluated thepredi
tion performan
e for wp values of 30 and 90 se
onds. We observed that wo and wp value of1 minute give better predi
tion performan
e. We observed similar trends for all other datasets.
Table 2.3: Comparison of Predi
tion Performan
e for various values of wo and wpobservation period (wo) predi
tion period (wp) P [0:9 � � � 1:1℄CPU Network Bandwidth5 min 1 min 0.236 0.823 min 1 min 0.247 0.821 min 1 min 0.262 0.831 min 30 se
s 0.254 0.833 min 90 se
s 0.249 0.82

Table 2.4: Comparison of Predi
tion Performan
e for various values of history window and
on�den
e level for CPUhistory window 
on�den
e level P[� � 0:95℄ P[� � 1:5℄ Di�eren
e30 70 0.32 0.88 0.5640 70 0.32 0.89 0.5760 70 0.31 0.89 0.5730 80 0.22 0.76 0.5440 80 0.22 0.78 0.5660 80 0.21 0.75 0.5430 90 0.13 0.66 0.5340 90 0.12 0.65 0.5360 90 0.11 0.66 0.55
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Table 2.5: Comparison of Predi
tion Performan
e for various values of history window and
on�den
e level for Network Bandwidthhistory window 
on�den
e level P[� � 0:95℄ P[� � 1:5℄ Di�eren
e30 70 0.32 1.0 0.6840 70 0.32 1.0 0.6860 70 0.31 1.0 0.6930 80 0.22 1.0 0.7840 80 0.22 1.0 0.7860 80 0.21 1.0 0.7930 90 0.12 0.98 0.8640 90 0.11 0.98 0.8760 90 0.11 0.99 0.88
2.2.2 Impa
t of parameters wh and C on predi
tion performan
eThe se
ond question we addressed in our evaluation was how to determine the size of the historywindow (wh). For the history window parameter, we did not want it to be very large as a largerwindow may not be able to 
apture the 
u
tuations o

urring over a short duration. Therefore,the maximum history window size we 
on�gured in this evaluation was 60 minutes. As dis
ussedearlier, for the 
on�den
e level parameter the goodness of the predi
tion model 
an be evaluatedby observing the value of � at whi
h the required 
on�den
e level C is a
hieved, that is the valuex su
h that P [� � x℄ = C. We observed that for all wh values ex
ept for 10 and 20 minutesthis was a
hieved at � value of approximately 0.95. For wh values of 10 and 20, the required
on�den
e level was a
hieved for � values of 0.9 and 0.92 respe
tively. We also observed thatwh value of 60 minutes performs better in a
hieving this required 
on�den
e level but only withmarginal improvements over wh values of 30, 40, and 50 minutes. This data is shown in Table 2.4for Dataset1 for CPU 
apa
ity. Table 2.5 shows the same data for network bandwidth 
apa
ity.For evaluating the e�e
t of 
on�den
e level parameter C , we observed the amount of under-predi
tion in terms of the probability of � being greater than 1.5. We observed that for CPUresour
e the higher 
on�den
e levels result in signi�
ant underpredi
tion. For example, as shownin Table 2.4, for the 
on�den
e level of 90 the predi
tion ratio was greater than 1.5 for 33% ofthe times. We 
an observe from Table 2.4 and Table 2.5 that 
on�den
e level of 70% gives lessunderpredi
tion than other 
on�den
e levels for CPU 
apa
ity. However, for network bandwidththe 
on�den
e level parameter does not have any e�e
t on amount of underpredi
tion. In this
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ase 
on�den
e level of 90% is more desirable sin
e it gives less overpredi
tion. We observedsimilar trends for history window and 
on�den
e level parameters for all other datasets.Based on these observations, we make the following 
on
lusions� Observation period wo and predi
tion period wp of 1 minute give more a

urate predi
tionthan other values.� Window size of 60 minutes gives better a

ura
y in a
hieving required 
on�den
e levelbut only with marginal improvements 
ompared to window size of 30, 40 and 50 minutes.Window size of 10 and 20 minutes gives signi�
antly lower a

ura
y in a
hieving therequired 
on�den
e level.� For CPU resour
e the 
on�den
e level of 70% is desirable as it gives less underpredi
tionthan other values. However, for network bandwidth the amount of underpredi
tion isless for all the values of 
on�den
e level parameter and therefore, for network bandwidth
on�den
e level of 90% is more desirable sin
e it gives less overpredi
tion.
2.3 Estimation of Servi
e Capa
ityThe 
apa
ity estimation model and online ben
hmarking model des
ribed above are used inestimating the request handling 
apa
ity of a repli
a at a parti
ular time. We use the averageresour
e demand of a request estimated through online ben
hmarking and the predi
ted available
apa
ity for ea
h type of resour
e in determining the maximum number of requests that 
an behandled based on ea
h type of resour
e. This estimation also indi
ates the bottlene
k resour
eand the maximum number of requests that 
an be handled by the repli
a at that time.A servi
e repli
a predi
ts the available 
apa
ity at ea
h interval i and 
al
ulates the following� Pi - predi
ted available CPU 
apa
ity for next observation interval� Mi - predi
ted available memory 
apa
ity for next observation interval� Bi - predi
ted available bandwidth for next observation interval� ri - Maximum number of request that 
an be handled per se
ond predi
ted for the nextobservation interval



19The predi
ted available 
apa
ity of a parti
ular type of resour
e together with the averageresour
e usage demand of a request for that type of resour
e 
an be used to determine themaximum number of requests that 
an be handled based on that type of resour
e. For example,the maximum number of request that 
an be servi
ed per se
ond based on CPU 
apa
ity (rp)
an be 
al
ulated as follow rp = Pi=Dp (2.6)Similarly, the maximum number of request that 
an be served per se
ond based on predi
tedavailable bandwidth is given by rn = Bi=Dn (2.7)We 
an 
al
ulate number of request based on memory (rm) in a similar way. The maximumnumber of request ri that 
an be handled per se
ond is then 
al
ulated by taking the minimumvalue of rp, rn and rm Our 
urrent work has mainly fo
used on CPU, network, and memorydemand of the workload be
ause in o�ine ben
hmarking of our workload we found that thenetwork and CPU were the bottlene
k resour
es most of the time, and �le I/O was never foundto be the bottlene
k. However, further work needs to be done for developing �le I/O resour
edemand model in this framework. This would require a

ess to I/O utilization data from thehost environment.
2.4 Evaluation of Capa
ity Estimation ModelsThe evaluation of the servi
e 
apa
ity estimation model presented above is performed for twoaspe
ts. The �rst aspe
t of our evaluation is the a

ura
y of this model in predi
ting the servi
e
apa
ity for the next observation interval. The se
ond aspe
t is to evaluate how a

urately theestimated servi
e 
apa
ity re
e
ts the a
tual request handling 
apa
ity of the servi
e repli
a.Pre
isely, this aspe
t is related to the evaluation of the ben
hmarking models in a

urately
apturing the resour
e requirement of a request.We refer to the servi
e 
apa
ity predi
ted for a parti
ular interval i as model-based predi
tedservi
e 
apa
ity (�i). The servi
e 
apa
ity a
tually observed a

ording to our model duringinterval i is 
alled model-based observed servi
e 
apa
ity (
i). The 
i value is 
al
ulated based



20on the resour
e 
apa
ity observed to be available during interval i. The a
tual servi
e 
apa
ity(ai) of the servi
e repli
a during interval i is the maximum number of requests that 
ould besu

essfully handled without 
ausing saturation. For evaluating the performan
e of the servi
e
apa
ity estimation models we de�ne two measures. One is the servi
e 
apa
ity predi
tion ratio(�), whi
h is 
al
ulated as � = 
i=�i (2.8)And the other measure is the estimation ratio (Æ), whi
h is 
al
ulated asÆ = ai=�i: (2.9)The a
tual request handling 
apa
ity of a servi
e repli
a during a parti
ular interval 
an only bedetermined by generating load 
lose to the saturation point. We observed that in our testbedenvironment queuelengths 
lose to 10 for a servi
e repli
a indi
ated operating 
onditions 
loseto the saturation point. For determining the saturation 
apa
ity during an interval, we imposedsuÆ
ient load on ea
h repli
a to operate at queuelength of 10, but imposed admission 
ontrol soit did not in
rease beyond this number. The sustained rate at ea
h interval indi
ates the a
tualservi
e 
apa
ity during that interval.We deployed over 100 servi
e repli
as on di�erent PlanetLab nodes and observed the dis-tribution of � and Æ values. We used E-
ommer
e workload spe
i�
ations of SPECweb2009ben
hmark [SPEC, ℄ to generate the 
lient workload.
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21Figure 2.1 shows the distribution of over 3000 observations of the � values and the distributionof Æ values of around 500 observations. The average Æ value was observed to be 1.22 and themedian was 1.14. This means that on average the a
tual servi
e 
apa
ity is 22% more thanthe predi
ted value. We also observed that the probability of the a
tual 
apa
ity being lowerthan the predi
ted value was 0.28, and about 70% of the predi
ted 
apa
ity was available withprobability 
lose to 1.
2.5 Dynami
 Capa
ity S
alingOur goal here is to develop models and autonomi
 me
hanisms for dynami
 s
aling of aggregateservi
e 
apa
ity based on the servi
e 
apa
ities estimated by ea
h servi
e repli
a and the 
ur-rently observed load 
onditions. The main obje
tive of the 
apa
ity management model is tomaintain suÆ
ient aggregate servi
e 
apa
ity under events su
h as: 
u
tuating servi
e 
apa
i-ties of individual servi
e repli
as, repli
a 
rashes, and 
u
tuating load 
onditions. Moreover, the
apa
ity management model should not over-provision the servi
e 
apa
ity beyond some level.Towards these goals, the 
apa
ity s
aling models and me
hanisms need to address the fol-lowing questions:� How mu
h aggregate servi
e 
apa
ity should be maintained in order to tolerate 
u
tuationsin available resour
e 
apa
ities, 
lient load and events su
h as repli
a 
rashes?� Under what 
onditions additional 
apa
ity should be generated?� When to redu
e the provisioned servi
e 
apa
ity in order to avoid over-provisioning?Our 
apa
ity management model is based on the notion of 
apa
ity sla
k, whi
h attemptsto maintain a 
ertain amount of ex
ess 
apa
ity in the system with respe
t to the 
urrentlyobserved 
lient load. Maintaining su
h additional servi
e 
apa
ity in the system ensures thatthe 
lient load 
an be su

