Robustness and Security in a Mobile-Agent based Network Monitoring System *

A. Tripathi, M. Koka, S. Karanth, 1. Osipkov, H. Talkad, T. Ahmed, D. Johnson, and S. Dier
Department of Computer Science, University of Minnesota, Minneapolis MN 55455

1. Introduction

We present here the mechanisms for self-recovery in
Konark?® [2], a mobile agent based system for monitoring
network computing systems. An important aspect of our de-
sign is the use of the monitoring system’s inherent capa-
bilities to detect its own component failures. The Konark
system is implemented using Ajanta [1]. Each host runs
an agent server to support execution of mobile agents. The
main functions of an agent fall into three broad categories:
execution of local detector functions, event notification, and
subscription and correlation of events from other agents. A
monitor agent is launched with a variety of detectors for de-
tecting basic events at its host. A detector can be triggered
by events that are generated by other detectors using trigger-
ing dependencies maintained in a trigger table. Each detec-
tor has a handler object, which sends the generated events
to their subscribers. System Management Agents (SMAS)
are primarily responsible for managing system-wide mon-
itoring policies. They typically run on secure hosts (possi-
bly replicated for fault tolerance), launch monitor agents to
hosts, and remotely control and modify these agents. The
monitoring configuration is checkpointed, whenever it is
updated by the administrators.

2. Robustness of the Monitoring System

Our monitoring system achieves robustness by in-
corporating mechanisms for self-monitoring and self-
configuration at different levels of the system architecture.
The event detection, correlation, and notification mech-
anisms are used as the basic building blocks for failure
detection. Our design uses the notion of continuous peri-
odic detection and notification of a failure event until the
failed components causing it are repaired.

The recovery mechanisms are designed to address fail-
ures of hosts, agent servers, agents, and detectors. A host
crash implies crash of its agent server and all agents run-
ning on it. Agent servers may also crash independent of

* This work was supported by National Science Foundation grant
ANI 0087514.
1 Further information can be found at http://www.cs.umn.edu/Ajanta

LEGEND
OO0 FDA: Failure Detector Agent
D D D RA: Recovery Agent
Intranet SMA: System Management Agent
— Install & Manage

D D D ---» Recovery

> Detection

! Fault tolerant agent pair

..............................

.............

| Configuration Database and Policies |

Figure 1. Recovery architecture

their host crashes, or they may fail partially. The recovery
of an agent server requires restoring all agents that are per-
manently installed at that server for performing monitoring
functions. The agents themselves may fail in unpredictable
ways. They may incur partial failures or fail completely and
stop communicating with other components. When a detec-
tor, which runs as a separate thread within an agent, fails and
stops performing its monitoring functions, it is remotely re-
placed with a new one by a remote agent performing recov-
ery actions.

The state of an agent consists of various detectors and
the events that it should subscribe to from other agents in
the system. Information about any new subscriptions regis-
tered by an agent during its execution forms soft state and
is reconstructed through interactions with other agents dur-
ing recovery, where as the remaining configuration is check-
pointed by SMAs. Soft state alleviates the checkpointing
overhead. Most of the detectors are either state-less or they
maintain soft state, i.e. they are designed to reconstruct the
state when restarted. For example, the soft state of a detec-
tor processing log file events consists of the position offset
in the log file for the last processed event. On restart, the de-
tector obtains this information from the event databases.

Figure 1 shows the central components of this system for
performing self-monitoring and recovery. In addition to the
System Management Agent (SMA), recovery involves two
other kinds of agents: Failure Detection Agent (FDA) and
Recovery Agent (RA). Any monitoring agents can be used

to perform these functionalities by adding required detec-
tors and handlers. The System Management Agent installs
a configuration for self-monitoring by dispatching Failure
Detection Agents and Recovery Agents at various hosts.

Figure 2 illustrates the interactions among these compo-
nents. Each agent is equipped with an AgentAliveDetector,
which periodically checks the internal state of the agent and
generates appropriate heart-beat AgentAlive events to indi-
cate the health of the agent. An AgentAlive event contains
a list of detectors which are functioning in the agent. This
event also contains a current configuration number. When-
ever an agent’s configuration is changed with the addition
or deletion of a detector, this number is incremented. This
number is also incremented when an agent is re-launched on
recovery. The purpose of this is two-fold: first to make sure
that the subscribers of an AgentAlive message would note
that the configuration has changed; second, it is used to ig-
nore any failure events related to old configurations.

