
Exception Handling in CSCW Applications in
Pervasive Computing Environments

Anand R. Tripathi�, Devdatta Kulkarni, and Tanvir Ahmed

Department of Computer Science,
University of Minnesota, Minneapolis, MN 55455 U.S.A.

{tripathi, dkulk, tahmed}@cs.umn.edu

Abstract. In this paper we present conceptual foundations of an excep-
tion handling model for context-aware CSCW applications. Human par-
ticipation in the recovery actions is an integral part of this model. Role
abstraction is provided with an exception interface through which the
role members can perform exception handling actions. Exception han-
dling involving multiple role members is also supported through inter-
role exception propagation mechanisms provided in the model.

1 Introduction

There is a growing interest in building context-aware applications and pervasive
computing environments that allow mobile users to seamlessly access computing
resources to perform their activities while moving across different computing
domains and physical spaces [1,2,3]. A typical user is generally involved in many
activities such as office workflow tasks, distributed meetings, collaborative tasks,
personal activities such as shopping or entertainment. Many of these activities
may involve multiple users collaborating on some shared tasks. Applications
built for such environments are characterized by dynamic integration of large
number of components based on the user context and ambient conditions. These
characteristics impart a malleable nature to these applications giving rise to
different kinds of error conditions and abnormal situations which are caused by
following kinds of failures:

– Context-based dynamic resource discovery and binding may fail because of
unavailability of required type of resources in the environment.

– Failures could arise while accessing the resources/services because of incom-
patible resource access protocols or insufficient security privileges. Also a
resource may encounter internal failures.

– Some users working towards a common goal in a collaborative application
may fail to perform certain obligated tasks. This may affect other users in
the collaboration.

– Events occurring in the physical world may affect the application. These
events may violate the application’s assumptions about the state of the ex-
ternal world.

� This work was supported by NSF grant 0411961.

C. Dony et al. (Eds.):Exception Handling, LNCS 4119, pp. 161–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 A.R. Tripathi, D. Kulkarni, and T. Ahmed

In such applications context can be classified into two categories: internal
and external. The internal context of a CSCW (computer supported collabo-
rative work) application is related to the execution state of its various tasks.
The external context represents the attributes that are related to the physical
environment. A user’s external context may be defined in terms of a number of
different kinds of attributes, such as the user’s current physical location (GPS,
presence in a building or room, proximity to certain devices or users), the Inter-
net domain in which the user is currently present, or devices through which the
user is interacting with the environment.

We have developed a programming framework for building context-aware
CSCW applications in pervasive computing environments [4,5]. In this frame-
work, such applications are built from their high level specifications expressed
in XML and realized through a distributed middleware [6]. The specification
model provides the abstraction of roles for users to participate in an activity.
This specification model is essentially a composition framework for integrating
users, application-defined components, and infrastructure services/resources to
build the runtime environment of a context-aware CSCW application.

In this paper we present a methodology for handling error conditions and
abnormal situations arising in context-aware CSCW applications. The method-
ology is based on programmed error handling wherein exceptions are used for
representing different types of failures encountered by an application and ex-
ception handlers are built into the application to perform recovery actions. We
present different failure categories to motivate the exception handling require-
ments in context-aware CSCW applications. Human participation in exception
handling is an integral part of error recovery in such applications. Towards that
end, the exception handling model provides mechanisms for involving role mem-
bers in handling exceptions and for propagating exceptions from one role to
another.

Section 2 describes our specification model for building context-aware CSCW
applications in pervasive computing environments. In Section 3 we present a cat-
egorization of the error conditions arising in these applications. We also present
the exception handling requirements for context-aware CSCW applications in
this section. In Section 4 we present a model for exception handling in our role-
based programming framework and we demonstrate its capabilities through two
examples in Section 5. In Section 6 we discuss related work and conclude in
Section 7.

2 Specification Model for Context-Aware CSCW Systems

We present here an overview of the collaboration specification model which we
have developed [5,4]. A CSCW application is modeled as an activity. Activity
defines three things: a set of objects representing shared resources and infras-
tructure services, a set of roles through which a group of users cooperate towards
some common objectives by performing tasks involving shared resources and in-
frastructure services, and a set of actions (called reactions) that are triggered by

Exception Handling in CSCW Applications 163

events occurring within an activity or events occurring in the external physical
environment.