essfully handled under the 
u
tuating 
onditions des
ribed above.We de�ne target sla
k fra
tion (fs) as the fra
tion of the 
apa
ity that must be maintainedas sla
k. Su
h a sla
k 
apa
ity must be maintained based on the 
urrently observed load. Let Lbe the 
urrent load, measured in number of requests per se
ond. Let C be the aggregate servi
e
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apa
ity whi
h is the sum of the estimated servi
e 
apa
ities of the individual servi
e repli
asmeasured as the maximum number of requests that 
an be served by ea
h repli
a per se
ond.In order to maintain the desired 
apa
ity sla
k, C should always satisfy the following 
riteria.C � L � (1 + fs) (2.10)When the aggregate servi
e 
apa
ity is not suÆ
ient to satisfy the target sla
k requirement,additional servi
e 
apa
ity should be generated by adding new servi
e repli
as. However, thesla
k 
apa
ity must also be maintained below 
ertain level to avoid over-provisioning. Therequirements of maintaining the required sla
k 
apa
ity as well as avoiding overprovisioningmay result in frequent addition and removal of repli
as due to the 
u
tuations in the aggregateservi
e 
apa
ity. This would make the system unstable. To avoid this problem, we enfor
e thatthe aggregate servi
e 
apa
ity should be redu
ed only when it ex
eeds 
ertain level 
alled as highwatermark (fh). Therefore, the aggregate servi
e 
apa
ity C maintained in the system shouldsatisfy the following 
riteria. C < L � (1 + fh) (2.11)The aggregate servi
e 
apa
ity 
an redu
e abruptly due to the 
rash of a servi
e repli
a. Thisabrupt redu
tion in the 
apa
ity 
an be signi�
ant if the 
rashed repli
a 
ontributed signi�
antfra
tion of the aggregate servi
e 
apa
ity and therefore the resulting aggregate servi
e 
apa
itymay not be able to handle the 
urrent load 
onditions. For this purpose, we enfor
e that theaggregate 
apa
ity should not fall below 
ertain level due to the 
rash of a single repli
a. Werefer to this level as low watermark (fl). Let Cm be the maximum amount of servi
e 
apa
ityamongst the individual servi
e repli
as, then the following 
ondition ensures that the system isnot 1-repli
a 
rash vulnerable. C � Cm � L � (1 + fl) (2.12)Based on the 
apa
ity management model des
ribed above, the 
apa
ity s
aling is performedas des
ribed in 2.2. At every 
ontrol interval the aggregate servi
e 
apa
ity and total 
lientload is 
al
ulated using the 
apa
ity and load information provided by ea
h repli
a. If the
urrent aggregate servi
e 
apa
ity does not satisfy the 
riteria spe
i�ed by equations (2.10) and(2.12), then the suÆ
ient amount of additional 
apa
ity required to satisfy these two 
riteria
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C= total 
apa
ity of all repli
asL= total load of all repli
asCmax= Capa
ity of the largest 
apa
ity repli
a;if (C < L � (1 + fs)) fCadd = L � (1 + fs)� C;addCapa
ity(Cadd);gelse if (C � Cmax < L � (1 + fl)) fCadd = L � (1 + fl)� (C � Cmax);addCapa
ity(Cadd);gelse if (C > L � (1 + fh)) fwhile (C > L � (1 + fh)) fr= getMinCapa
ityRepli
a(); /*remove lowest 
apa
ity repli
a*/Cnew = C- r.
apa
ityif (Cnew > L � (1 + fs) ^ Cnew � Cmax > L � (1 + fl)) f/* Removal will not 
ause 1-repli
a 
rash vulnerability */removeRepli
a(r);C = Cnew;gg

Figure 2.2: Algorithm for Capa
ity S
aling
is generated. If the 
urrent aggregate servi
e 
apa
ity is beyond the high watermark, then thelowest 
apa
ity repli
a is marked for removal to redu
e the 
apa
ity. However, it is only removedif the remaining aggregate servi
e 
apa
ity still satis�es the 
onditions given by equations (2.10)and (2.12). In our prototype framework, the 
apa
ity s
aling fun
tions are performed by aspe
ial 
omponent 
alled as DeploymentManager Agent (DA). The details of the DA fun
tionsare des
ribed in Chapter 3The level of the 
apa
ity sla
k provisioned a�e
ts the availability and performan
e of theservi
e that the 
lients would experien
e. However, higher 
apa
ity sla
k would also in
reasethe deployment 
osts. The three parameters of this model { target sla
k, high watermark, andlow watermark { a�e
t the 
ost-performan
e trade-o�s. We evaluated the 
ost-performan
etrade-o�s for di�erent levels of 
apa
ity sla
k. These evaluations are presented in Chapter 6In this 
hapter we presented online models for workload ben
hmarking and predi
tion of avail-able resour
e 
apa
ity. The workload ben
hmarking model estimates the average per-requestresour
e requirement. The online predi
tion model predi
ts for a given resour
e the 
apa
ity



24likely to be available in next predi
tion 
y
le with a given 
on�den
e level. The predi
ted re-sour
e 
apa
ities along with the per-request resour
e demands are used to predi
t the servi
e
apa
ity for the next predi
tion 
y
le. We also presented here a model for s
aling servi
e 
a-pa
ity based on the notion of 
apa
ity sla
k whi
h tries to maintain some ex
ess 
apa
ity in thesystem.



Chapter 3
Prototype Framework
We present here the prototype framework 
alled Ellora, whi
h we have built for evaluatingthe models and me
hanisms presented earlier for building s
alable servi
es. We have builtthe Ellora framework over Planetlab. However, the ar
hite
tural 
omponents and deploymentframework of Ellora 
an be used for servi
e deployment over any shared hosting platforms thathave the 
hara
teristi
s des
ribed earlier. We assume that 
ertain platform level me
hanismsfor extra
ting and monitoring resour
e usage information are provided. For example Planetlabprovides Sli
estat data for ea
h node whi
h gives the information about resour
e usage of varioussli
es hosted on that node. Me
hanisms whi
h provide su
h information are required for servi
e
apa
ity estimation. Our framework does not depend on the availability of aggregate or globalinformation about the available resour
e 
apa
ities or node availabilities.
3.1 Overview of the Ellora FrameworkServi
e s
aling in Ellora is a
hieved through dynami
 repli
ation of servi
e 
omponents anddynami
 adjustment of the degree of repli
ation. The degree of repli
ation is adjusted basedon the servi
e 
apa
ities of the deployed repli
as and the load 
onditions. Dynami
 repli
ationis driven by the 
apa
ity s
aling models presented earlier. For deployment, repli
ation andregeneration of servi
e repli
as or 
omponents we use the mobile agent te
hnology. For this