Each Failure Detection Agent subscribes to AgentAlive
events from all agents in the system (step 1). If no such
event is received from an agent over a pre-defined number
of consecutive timeout periods, it generates an AgentFailure
event (step 2). It keeps on generating such events until the
agent is restarted and a heart-beat message is received, or
the configuration information is altered to ignore that agent.
When a heart-beat message is received, the Failure Detec-
tion Agent compares the list of detectors in the event with
its configuration information. It generates an AgentFailure
event if a detector is found to be missing.

A Recovery Agent implements recovery procedure in the
handler associated with the AgentFailure event (step 4). The
recovery action is executed by one of the Recovery Agents,
as described below. The recovery agent performs the fol-
lowing kinds of recovery functions. On a detector failure at
an agent, it tries to re-install that detector. On agent fail-
ure, it recreates the agent based on its most recent configu-
ration information, and re-launches it to the target host. Be-
fore sending the agent, it makes sure that the target host,
its agent server, and RMI registry are running. Otherwise it
first tries to restart them. To recover a failed System Man-
agement Agent, it recreates it with the most recent check-
pointed configuration state.

Two or more Failure Detector Agents execute at differ-
ent nodes and monitor each other to make sure that the loss
of a Failure Detection Agent is detected and a new agent
is created in its place. A pair of recovery agents execut-
ing on different hosts subscribe to the failure events gen-
erated by the Failure Detection Agents. This pair works in
primary-backup mode — i.e., only the agent in the primary
mode initiates any required recovery action. Failure De-
tection Agents also monitor the Recovery Agent pair. The
agent in the backup mode becomes the primary when an
event indicating the primary agent’s failure is received.

(Agent). Subscribedevents . Agent
N B LEGEND

. S [Heart-beat events
Qg0

Sup =

U,

I >
gy D)

W Agent Failure events

=
S
=
S
3
2

Oy~ .
Uy -
Oy "~
&Y

Figure 2. Recovery of a Monitoring Agent

When an agent is restarted at a host, it does not have
any information about its subscriber agents. In our model,
the subscribers are required to register themselves with the
event publishers to get the events of interest. Therefore,
when an agent failure is detected, we need to inform all
of its subscribers of this failure event. To facilitate this,
each AgentAlive event from an agent also contains the list
of its current subscribers. On detecting an agent failure, the
Failure Detection Agent sends the AgentFailure event to all
of its subscribers (step 3). Each agent maintains a list of
events that it subscribes to from other agents. It also main-
tains a list of outstanding-subscriptions, containing the list
of agents with whom it has not yet succeeded in register-
ing its subscriptions. Failed agents are added to this list for
re-subscriptions. EventSubscriptionThread in an agent peri-
odically attempts to register subscriptions with the agents in
this list and remove them from the list on success.

3. Security of the Monitoring System

Security becomes an important issue as monitoring sys-
tem needs to run in untrusted domains and security require-
ments also arises as a direct result of system capabilities. Se-
curity is ensured by using agent server’s capabilities to cre-
ate distinct protection domains for agents to execute, and to
enforce agent admission control and resource access poli-
cies, using the set of unforgeable credentials agents pos-
sess. These policies can be changed dynamically. Agents
also enforce policies specified by their owners, maintain a
list of authorized subscribers and senders with whom they
communicate using authenticated inter-agent communica-
tion provided by Ajanta.

References

[1] N. Karnik and A. Tripathi. Security in the Ajanta Mobile
Agent System. Software Practice and Experience, 31(4):301-

329, April 2001.
[2] A R.Tripathi, M. Koka, S. Karanth, A. Pathak, and T. Ahmed.

Secure Multi-Agent Coordination in a Network Monitoring
System. In Software Engineering for Large-Scale Multi-Agent
Systems, Springer, LNCS 2603, pages 251- 266, 2003.