The shared resources/services required by an activity may be created by the
activity or discovered in the environment. Resources are described using RDD,
which is an XML schema based on RDF [7] and WSDL [8]. An RDD for a resource
includes the attribute-value pairs describing the resource, the interfaces, and the
events that are exported by the resource.

A user joins one or more roles in the activity, and a role represents authoriza-
tion of its members to invoke a set of operations on shared objects to perform
tasks in the collaboration space. A precondition associated with a role operation
must be satisfied to execute the operation. These preconditions are based on
both internal and external events.

Both internal and external context can affect various aspects of the activity.
The binding of the shared resources/services may need to be changed based on
the context, and the role operation precondition may also depend on the context.

Activity activityName
{Parameter objName}
{Object [Collection] objName RDD rddSpec }
{Bind Binding-Definition}
{Reaction Reaction-Definition}
{Role Role-Definition}

Fig. 1. Activity Syntax

We represent activity specifications through an XML schema. Here, rather than
using XML, we use a notation that is conceptually easy to follow. In Figure 1, the
syntax for the XML schema for activity definition is shown, where [] represents
optional terms, { } represents zero or more terms, | represents choice, and boldface
terms represent tags for elements and attributes in XML schema. In this paper we
do not address exception handling with nested activities.

Specification of a sample CSCW application, an exam session activity, is
shown in Figure 2. Two roles are defined in the exam session activity, Student
and Examiner. Multiple users can be present in both the roles. The Student role
is provided with operations for taking the exam such as: StartExam, WriteExam,
and SubmitExam. The Examiner role is provided with the operation GradeExam
for grading the exam. We use the exam session activity to demonstrate the speci-
fication model in this section and extend it to incorporate the exception handling
model in Section 4.

2.1 Event Based Coordination Model

Events are used for task coordination within an activity. Three types of events
are defined in the model: system defined events, application defined events, and

164 A.R. Tripathi, D. Kulkarni, and T. Ahmed

1. Activity ExamSession
2. Object examPaper
3 Object Collection StudentAnswers
4. Bind examPaper With direct (//ExamPaperURL)
5. Role Student
6. Object answerBook
7. Bind answerBook With new (//AnswerBookCodeBase)
8. Operation StartExam
9. Precondition true
10. Action answerBook.startExam()
11. Operation WriteExam
12. Precondition #StartExam.start(invoker=thisUser) > 0
13. Action answerBook.writeExam()
14. Operation SubmitExam
15. Precondition #StartExam.start(invoker=thisUser) > 0
16. Action Bind answerBook With StudentAnswers
17. Role Examiner
18. Operation GradeExam
19. Precondition #Student.SubmitExam.finish > 0
20. Action StudentAnswers.gradeExam()

Fig. 2. Exam Session Activity Specification

external world events. System defined events are start and finish events associ-
ated with each role operation, and they are generated by the middleware im-
plicitly. Application defined events are signaled explicitly using the NotifyEvent
construct defined in the specification model. The role name, role member name,
and the event to be notified are given as parameters to this construct. The ex-
ternal world events are notified to the activity through the shared resources and
services bound in the activity scope.

Operation start and finish events have two predefined attributes: invoker and
time. The history of occurrences of an event type is represented by an event list.
The specification model supports various functions on event lists. The count-
operator # returns the number of events of a given type that have occurred so
far, and a sublist of these events can be obtained by applying a selector predicate.

2.2 Role, Operation, and Reaction

A role in an activity defines two things: an object space for the role members
and a set operations that are executed by the role members on objects defined
within the activity scope or the role scope. The objects declared within a role
represent a separate namespace created for each member in the role, and binding
of these names is performed independently for each member.

A role operation can only be invoked by a member in the role. A role operation
can have precondition that must be satisfied before the operation is executed.

Exception Handling in CSCW Applications 165

These preconditions are expressed in terms of predicates based on events occur-
ring within the activity, role memberships of participants, and query methods of
the environmental resources representing external context information. In con-
trast to an operation, a reaction is not invoked by a user but is automatically
executed when certain events occur. Reactions are specified in the activity scope.
Similar to an operation, a reaction is executed only when its precondition is true.
Figure 3 presents the syntax of a role definition.

The variable thisUser is used in our specification framework for identifying
the role member who is invoking a particular role operation. A boolean function
member(thisUser, roleId) is defined for checking the role membership of the
user invoking the role operation. The function members(roleId) returns the
role member list. Set operations can be performed on role member lists. A count
operator, #, can be applied on a member list. The count of the members in a
role is #(members(roleId)).