25



26purpose, we use the Ajanta [Tripathi et al., 1999℄ framework for programming and deployingmobile agents.Figure 3.1 shows the organization of the servi
e deployment environment of Ellora. A servi
erepli
a is implemented as a servi
e agent whi
h is a mobile agent implemented using Ajantasystem. A servi
e agent 
an be 
reated and dispat
hed to a remote node for exe
ution. It 
anbe remotely 
ontrolled, and terminated if needed. Agents 
an be lo
ated and a

essed usingtheir lo
ation-independent names, whi
h are based on the URN (Uniform Resour
e Naming)s
heme [Sollins and Masinter, 1994℄. Using the URN of an agent, a

ess to its RMI interfa
eis obtained. The Ajanta Name Servi
e provides this fa
ility. An agent 
an also 
ommuni
ateusing TCP 
onne
tions. The servi
e agents provide TCP-based interfa
e to the 
lients.
3.1.1 Registry Servi
eA Registry Servi
e is used for maintaining the 
urrent 
on�guration information for ea
h de-ployed servi
e. For ea
h deployed servi
e, the registry servi
e maintains a re
ord 
ontaining thelist of all repli
a agents, their network addresses, and their 
urrently estimated servi
e 
apa
ities.Ea
h servi
e in our system is assigned a unique servi
e-id (SID), and the re
ord for a servi
eis queried or updated using this id. The primary fun
tion of the registry is to dire
t a 
lientto one of the repli
as. Ea
h repli
a periodi
ally reports to the registry its estimated servi
e
apa
ity. Based on the re
ently reported servi
e 
apa
ities, it determines the fra
tion of thetotal load that should be dire
ted to it. The probability of sele
ting a repli
a is proportional toits load fra
tion. The load distribution fra
tions are updated 
ontinuously based on the periodi
reports from the repli
as. A repli
a is 
onsidered as 
rashed if no reports are re
eived in three
onse
utive periods. The lo
ations of the registry servi
e repli
as themselves may 
hange withtime, and for that purpose, as a bootstrap me
hanism, several \lightweight" Registry Lo
atorsare provided at some well-known network lo
ations.The 
lients query the Registry Servi
e for lo
ating a servi
e repli
a. On re
eiving a queryfrom a 
lient, it sele
ts a repli
a and returns to the 
lient its network address. The 
lient thensends its requests dire
tly to this servi
e repli
a. Whenever a 
lient fails to 
onta
t a repli
a, iton
e again queries the registry.
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Figure 3.1: Ellora Framework for the Deployment of Resilient and S
alable Servi
es
3.1.2 Servi
e Repli
a AgentThe servi
e repli
a agent 
omponent of Ellora provides the basi
 building-blo
k for 
onstru
tinga repli
ated servi
e. It is extended by servi
e developers to in
lude request pro
essing logi
 andservi
e-spe
i�
 repli
ation management proto
ols. The servi
e agent performs several generi
fun
tions 
entral to the servi
e deployment model of Ellora. The servi
e agents in
lude me
ha-nisms for monitoring the available resour
e 
apa
ities and estimating the servi
e 
apa
ity. Ea
hservi
e repli
a ex
hanges periodi
 heart-beat messages for de
entralized group 
on�gurationmanagement. These messages also in
lude the load information to be used for load balan
ing.The heart-beat period T is set su
h that wp = k �T , for k � 1. In our experiments wp is set to 1minute and T is set to 10 se
onds. A servi
e agent 
ontains me
hanisms to monitor its load, andit also in
ludes me
hanisms to dete
t overload or saturation 
onditions. Based on the observedload 
onditions a servi
e repli
a agent makes autonomi
 de
isions su
h as shedding 
lient loadby redire
ting the 
lients to other servi
e repli
a agents. The details of these me
hanisms arepresented in Chapter 4.



283.1.3 Deployment AgentFor ea
h deployed servi
e, Ellora 
reates a spe
ial agent, 
alled Deployment Agent (DA), whosefun
tion is to perform dynami
 
ontrol of the degree of the servi
e repli
ation. It 
reates andlaun
hes the servi
e repli
a agents, and also dete
ts their 
rashes. Ea
h servi
e repli
a agentsends a report message to the DA at ea
h 
ontrol 
y
le of wp period, 
ontaining informationabout the number of requests re
eived in the 
urrent 
y
le and the estimated servi
e 
apa
ity forthe next 
y
le. Using this information, the DA determines the aggregate load and the estimatedaggregate servi
e 
apa
ity. The load information reported by servi
e repli
as may not indi
atethe a
tual aggregate servi
e load as it does not indi
ate the requests for whi
h the 
lients failedto 
onne
t to the servi
e repli
a. As for ea
h failed request a 
lient would perform registryrelookup, the number of lookup indi
ates the number of failed requests. Therefore, DA queriesthe servi
e registry to get the number of lookups performed in the given 
y
le and determinesthe aggregate servi
e load by taking into a

ount the number of registry lookups.Based on the sla
k 
apa
ity model presented earlier, the DA de
ides if it should add moreservi
e 
apa
ity or redu
e the existing 
apa
ity. If additional 
apa
ity is needed, DA 
al
ulatesthe additional amount of 
apa
ity that needs to be generated and requests a list of available nodesfrom the monitoring servi
e whi
h satisfy 
ertain minimum resour
e 
apa
ity requirements. Themonitoring servi
e also provides information about the 
urrently observed available resour
e
apa
ities at those nodes. Based on the available resour
e 
apa
ities, the DA pi
ks a set of high
apa
ity nodes. The DA uses the pa
ket probe method [Paxson, 1998℄ to ensure that the sele
tednodes have suÆ
ient end-to-end bandwidth. It also 
al
ulates the average resour
e demands ofa request from the resour
e demands values reported by the individual servi
e repli
as. Theseaverage resour
e demands are used as seed values to assess the approximate servi
e 
apa
itythat would be provided if the new servi
e repli
as are deployed on the sele
ted hosts. Based onthis 
al
ulation, the DA 
reates one or more servi
e repli
a agents on the appropriate nodes.When the 
apa
ity is to be redu
ed, the DA sele
ts the lowest 
apa
ity servi
e agent and sendsa `terminate` message to the agent.The DA uses the periodi
 reports from the servi
e repli
a agents to dete
t their 
rashes.If no report is re
eived from a repli
a in the 
urrent period, the DA suspe
ts it as failed and



29marks its 
ontribution to aggregate 
apa
ity as zero. However, for su
h repli
as it still uses theload value in the last report re
eived from that repli
a. If no reports are re
eived from a servi
erepli
a agent for a 
ertain number of intervals, the DA probes the agent. If the probe fails, itremoves the failed agent from its 
on�guration list. The DA then 
he
ks the aggregate servi
e
apa
ity to determine if a new agent needs to be 
reated.A failure of the DA results in the absen
e of the 
apa
ity s
aling and the repli
ation 
ontrolfun
tions for the servi
e. The DA fun
tions by maintaining as soft state the information aboutits 
urrent 
on�guration of servi
e repli
as, the 
urrent load and the estimated servi
e 
apa
ity.This state is based on the re
ently re
eived reports from the servi
e agents. The DA does notmaintain any state on the stable storage. On 
rashes, this agent is simply restarted on anyavailable node. For dete
ting the 
rash of the DA and to perform its restart, we pair it withanother agent 
alled Re
overy Agent (RA). The DA-RA pair of agents exe
ute on di�erent hostsand they ex
hange periodi
 heart-beat messages. Ea
h agent in the pair is responsible for therelaun
h of the other. The Re
overy Agent has no other fun
tions to perform, so it is a relativelya lightweight agent.During the time when the DA is not available, at ea
h reporting 
y
le the servi
e repli
aagents would fail to make an RMI 
onne
tion with the DA. In 
ase of su
h RMI failures, theyrelookup the Ajanta Name Servi
e for the DA and try on
e more. When the DA is restarted,it updates its RMI information with the Ajanta Name Servi
e. In the next reporting 
y
le, theservi
e agents would be able to 
ommuni
ate with this restated DA. After one 
y
le of reporting,the DA has 
omplete information about all of the servi
e repli
a agents and it is fully fun
tionalat that point.The pla
ement of servi
e repli
as requires sele
tion of suitable nodes based on their availableresour
e 
apa
ities. In order to pro�le nodes based on their resour
e usage behavior, we needa

urate estimation of their resour
e usage 
hara
teristi
s. We have developed a system Platinumfor monitoring PlanetLab nodes for their available 
apa
ities. It monitors available resour
e
apa
ities on every node and assists the DA in sele
ting suitable nodes for deployment of servi
erepli
as. The details of this system are presented in Chapter 5



303.2 Registry Servi
e DesignThe Registry Servi
e is a 
riti
al 
omponent be
ause its presen
e is important for the 
lientsto lo
ate any of the 
urrently operational repli
a agents of the target servi
e. We design thisservi
e using the deployment me
hanisms des
ribed above. The general me
hanisms underlyingthe resilien
y of this servi
e are the same as those used for user-deployed servi
es in Ellora,ex
ept for some bootstrap me
hanism for the 
lients to lo
ate this servi
e initially.The Registry Servi
e is implemented using a repli
ated group of Registry Agents. The repli
a-tion management of registry agents is based on the primary-ba
kup model [Budhiraja et al., 1993,Wiesmann et al., 2000℄. The deployment and repli
ation of this servi
e is dynami
ally 
ontrolledusing the Registry Deployment Agent (Registry DA). To lo
ate the registry agents, the 
lients
onta
t the Registry Lo
ators whi
h run at known lo
ations. The registry lo
ators are lightweight
omponents and are used by 
lients only for bootstrapping purpose to lo
ate the registry agents.The registry lo
ators periodi
ally query the Registry DA or any 
urrently deployed registryagents to get the list of the 
urrently deployed registry agents. A 
lient 
an also query registryservi
e agent to obtain the 
urrent 
on�guration of the deployed registry agents.
3.2.1 Primary-Ba
kup ModelThe group of repli
ated registry agents operates in the primary-ba
kup mode, with the ba
kupagents operating in the a
tive mode. All periodi
 reports from the servi
e repli
as are sent to theprimary registry agent. However, a read request su
h as 
lient query for servi
e repli
a lookup
an be served by any of the registry agents. The updates are propagated to the ba
kup agentsin a lazy manner, sequentially from one repli
a agent to the next, in a daisy-
haining fashion.Due to this lazy update propagation, a registry agent may have its registry data bit lagging fora few se
onds, however, su
h in
onsisten
ies are not 
riti
al to performan
e, as demonstrated inour evaluations.The group of registry agents is dynami
ally 
on�gured in an ordered set, where the �rstagent in the set is the primary while the other agents are a
tive ba
kups. The registry updatesare propagated to the agents in this order. The registry servi
e agents 
oordinate amongstthemselves in peer-to-peer manner and maintain the 
on�guration in de
entralized way. The
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on�guration is 
hanged when an existing registry agent 
rashes or a new one joins the group.The 
on�guration 
hanges are identi�ed by monotoni
ally in
reasing version numbers. Theprimary agent is responsible for making the 
on�guration 
hange de
isions and 
ommuni
atingthe new 
on�guration to the other registry agents.

A1 A2 . . . . . . . . AnA3

. . . . . . . .

Service Replicas

Legends

Heart−beat Messages

Periodic Reports

Update Propogation

Primary Backups

Registry Replicas

Figure 3.2: Servi
e Registry Ar
hite
ture
For dete
ting the 
rashes of the registry agents, ea
h agent sends periodi
 heart-beat messagesto the downstream agent that follows it in the ordered set. Therefore, if there are n registryagents denoted by A1 to An, where A1 is the primary, then agent Ai sends heart-beat messagesto agent Ai+1. The failure of an agent is dete
ted by its downstream agent if the heart-beatmessages are not re
eived for some period, i.e. Ai dete
ts failure of Ai�1. On
e the failure of anagent is dete
ted, the primary agent is noti�ed of the failure. The primary agent then removesthe failed agent from the group, and sends 
on�guration 
hange message along with the new
on�guration to the 
urrent group members, and also to the Registry DA. If a primary agent
annot 
onta
t a registry agent while updating the new 
on�guration, it marks it as failed andthe agent is removed from the group 
on�guration. In order to dete
t simultaneous failures ofmultiple agents, when an agent dete
ts the failure of its upstream neighbor it also probes otherupstream agents to 
he
k if they are failed. This is performed in following manner. When Aidete
ts failure of Ai�1, in the same 
y
le it also probes other upstream agents from Ai�2 until



32it �nds an agent whi
h is not failed. It then reports all the intermediate failed agents to theprimary agent. Thus failures of multiple agent 
an be dete
ted in a single 
y
le. The failure ofprimary agent is dete
ted by the �rst ba
kup agent and upon dete
ting the primary failure the�rst ba
kup agent (if it is running) assumes the role of primary. The new primary then reportsthe failure of the primary and the new 
on�guration to other agents. If �rst k agents are failedthen the k + 1th agent assumes the role of primary agent.
3.2.2 Corre
tness of Primary-Ba
kup proto
olWe want to ensure that the following properties hold to guarantee the 
orre
tness of primary-ba
kup mode of operation.� P1: Only one agent should be primary at any given time� P2: All the agents in the repli
ated group should have the same view of the group 
on�g-uration.We assume that network level partitions do not o

ur. As dis
ussed in our proto
ol all thegroup 
on�guration 
hanges are reported by primary to all other agents. Therefore, a ba
kupagent's view of the 
urrent group 
on�guration 
hanges only when the primary reports a newgroup 
on�guration. Hen
e ensuring the property P1 would also ensure that P2 holds.In 
ase of false dete
tion of primary failure due to network 
onne
tivity issues the �rst ba
kupagent would assume primary role while the primary is still running. In su
h 
ases our proto
olensures that only one agent a
ts as primary agent as follow. The �rst ba
kup agent (if not
rashed) would assume the primary agent is failed and report the new 
on�guration to otheragents. All the other agents would now 
onsider this �rst ba
kup agent as the new primaryagent. When the old primary 
onta
ts any of the agents, it is noti�ed of the new primary agent.The old primary then 
onta
ts the new primary agent. The old primary is then put at the endof the ordered list and the new primary agent noti�es all the agents of the new 
on�guration.We 
an see that in 
ase of simultaneous failures of �rst k agents in the order this proto
ol wouldalso guarantee that only one agent (k + 1'th agent) a
ts as the primary agent. Thus it ensuresthat no two agents a
ts as the primary agent and hen
e properties P1 and P2 are satis�ed.



33During the update propagation, if a registry agent 
rashes after it has re
eived an updatebut before propagating the update to the downstream agent then the update would not bepropagated to the remaining agents. In 
ase of Registry Servi
e, the updates are basi
allyinformation about servi
e repli
a lo
ation, load, et
. Sin
e su
h information is overwritten byperiodi
 updates from servi
e repli
as, a lost update 
an be tolerated in this 
ase. Therefore, wedo not address the issue of lost updates here. However, me
hanisms using sequen
ed updatesand pulling the updates after group 
on�guration 
hanges 
an be implemented to avoid the lostupdate problems.
3.2.3 Re
overy and Restart Me
hanismsAll the 
omponents of the Registry Servi
e { su
h as Registry DA, Registry Lo
ators or RegistryAgents { are lightweight and require minimal or no 
he
kpointing. The fault toleran
e andre
overy of these 
omponents is dis
ussed below.The 
rash of a registry agent is reported by the primary registry agent to the Registry DAfor immediate re
overy of the failed agent, whi
h then laun
hes a new agent. The new agent
onta
ts the primary agent in order to join the group. It joins at the last index in the group
on�guration and starts with an empty registry. Therefore, it waits for one reporting 
y
lebefore it starts responding to the 
lient queries. During this period it redire
ts the 
lient queriesto other repli
as. After one reporting 
y
le, it has information about all of the di�erent deployedservi
es and their repli
as. If a servi
e repli
a agent of some deployed servi
e fails to 
onta
t theprimary registry agent during a reporting 
y
le, it 
onta
ts any of the other registry agents toget the new 
on�guration of the Registry Servi
e. After that it attempts to 
ommuni
ate withthe new primary agent for the Registry Servi
e.The failure and re
overy of the Registry DA is handled using the Re
overy Agent me
hanismas dis
ussed in the previous se
tion. The Registry DA does not require any 
he
kpointing. Whilethe Registry DA is down, the Registry Servi
e is still available. The registry agents 
an performthe group management fun
tions in absen
e of the Registry DA. The only problem while theRegistry DA is down is that no new agent 
an be 
reated if any existing agent fails.



34When a registry lo
ator is started, it 
onta
ts the Registry DA to get the 
urrent 
on�gura-tion of registry agents. The URN of the Registry DA is the only information needed to exe
uteit. A registry lo
ator periodi
ally refreshes its view of the 
urrent 
on�guration of the RegistryServi
e by querying any of the registry agents.In this 
hapter we presented experimental framework we developed over PlanetLab for eval-uation of our servi
e s
aling models and me
hanisms. In this framework, the servi
e deploymentand s
aling fun
tions are performed by the Deployment Agent 
reated for ea
h servi
e. Wedeveloped a registry servi
e whi
h is a

essed by 
lients to lo
ate the 
urrently deployed servi
erepli
as. The fault-toleran
e and high availability of this servi
e itself is realized through s
alingand resilien
y me
hanisms provided for user-deployed servi
es. The di�erent 
omponents of ourframework su
h as the Deployment Agent or registry servi
e operate by maintaining soft-statewhi
h 
an be easily generated upon their re
overy.



Chapter 4
Adaptive Load Distribution
We address in this 
hapter the problem of how to distribute the load a

ording to the servi
e
apa
ities of repli
as whi
h may 
u
tuate signi�
antly over time. As dis
ussed earlier, the 
u
-tuations in servi
e 
apa
ities of the individual servi
e repli
as ne
essitate the need for adaptiveload distribution. In our system model, a 
lient �rst queries a Registry Servi
e for a

essing aparti
ular servi
e. In response to the 
lient query, the Registry Servi
e sele
ts one of the repli
aand returns its network address to the 
lient. The 
lient then sends subsequent requests to thatservi
e repli
a. A registry lookup is performed again by the 
lient only after some number ofrequests. We have two di�erent levels at whi
h load distribution is performed:� Registry-Level: This is the load distribution performed by the registry while sele
ting theservi
e repli
as for 
lient queries. Sin
e a registry lookup is performed by the 
lient onlyafter a 
ertain duration, this level of load distribution operates at relatively 
oarse level.� Repli
a-Level: For more �ne-grain distribution of load, ea
h servi
e repli
a performs theload distribution based on its 
urrent load 
onditions.The load distribution at repli
a-level is essential for two reasons. First, sin
e the servi
e 
apa
i-ties of repli
as 
an 
u
tuate within short duration, load distribution me
hanisms whi
h operateat repli
a-level are needed for more adaptive load distribution. Se
ond, with the repli
a-levelme
hanisms the load distribution 
an be performed even when the registry servi
e is unavailable.