In the exam session activity, the operations WriteExam and SubmitExam can
only be performed by a Student role member if that role member has previously
performed StartExam role operation. This is specified as the preconditions for
WriteExam (line 12) and SubmitExam operations (line 15). The Examiner can
perform GradeExam operation only after Student role members have finished
executing the SubmitExam role operation. This is specified as precondition to
the GradeExam role operation (line 19).

A role also has admission constraints and activation constraints associated
with it. We do not discuss them here as they are not related to the exception
handling model presented here.

Role roleName
{Object [Collection] objName RDD rddSpec }
{Bind Binding-Definition}
{Operation Operation-Name}

[Precondition Condition]
[Action {objId methodSignature methodParameter}]

Fig. 3. Syntax for role definition

2.3 Binding Specification

Resources and services required as part of the activity or a role can be specified
using the Bind primitive in four different ways as shown below.

1. Binding to a new object: The binding primitive with new specifies that a new
resource of the specified codebase type should be created. For example, in the
exam session activity, an AnswerBook object is created and bound to the name
answerBook as shown in line 7 of Figure 2. This binding is specified inside the
Student role scope since a separate answerBook object needs to be created for
each Student role member.

166 A.R. Tripathi, D. Kulkarni, and T. Ahmed

2. Binding to an existing resource through URL: This form of binding primitive
with direct specifies that the resource identified by the given URL should be
used in binding. For example, in the exam session activity, the URL of the
ExamPaper might be well-known. Such a direct binding is shown in line 4 of
Figure 2.
3. Binding to another object: This type of binding is used to export a resource,
created as part of a role, to the activity scope. For example, in the exam session
activity the answerBook object for every Student role member is exported to
the StudentAnswers collection (defined in line 3) as part of the SubmitExam role
operation (line 16).
4. Binding through discovery: This form of the binding primitive is useful when
a resource with a particular set of attributes is needed to be discovered in the
environment. In the example below, we present specification of a museum infor-
mation desk activity. A separate activity is instantiated for each museum visitor.
In this activity, the audio channel of user’s device needs to be bound with the
audio player based on the user’s location and also taking into consideration
the user’s choice of the language. In this example, the audioChannel object is
re-binded when there is a change in the user’s location, indicated by the Lo-
cationChangeEvent generated by the locationService when the visitor’s location
changes. Discover primitive used in binding the audioChannel object specifies the
location attribute and the preferred language in the Audio-Channel-Description
to be used during resource discovery.

Activity Museum Infodesk
Object locationService RDD Location-Service-Description
Parameter userPreference
Bind locationService With direct(//LocationServiceURL)

Role Visitor
Object audioChannel RDD Audio-Channel-Description
Bind audioChannel When LocationChangeEvent(thisUser)

With discover(<location=locationService.getLocation(thisUser),
language=userPreference.preferredLanguage>)

Operation ListenAudio
Precondition true

Action audioChannel.listenAudio()

3 Failures in Context-Aware CSCW Applications

An activity encounters error conditions as a result of various failures occurring
in resources/infrastructure services being used by the activity [9]. Exceptions
are raised in the activity by the middleware to indicate these failures. Exception
handling actions are programmed in the activity to recover from the error condi-
tions. The exception based approach for handling failures decouples the activity
from the failure monitoring tasks corresponding to various resources/services
being used by the activity.

Exception Handling in CSCW Applications 167

In this section we identify various failure categories for context-aware CSCW
applications. We use several examples to demonstrate the nature of failures. We
identify requirements that need to be supported by an exception handling model
for handling these failures.

3.1 Resource Discovery and Binding Failure

Dynamic discovery and binding of resources based on the user context or appli-
cation context is one of the important aspects of context-aware applications. An
activity encounters an error when the discovery of the required type of resource
in the environment fails. Such errors are to be anticipated for applications in
the pervasive computing environments because of their highly dynamic nature.
Alternate resources may need to be discovered and bound to handle these er-
rors. In the worst case, if no appropriate resources are found, then users must
be involved in handling these errors.