35



364.1 Registry-Level Load DistributionThe load distribution at registry level is performed based on the servi
e 
apa
ities of the in-dividual servi
e repli
as. For a balan
ed distribution of load, ea
h repli
a should handle thefra
tion of the load proportional to its servi
e 
apa
ity. We de�ne fra
tion of the load thatshould be distributed to a parti
ular repli
a as the load distribution fra
tion(�) of that repli
a.This load distribution fra
tion is given by the fra
tion of the total servi
e 
apa
ity provided bythat repli
a. Thus for repli
a k, if Ck is the servi
e 
apa
ity, then load distribution fra
tion �kof that repli
a is given by �k = CkPni=1 Ci (4.1)At every 
ontrol interval ea
h servi
e repli
a reports its servi
e 
apa
ity to the registryservi
e. Based on this reported servi
e 
apa
ity, registry servi
e 
al
ulates the load distributionfra
tion for ea
h repli
a. When a 
lient performs a lookup, the registry servi
e sele
ts one ofthe repli
as randomly with the probability of the sele
tion of a repli
a being proportional to itsload distribution fra
tion.
4.2 Repli
a-Level Load DistributionAt a repli
a-level the load distribution is primarily performed by redire
ting the load to anotherservi
e repli
a. A repli
a may be
ome overloaded due to the 
u
tuations in its servi
e 
apa
ity ordue to an in
rease in the 
lient load distributed to it. In su
h 
ases, the repli
a needs to redire
ta fra
tion of its load to another repli
a. For this purpose, we have following me
hanisms of loadredire
tion at repli
a-level.1. Request Redire
tion: A servi
e repli
a may redire
t a single request to another repli
a.This is also 
alled temporary redire
tion, sin
e the subsequent requests are sent to theoriginal servi
e repli
a.2. Client Redire
tion: A servi
e repli
a may also redire
t the 
lient permanently to anotherrepli
a. The 
lient then sends the subsequent requests to the new repli
a until it performsthe registry lookup again.



373. For
ed Lookup: A servi
e repli
a may for
e the 
lient to perform registry lookup again.For the purpose of load redire
tion, the load distribution me
hanisms at the repli
a levelneed to address following questions:� How to dete
t an overload situation?� How to �nd the target repli
as for the redire
tion of load?� When to perform request redire
tion, 
lient redire
tion or for
ed lookup?The �rst problem is related to a

urately assessing the 
urrent load 
onditions at a repli
a.For this purpose, we develop a token-based model for e�e
tively 
hara
terizing the load andservi
e 
apa
ities. In this model tokens represent the maximum number of requests that 
an beservi
ed by a repli
a during a 
ontrol interval. As des
ribed in Se
tion 2, in ea
h 
ontrol intervali a servi
e repli
a estimates its servi
e 
apa
ity for the next period, represented by ri (as numberof requests per se
ond). This represents the estimated maximum request handling rate over thenext interval. Based on this rate, at the beginning of an interval, the repli
a 
omputes thenumber of tokens Ti representing the maximum number of requests that it 
an handle over thatinterval. A token is 
onsumed every time a request is served. In 
ase of balan
ed load 
onditions,the tokens will be 
onsumed at a uniform rate. An overload 
ondition is suspe
ted if the tokensare 
onsumed at a rate higher than the estimated rate. Similarly, a repli
a is 
onsidered to beunderloaded when the token 
onsumption rate is signi�
antly below the estimated servi
e rate.At time t from the beginning of the 
urrent interval, a repli
a 
an dete
t if it's overloaded byobserving the number of tokens 
onsumed by that time. If xt is the number of tokens 
onsumedby time t, then the repli
a is 
onsidered overloaded ifxt > ri � t (4.2)Similarly the repli
a is 
onsidered underloaded ifxt << ri � t (4.3)In 
ase of balan
ed load situations xt is 
lose to ri � t.When a repli
a dete
ts an overload situation, it needs to de
ide if it should perform request-redire
tion or 
lient-redire
tion. In our model, a repli
a performs request-redire
tion in 
ase of



38low overload 
onditions. A 
lient-redire
tion is performed in 
ase of high overload 
onditions,whi
h happen when the number of redire
ted requests ex
eed some threshold. In order to �ndtarget repli
as for redire
tion, the repli
a needs information about load 
onditions of other repli-
as. For this purpose, every heart-beat period the repli
as ex
hange load information su
h as thenumber of requests served, the number of tokens left and the 
urrent load status (underloaded,overloaded et
). Only the repli
as whi
h have underload status are 
onsidered as redire
tiontargets by a repli
a. For ea
h su
h potential target repli
as, the repli
a 
al
ulates the maximumnumber of requests that 
an be redire
ted to that target repli
a in the given interval, 
alled asthe as the redire
tion quota of that target repli
a. The redire
tion quota of a target repli
a is
al
ulated as follow. Let N be the total number of repli
as in the system, and Tk be the numberof tokens remaining of the target repli
a k then redire
tion quota qk for the target repli
a k is
al
ulated as qk = Tk(N=2) (4.4)This redire
tion quota is 
al
ulated by 
onsidering that some other repli
as may also redire
ttheir requests to the given target repli
a. Therefore, we assume that the remaining number oftokens of a target repli
a 
an be 
onsumed equally by the potential number of repli
as who mayperform load redire
tion. Furthermore, we assume that on average half of the total number ofrepli
as may be overloaded so we divide the remaining number of tokens of a target repli
a byN=2.For 
lient redire
tion, only the target repli
as with redire
tion quota more than 
ertain limit(we set this limit to 100) are 
onsidered. When a repli
a de
ides to redire
t a request or a
lient it sele
ts a repli
a from the list of target repli
as in round-robin manner. For requestredire
tion, it sends a 'request-redire
tion' message to the 
lient along with the network addressof the sele
ted target repli
a. In 
ase of 
lient redire
tion, it sends a '
lient-redire
tion' messageand the network address of the sele
ted repli
a. If a repli
a 
an not �nd any target repli
as forredire
tion or if it has already exhausted the redire
tion quota of ea
h target repli
a, it de
idesto for
e the 
lient to perform registry lookup again. A `re-lookup` message is sent to the 
lientin this 
ase.



39We also investigated a model based on 
hara
terizing the overload 
onditions as high and lowoverload and underload 
onditions as high and low underload based on 
ertain thresholds. Inthis model a repli
a would perform 
lient redire
tion only when it is in high overload 
onditionand it would only sele
t repli
as in low underload 
ondition for 
lient redire
tion. However,we observed that this model only 
ompli
ated the load distribution me
hanisms and did notperform well. We realized that the load redire
tion based on the redire
tion quota provides more�ne-grain and balan
ed load distribution.For evaluating the load distribution me
hanisms, we observe the deviation of the load sharedby ea
h repli
a from its expe
ted load during ea
h 
ontrol interval. Let �k be load distributionfra
tion of repli
a k for a given interval 
al
ulated using equation 4.4. Let Sk be the number ofrequests served by that repli
a in that interval and L be the total 
lient load. Then the loaddeviation (�k) of repli
a k is 
al
ulated as follow�k = jSk � (�k � L)j (4.5)The overall deviation in load distribution a
ross all repli
as 
alled as the distribution deviation(�)is 
al
ulated in terms of the fra
tion of the total load that deviated from expe
ted distribution.It is 
al
ulated as follow: � = Pni=1 �i=2L (4.6)The details of the evaluation of load distribution me
hanisms are presented in Chapter 6. In thisevaluation we also observe the impa
t of unavailability of servi
e registry on the performan
e ofload distribution me
hanisms. Our load distribution me
hanisms are agile in adapting to 
u
-tuations in servi
e 
apa
ities and load 
onditions as well as 
hanges in repli
ation 
on�gurationas demonstrated in our evaluations.In this 
hapter we des
ribed the me
hanisms for adaptive load distribution a
ross the ser-vi
e repli
as. These me
hanisms operate at registry and repli
a level. We developed a tokenbased model for �ne-grain distribution of load at repli
a level. Based on this token model, theme
hanisms at repli
a level perform load redire
tion to balan
e the load a
ross servi
e repli
as.



Chapter 5
PlanetLab Monitoring Servi
e
We have developed Platinum - a system for monitoring PlanetLab nodes for their available
apa
ities for various resour
e su
h as CPU 
apa
ity, memory and network bandwidth. We ob-serve that CoMon [Park and Pai, 2006℄, the node monitoring servi
e provided by the PlanetLab,
annot be used for our purposes dire
tly. This is be
ause of the following reasons. We are inter-ested in the average values for these resour
e 
apa
ities, and also in their variation over time.CoMon provides average values over system-de�ned monitoring intervals of one minute and �veminutes. In our experiments, we need node-level resour
e utilization data that is 
olle
ted at ahigher frequen
y (su
h as at every 10-20 se
onds) and aggregated to determine statisti
s over
on�gurable observation intervals. This is important in order to obtain a

urate measurementsof a node's behavior over su
h intervals. The resour
e usage information of PlanetLab nodesprovided by CoMon is relatively 
oarse grain for this purpose.The Platinum node monitoring system is used to sele
t nodes based on their available re-sour
e 
apa
ities for hosting servi
e repli
as. The DeploymentManager Agent (DA) queriesthis servi
e to obtain the list of eligible nodes for deploying servi
e repli
as. We also use thisservi
e to study the resour
e usage 
hara
teristi
s of PlanetLab nodes. The Platinum servi
e
olle
ts the data about resour
e 
onsumption of every monitored node by probing its Sli
eS-tat [Park and Pai, 2006℄ data every periodi
 interval (in our experiments we set this interval to10 se
onds). We 
ompute the available resour
e 
apa
ity at a node for a parti
ular resour
e

40



41type as the di�eren
e between the node's intrinsi
 resour
e 
apa
ity and the total usage for thatresour
e for all the sli
es running on that node. We measure the average and varian
e of theavailable resour
e 
apa
ities over a sliding window of 
on�gurable interval (we use interval valueof 5 minutes).We sele
t a set of nodes that have the average available resour
e 
apa
ity greater than agiven requirement. These nodes de�ne the eligibility set for the given requirement. The size ofthe eligibility set at a parti
ular time for a given requirement indi
ates the number of nodessatisfying the given requirement at that time. A node is dropped from the eligibility set whenit fails to satisfy the given resour
e requirement. The eligibility period of a node for a givenresour
e requirement is measured as the time between the node's entry in the eligibility set forthat resour
e requirement and departure from the eligibility set. A node may enter and leavethe eligibility set multiple times during the observation period. Thus a node may have multipleeligibility periods. For su
h nodes, we 
onsider the average value of their individual eligibilityperiods.We investigated the following two approa
hes for sele
ting a node for in
lusion in the eligi-bility set for a given requirement:
Basi
 Method: If C is the average idle 
apa
ity on a node and � is its standard deviation, thenfor a given resour
e requirement R we sele
t the node if it satis�es the following 
ondition:C � 2 � � > R (5.1)A node is dropped from the eligibility set if the idle 
apa
ity at that node falls below theresour
e requirement R. When 
onsidering the CPU and memory requirements together forsele
ting nodes, we sele
t the node only if it satis�es the above 
ondition for both the CPUrequirement and the memory requirement. We drop a node from the eligibility set, if either theavailable CPU 
apa
ity or available memory 
apa
ity on that node falls below R, the require-ment threshold.
Pro�ling-based Method: In this approa
h we wanted to eliminate those node that show highlyfrequent and signi�
ant variation in their available 
apa
ity for a given requirement. In this



42approa
h we build a pro�led eligibility set from the basi
 eligibility set 
onstru
ted using thebasi
 approa
h presented above. The following rules are used for in
luding a node in the pro�ledeligibility set. The rules use a parameter T , whi
h is a time period value. We set it to 30 minutesin our experiments. A node in the basi
 eligibility set is 
onsidered for in
lusion in the pro�ledeligibility set if its previously observed eligibility period was greater than T minutes. If thepreviously observed eligibility period of the node was less than T , then we in
lude this node inthe pro�led set only after it has been in the basi
 eligibility set for the past T minutes. When anode is dropped from the basi
 eligibility set, it is also removed from the pro�led eligibility set.In this approa
h, the eligibility period of a node is de�ned as the duration for whi
h it remainsin the pro�led eligibility set for a 
ontiguous interval.We observe the distribution of eligibility set and eligibility periods for various resour
e re-quirements to 
hara
terize the resour
e availability in PlanetLab environment. We performthis study for CPU 
apa
ity requirements, memory requirements as well as CPU and memory
onjoined requirements. For network bandwidth, the Sli
eStat servi
e provides only averagebandwidth usage over 1 minute, 5 minutes and 15 minutes. We need the resour
e usage dataover a higher frequen
y to determine the average idle 
apa
ity as well as its standard deviation.The �rst important goal of this study is to 
ompare the distribution of eligibility periods forCPU requirements with that of memory requirements. The key questions in this study are :How the size of eligibility set varies over time? How does the behavior of nodes vary for CPUand memory requirements? Do the nodes show more availability in terms of larger eligibilityperiod and eligibility set size for memory requirements than those for CPU requirements? These
ond goal of this study is to determine whether the node availability is dominated by eitherthe CPU requirement or the memory requirement, when both CPU and memory requirementsare 
onsidered together. We also want to see if any relationship between the average eligibility ofa node and the fra
tion of the time it is present in the eligibility set. Finally, another importantgoal of this work is to investigate how sele
ting nodes based on their re
ent pro�le a�e
ts theexpe
ted eligibility periods.



435.1 Evaluation of Node Sele
tion using Basi
 MethodWe present here the distribution of eligibility periods and eligibility set sizes for a spe
trum ofresour
e requirements sele
ted using the basi
 method.In the experiments dis
ussed here we monitored about 200 PlanetLab nodes for their availableresour
e 
apa
ities at di�erent time periods. Table 5.1 shows the 
apa
ity requirements usedin these experiments. We present here the observations for two datasets 
olle
ted for durationof approximately 3 to 4 days. Dataset-1 was 
olle
ted for duration of 75 hours from November18-21, 2009 and Dataset-2 was 
olle
ted for duration of 98 hours from De
ember 1-4, 2009.During the period for whi
h the Dataset-1 was 
olle
ted, the monitored PlanetLab nodes werehighly loaded while in the 
ase of Dataset-2 they were relatively lightly loaded.
CPU 1GHz, 2GHz, 3GHz, 4GHzMemory 512MB, 1GB, 2GB, 3GBCPU+Memory (1GHz + 512MB), (2GHz + 1GB)(3GHz + 2GB), (4GHz + 1GB)Table 5.1: Capa
ity Requirements

Dataset Time Duration Number of NodesDataset-1 November 18-21, 2009 75 hours 200Dataset-2 De
ember 1-4, 2009 97 hours 200Table 5.2: Datasets and their observation times
Figure 5.1 shows the CDFs of eligibility periods for CPU and memory 
apa
ity requirementsfor the datasets mentioned above. Table 5.3 presents statisti
s su
h as average, median andstandard deviation for eligibility periods and eligibility set sizes for Dataset-1 and Dataset-2.From Table 5.3, we observe that typi
ally the median values for the eligibility periods tend tobe always less than the average values. The standard deviation also tends to be high, 
omparableto the average values. This indi
ates that some nodes tend to exhibit signi�
antly large eligibilityperiods. This also indi
ates that the available resour
e 
apa
ities at a node may 
u
tuatesigni�
antly, and there is a large variation of eligibility periods a
ross the nodes.



44The impa
t of memory requirements on node eligibility 
an be understood from the statisti
spresented in Table 5.3 and the 
umulative distributions given in Figure 5.1. We found that veryfew nodes 
ould satisfy memory requirement of 3GB. We 
an observe that nodes show higheligibility periods and eligibility set sizes for memory requirements than CPU requirements.This indi
ates that typi
ally the available CPU 
apa
ity varies signi�
antly 
ompared to theavailable memory. The impa
t of 
ombined CPU and memory requirements 
an be observedby 
omparing the 
umulative distributions of eligibility periods given for the 
ombined require-ment in Figure 5.2 with those for the 
orresponding CPU and memory requirements shown inFigure 5.1. We observe that the distributions of eligibility periods for 
ombined requirementstend to be 
lose to the distribution of 
orresponding CPU requirements indi
ating that theavailability of nodes for 
ombined CPU and memory requirements is dominated by the CPUrequirement.To understand the distribution of eligibility set sizes we look at the statisti
s presented inTable 5.3. We �nd that the eligibility set sizes de
rease with the in
reasing 
apa
ity require-ments. However, one 
annot draw su
h a generalization for eligibility periods. We observedthat for a higher 
apa
ity requirement, fewer number of nodes be
ome eligible but some of themremain in the set for a long time. We also observe that the variation in eligibility set sizes tendsto be small. This indi
ates that there is always some 
onstant number of nodes that 
an satisfya given requirement. For example, in 
ase of the 4GHz CPU requirement there are always morethan 18 nodes available, and for 2GHz at least 36 nodes were in the eligibility set.
Dataset-1 Dataset-2Eligibility Period Eligibility Eligibility Period Eligibility(minutes) Set Size (minutes) Set SizeAvg Median Std Dev Avg Std Dev Avg Median Std Dev Avg Std Dev1GHz CPU 315 46 472 103 9.29 522 145 874 64 15.32GHz CPU 103 34 221 51 6.24 367 50 553 35 6.43GHz CPU 218 31 376 38 3.15 423 356 412 30 4.024GHz CPU 163 40 284 25 3.72 799 359 1362 21 3.01GB Memory 650 438 494 105 2.7 1061 1022 578 84 8.42GB Memory 335 284 281 34 1.75 910 787 564 20 5.02GHz+1GB 119 48 256 30 4.8 392 53 552 20 5.063GHz+2GB 218 108 305 13 1.0 518 577 502 5 1.7Table 5.3: Eligibility Period and Set Size Statisti
s for Basi
 Method



455.2 Evaluation of Node Sele
tion using the Pro�ling MethodThe results of our evaluations of the pro�ling approa
h for Dataset-1 and Dataset-2 are shownin Figure 5.3 and Table 5.4. We present the CDF of eligibility period for CPU requirements inFigure 5.3 and statisti
s for eligibility period and set size for both CPU and memory requirementsin Table 5.4. These results show a 
lear and remarkable bene�t of using pro�ling. For example,
omparing the eligibility period values for the 2GHz requirement for Dataset-1 using the basi
method with those with the pro�led method, one 
an noti
e that the average period in
reasesfrom 103 to 496 minutes, and the median value also in
reases from 34 to 258 minutes. Asexpe
ted, the eligibility set sizes are always smaller in 
ase of the pro�led approa
h. This meanswe have a smaller set of nodes in the eligibility set but they are of higher \quality", i.e. theyare likely to meet the given requirement for a longer time. In the data presented in Table 5.4,there was only one 
ase where the values for the eligibility period using the pro�led methodwere smaller than those with the basi
 method. This o

urred for 1GB memory requirement in
ase of Dataset-1. We have not found any 
lear explanation for this 
ase. Nonetheless, there is
lear eviden
e otherwise that the pro�ling method identi�es better quality nodes for the givenrequirement.
Dataset-1 Dataset-2Eligibility Period Eligibility Eligibility Period Eligibility(minutes) Set Size (minutes) Set SizeAvg Median Std Dev Avg Std Dev Avg Median Std Dev Avg Std Dev1GHz CPU 740 359 895 50.46 16.4 786 195 1107 42.8 16.492GHz CPU 496 258 512 20.67 9.42 951 216 1287 34.6 83GHz CPU 552 386 557 15.6 8 1312 709 1681 24.3 5.54GHz CPU 356 134 452 11.9 4.6 1406 1129 1567 12.45 2.721GB Memory 455 340 393 28.39 14.4 2203 2126 1398 72.9 22.82GB Memory 957 1241 541 12.47 6.31 2469 2310 1232 21.74 6.952GHz+1GB 701 711 481 12.33 6.52 983 347 1127 26.93 7.283GHz+2GB 885 1160 599 4.95 2.82 1784 1784 1790 5.46 1.7Table 5.4: Eligibility Period and Set Size Statisti
s with Pro�ling

We found similar observations for other datasets 
olle
ted at di�erent times. Based on theseobservations we found that the pro�ling approa
h sele
ts nodes whi
h satisfy a given resour
erequirement for a longer duration 
ompared to the basi
 method of node sele
tion.
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Chapter 6
Evaluations
In this 
hapter we present the system-level evaluation of the autonomi
 servi
e s
aling me
h-anisms. Our �rst goal here is to evaluate the s
alability of the dynami
 
apa
ity provisioningmodels and me
hanisms The se
ond goal is to evaluate the fault-tolerant aspe
t of our system.Spe
i�
ally, we measure impa
t of repli
a 
rashes, performan
e of failure dete
tion and re
overyme
hanisms, and impa
t of registry unavailability on load distribution.
6.1 Evaluation of S
aling Me
hanismsWe evaluated the s
alability of our system under load 
onditions similar to 
ash-
rowds. Weobserved the impa
t of sla
k 
apa
ity level on the s
alability and performan
e of the system.Our main performan
e measure in these evaluations was the average and 90-per
entile responsetimes observed by the 
lients. The load distribution me
hanisms were evaluated by observingdistribution deviation (�).For this evaluation, the workload 
hara
teristi
s as well as the �le set at the server side weregenerated a

ording to the spe
i�
ation of SPECweb2009 E-
ommer
e ben
hmark [SPEC, ℄. Thetotal number of �les on the server was around 15,000 with average �le size of 16KB, varian
e of18.5KB, and median and max sizes of 16.2KB and 40.5KB, respe
tively. The average �le sizefor 
lient requests was 2.8KB with varian
e of 5.5KB and median size of 1.3KB. For s
alability

49



50evaluation we generated 
ash 
rowd 
onditions as follow. During the initial phase, 
alled thelow load phase, we indu
ed a 
onstant load of 200 requests/se
ond for 30 minutes. In these
ond phase, 
alled the 
ash-
rowd phase, the 
lient load was in
reased every minute by 20requests/se
ond until it rea
hed up to ten-fold, i.e. 2000 requests/se
ond. The load was thenkept 
onstant at this level for about 30 minutes. We refer to it as high load phase. We measuredthe performan
e of the system in all three phases. We also observed the ratio of the load on theregistry to the total servi
e load. Sin
e the 
lients were 
on�gured to perform registry lookupafter every 100 requests, we expe
ted this ratio to be at least 0.01. A registry load ratio valuegreater than 0.01 indi
ates registry relookups performed by 
lients due to 
onne
tion failures orfor
ed lookups issued by servi
e repli
as.In PlanetLab, if a sli
e transfers more than total of 10 GB data in a day on a single node,its bandwidth is 
apped at a low rate. Sin
e su
h 
ases would a�e
t our 
apa
ity estimation,we programmed the repli
as to measure the amount of total data they have 
ommuni
ated. Ifa servi
e repli
a performs more than 9 GB of data 
ommuni
ation, it is shut-down and a newservi
e repli
a on a di�erent host is 
reated. The Deployment Agent keeps tra
k of the nodeswhi
h have exhausted their data 
ommuni
ation limit and su
h nodes are not used for hostingrepli
as for that parti
ular day. This limitation is spe
i�
 to PlanetLab environment only andhen
e does not a�e
t our 
apa
ity models in general.First, we present our evaluation of the impa
t of sla
k 
apa
ity levels. We evaluated theperforman
e of sla
k 
apa
ity model for target sla
k levels of 30%, 20% and 10%. For 30%sla
k the low and high watermarks were set to 10% and 50% respe
tively. For 20%, they wereset to 10% and 30%, whereas for 10% target sla
k low and high watermarks were 0% and 20%respe
tively. Table 6.1,6.2, and 6.3 presents the results of this evaluation for these sla
k levelsfor low load, 
ash-
rowd, and high load phases denoted by P1, P2, and P3 respe
tively.
Table 6.1: Performan
e Statisti
s for Sla
k Level 30%30% sla
k (fl=10%, fh=50%)Response Time(se
s) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 0.466 0.538 0.812 0.13 0.15 0.028
ash 
rowd (P2) 0.972 0.875 1.42 0.14 0.12 0.059high load (P3) 0.934 0.316 1.13 0.16 0.11 0.037
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Table 6.2: Performan
e Statisti
s for Sla
k Level 20%20% sla
k (fl=10%, fh=30%)Response Time(se
s) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 1.34 1.26 2.35 0.16 0.13 0.024
ash 
rowd (P2) 1.91 1.89 4.51 0.16 0.08 0.068high load (P3) 2.32 8.23 4.11 0.14 0.25 0.041
Table 6.3: Performan
e Statisti
s for Sla
k Level 10%10% sla
k (fl=0%, fh=20%)Response Time(se
s) � registry load ratioAvg Std.Dev 90 %ile Avg Std.Devlow load (P1) 0.956 1.91 2.09 0.18 0.42 0.033
ash 
rowd (P2) 4.54 5.41 5.50 0.16 0.15 0.119high load (P3) 2.57 0.698 4.07 0.29 0.17 0.067
Table 6.4: Repli
a Addition and Removal Statisti
s30% sla
k 20% sla
k 10% sla
kP1 P2 P3 P1 P2 P3 P1 P2 P3Avg. 5 19 44 6 16 32 5 20 25repli
asAdded 3 43 10 6 40 7 4 39 5Removed 1 6 5 4 16 4 3 19 4

Figure 6.1 shows the 90-per
entile response times observed every 1 minute for 30% sla
k.Figure 6.2 and 6.3 show the same data for 20% and 10% sla
k. We 
an observe that sla
k level of30% performs better in terms of response times in all three phases; the average and 90-per
entileresponse times were bounded and only in
reased by a fa
tor of two with ten-fold in
rease in theload. From Figures 6.2 and 6.3 we 
an observe that sla
k level of 20% and 10% performedpoorly in the 
ash-
rowd phase. In this phase the average response times in
reased by a fa
torof four for both 20% and 10% sla
k. Figure 6.4, 6.5, and 6.6 show the 
apa
ity generationand number of repli
as for 30%, 20%, and 10% sla
k levels. Table 6.4 presents the statisti
s ofrepli
a 
reation and removal for these sla
k levels. We did not observe any node 
rashes in theseexperiments. For target sla
k of 30%, the average sla
k 
apa
ity provisioned was 42% whereasfor target sla
k of 20% and 10% the average sla
k 
apa
ity was 27% and 16% respe
tively. The
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Figure 6.1: Response Times under 30%Sla
k with SPECWeb ben
hmark work-load
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Figure 6.2: Response Times under 20%Sla
k with SPECWeb ben
hmark work-load
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Figure 6.3: Response Times under 10%Sla
k with SPECWeb ben
hmark work-loadregistry load ratio was greater than 0.01 during all the phases and it in
reased in 
ash-
rowdphase 
ompared to the low load phase. The average � value observed for 30% sla
k was 0.138indi
ating that on average 13.8% of the load deviated from the target distribution. Su
h a levelof distribution deviation is tolerable sin
e the additional 
apa
ity maintained in the system isat least 30% for this sla
k level. For 20% and 10% the average � value was 16% and 20%. For10% sla
k the average deviation of 20% may not be tolerable be
ause of the smaller sla
k value.We found similar observations for other experiment runs.We also evaluated the s
alability of our system with a di�erent workload resembling the work-load 
hara
teristi
s of 1998 World Cup website presented in [Arlitt and Jin, 1999℄. We generatedthe �les at server side resembling the �le size distribution given in [Arlitt and Jin, 1999℄. Theaverage �le size at the server side was 9.7KB with standard deviation of 9.6KB and median
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Figure 6.4: Capa
ity Generation under30% Sla
k with SPECWeb ben
hmarkworkload
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Figure 6.5: Capa
ity Generation under20% sla
k with SPECWeb ben
hmarkworkload
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Figure 6.6: Capa
ity Generation under10% Sla
k with SPECWeb ben
hmarkworkload4.1KB. The average �le size for 
lient requests was 5.3KB with standard deviation 3.1KB andmedian 2.2KB. The 
ash 
rowd load was generated as dis
ussed above. The sla
k level 
on�g-ured for this experiment was 30%. Table 6.5 presents the results of this experiment. Figure 6.7and Figure 6.8 show the 90 per
entile response times and 
apa
ity generation respe
tively.
6.2 Evaluation of Fault Toleran
eFor evaluating the fault toleran
e aspe
t of our system, we 
ondu
ted following experiments.First we evaluated the impa
t of servi
e repli
a 
rashes on the 
lient side performan
e. Se
ondwe evaluated the impa
t of unavailability of the registry servi
e on the load distribution. Finallywe evaluated the failure dete
tion and re
overy me
hanisms of the registry servi
e.
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Table 6.5: Performan
e Statisti
s for WorldCup workload30% sla
k (fl=10%, fh=50%)Response Time(se
s) � registry load ratioPhase Avg Std.Dev 90 %ile Avg Std.Devlow load (P1) 2.56 1.91 3.09 0.11 0.34 0.03
ash 
rowd (P2) 5.8 6.11 7.61 0.19 0.25 0.065high load (P3) 4.73 4.68 5.7 0.17 0.21 0.038
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Figure 6.7: Response Times under World-Cup workload
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Figure 6.8: Capa
ity Generation underWorldCup workload
For evaluating the repli
a 
rash re
overy me
hanisms and to observe the impa
t of repli
a
rashes on performan
e, we inje
ted periodi
 
rashes of randomly sele
ted repli
as. We indu
eda 
lient load of 400 requests/se
ond, and at every 30 minutes we inje
ted a 
rash of a randomly
hosen repli
a. We observed the 90-per
entile values for response times over one minute intervals.This data is shown in Figure 6.9. The sla
k level set for this experiment was 30% with low andhigh watermarks values of 10% and 50%. The repli
a 
rashes were dete
ted within two reportingintervals (i.e. 2 minutes) and additional 
apa
ity was generated within 30-60 se
onds. The 90-per
entile response times during normal 
onditions with no 
rashes were observed to be in therange of 0.4 to 0.7 se
onds. From Figure 6.9 we 
an observe that the 90-per
entile responsetimes in
reased immediately after the repli
a was 
rashed but be
ame normal again withinthree intervals. Sin
e our 
apa
ity model ensures the system is not 1-repli
a 
rash vulnerable,
ertain amount of extra 
apa
ity (10% in this 
ase) would be still available after the repli
a
rash. The in
rease in 90-per
entile response times after the repli
a 
rash was mainly due to the
lients whi
h a

essed the failed repli
a and had to timeout and relookup the registry.
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Figure 6.9: Impa
t of Repli
a Crashes
For evaluating the impa
t of registry unavailability on the load distribution we shutdownthe Registry Servi
e every 15 minutes and kept it unavailable for 10 minutes. We performedthis experiment with 30% target sla
k and indu
ed a 
onstant load of 400 requests per se
ond.The average � value for the period when the registry was available was observed to be 15.9%,whereas the average � value was 26.2% for the period when registry was not available. Thisin
rease in deviation may be tolerable due to the 30% sla
k 
apa
ity, however any new 
lientwould not be able to lo
ate servi
e repli
as if the Registry Servi
e is not available.In evaluating the fault toleran
e me
hanisms of the registry servi
e we wanted to measurethe performan
e of failure dete
tion and re
overy me
hanisms and to 
he
k the the 
orre
tnessof group management proto
ols under various failure 
onditions. We deployed 5 registry agentson PlanetLab nodes. To evaluate the fault toleran
e and re
overy of registry agent failures,periodi
ally a randomly sele
ted registry agent was terminated. We observed that the failure ofa repli
a is dete
ted within 30 se
onds and it requires additional 30 to 40 se
onds for generatinga new registry agent and updating the new 
on�guration to all the registry agents.To test the re
overy me
hanisms in 
ase of multiple simultaneous failures, we terminatedmultiple registry agents at the same time. We inje
ted failures of the primary and its k � 1immediate su

essor agents. In these 
ases the k + 10th registry agent 
orre
tly dete
ted thesefailures and assumed the role of the new primary. We also tested the system under 
atastrophi




56failures where all registry agents ex
ept one were terminated. In these 
ases within 3 heart-beatperiods the failures of all these agents were dete
ted, and it took about 100 se
onds additionalfor the new 
on�guration with �ve registry agents to be operational.For update requests, we measured the time taken to propagate the updates to all the registryagents. The average value for the update propagation delay was observed to be 23.7 se
ondsfor 5 registry agents. We also measured the distribution of 
lient requests a
ross the deployedregistry agents. As a 
lient would randomly pi
k a registry agent for lookup, all the deployedregistry agents are expe
ted to share equal amount of load. Thus for 5 registry agents theexpe
ted fra
tion of load shared by ea
h agent is 0.2. We observed that average deviation fromthis expe
ted fra
tion of load was 6% for the duration of 2 hours with total 19 registry agent
rashes.The experiments des
ribed above performed evaluation of the integrated system and mea-sured the overall performan
e and s
alability of all the me
hanisms dis
ussed earlier su
h asservi
e 
apa
ity estimation, 
apa
ity s
aling and load distribution me
hanisms.



Chapter 7
Con
lusion
We have demonstrated here the performan
e of the autonomi
 me
hanisms we developed forbuilding s
alable servi
es on shared 
omputing platforms without any node availability guaran-tees and resour
e 
apa
ity reservations.Dynami
 repli
ation of servi
e 
omponents is essential in su
h environments to 
ope withthe 
u
tuations in available resour
e 
apa
ities as well as 
u
tuations in 
lient load. We havepresented here a model for servi
e s
aling through dynami
 
ontrol of the degree of servi
erepli
ation. This model is based on maintaining a 
ertain level of sla
k (ex
ess) 
apa
ity inthe system. We evaluated the impa
t of di�erent sla
k levels on servi
e performan
e. Sin
e theresour
e 
apa
ity available at a node is not guaranteed, we need online models for predi
ting theresour
e 
apa
ity likely to be available in the near future at a given node as well as estimatingthe request handling 
apa
ity of the servi
e repli
a hosted on that node. We presented here amodel for predi
ting resour
e 
apa
ity available on a node based on its re
ently observed load
onditions. We developed an online model for workload ben
hmarking to 
apture the per-requestresour
e requirements. For adaptive load distribution, we developed me
hanisms whi
h operateat the registry as well as repli
a level. We developed a token-based model for �ne-grain loadbalan
ing a
ross the servi
e repli
as based on their servi
e 
apa
ities.For experimental evaluation of our servi
e s
aling me
hanisms, we developed a frameworkover the PlanetLab. The 
omponents of this framework are designed for resilien
y by relying

57



58on soft-state based operations. We evaluated the performan
e of our servi
e s
aling models andme
hanisms using this framework. Following are the important 
on
lusions of our work.� In this paper we presented an online model for predi
ting resour
e 
apa
ities likely to beavailable in the near future. Our experiments showed that for any desired 
on�den
e level,our dynami
 predi
tion model 
an predi
t available resour
e 
apa
ity with 95% a

ura
y.� We demonstrated here the bene�ts of the 
apa
ity sla
k model. We showed s
alable per-forman
e with 30% sla
k for a workload exhibiting 
ash 
rowds with ten-fold in
rease inthe load.� We presented here me
hanisms for adaptive load distribution whi
h operate at two levels;registry-level (
entralized) and repli
a-level (de
entralized). These me
hanisms limit theload deviation to around 15% even under 
onditions su
h as 
ash 
rowds. The loaddistribution me
hanisms at repli
a level 
an distribute load with 75% a

ura
y even whenthe registry servi
e is unavailable.In summary, our work demonstrates that a large number of shared resour
es without anyguarantee of available resour
e 
apa
ities 
an be utilized for building autonomi
ally s
alable andresilient servi
es.
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