Consider a museum infodesk activity in which users can bind to the audio
commentary of an artifact when they move close to the artifact. This discovery
and binding may fail if the audio commentary resource is not available in user’s
preferred language or if the audio commentary resource is not available at all.
The exception handling mechanism should allow the application to transparently
handle this exception by discovering and binding with audio commentary in
another language or may provide alternative operations to the user by binding
to the textual commentary for the artifact. The exception handling mechanism
thus needs to have the ability to perform automatic rebinding actions and should
also support alternate interfaces that are enabled depending on the objects that
are bound.

3.2 Resource Interaction Failure

Resource interactions may fail because of insufficient security privileges, incom-
patible interaction protocols, resources being busy, or internal resource failures.
For example, consider the exam session activity involving different students.
Multiple students may encounter errors while performing one of the operations
provided for the Student role because of operation failures. Each corresponding
exception should be handled separately for each student in its appropriate con-
text. There can be multiple ways to handle this exception. One way would be
to allow the student to re-execute the failed operation. Another way would be
to require the examiner to grant appropriate permission to the student to allow
retake of the exam. If there are multiple examiners, then any examiner may ap-
prove retaking of the exam. Still another way would be to require the particular
examiner who gave out the exam to approve a retake.

The exception handling mechanism needs to support exception propagation
across different roles as the recovery actions may require participation of mem-
bers in different roles. Furthermore, there should be a provision to specify whe-
ther the exception should be handled by any of the role members or a specific
role member. This further requires that each role supports a special interface,
i.e. a set of operations, for handling exceptions. This interface would be enabled
only for those role members that have to be involved in exception handling.

168 A.R. Tripathi, D. Kulkarni, and T. Ahmed

3.3 Obligation Failure

Obligation failures occur when the participants in a particular task fail to per-
form the required actions causing the progress of the task to stall. Consider
the exam session activity. There might be an obligation that once the exam is
started it must be submitted by the student before the alloted time is over.
An obligation failure occurs when a student taking the exam does not submit
it within the specified time. The handling of such an exception may consist of
performing a default action for the obligated role operation, without requiring
any user participation. Alternatively, it may also be communicated to some role
members for some human assisted recovery.

3.4 Environmental Failure

A task may depend upon external events for its progress. For example, consider
a workflow task for car reservation application involving two roles, Agent and
Renter. A task is started when a renter requests a car to be booked. The agent
reserves a car for the renter which the renter can pickup at the reservation time.
At the reservation time it may happen that the particular rented car is not
available because it may not be returned yet by the prior renter or because an
accident might have occurred to the car.

Such external events represent error conditions regarding an activity’s as-
sumptions about the state of its environment. These errors may be handled in
multiple ways. The workflow task can be structured so that it handles such errors
by providing an alternate car to the customer without involving the agent or the
renter. On the other hand, the customer might want to negotiate the type of the
alternate car with the rental facility. This requires restructuring the workflow
such that one of the Agent role members is involved in assigning an alternate
car to the renter.

Appropriate mechanisms are required for translating the external world events
to exceptions that represent failure of activity’s assumptions about the external
physical environment. Mechanisms are required for handling these exceptions
without any human intervention. Mechanisms are also required for propagating
these exceptions to different roles defined within an activity when human inter-
vention is needed in performing any restructuring of the workflow for recovery.

3.5 Summary of Error Handling Requirements in
Context-Aware CSCW Applications

Exceptions occur in three scopes corresponding to: role operation, role, and ac-
tivity. There is an hierarchical relationship between the three scopes. Activity is
the outermost scope. It encapsulates the role scope which encapsulates the role
operation scope.

Exceptions occurring in the role operation scope pertain to resource interaction
failures and obligation failures. Exceptions pertaining to resource discovery and
binding failures occur in the role scope. Exceptions occurring in the activity scope
pertain to resource discovery and binding failures and environmental failures.

Exception Handling in CSCW Applications 169

For developing an exception handling model for performing programmed error
recovery in context-aware CSCW applications we need to answer the following
questions:

– What mechanisms should be provided for handling exceptions in different
scopes?

– What mechanisms should be provided to support exception handling in-
volving role members? Furthermore, how to restrict the exception handler
invocation by a specific role member, any role member, or all role members?

– What mechanisms should be provided for propagating exceptions from one
role to another role?

– What mechanisms should be provided for restructuring an activity in re-
sponse to exceptions and external world events?

4 Model for Exception Handling in Context-Aware
CSCW Applications

We present the exception model that addresses the requirements identified in
Section 3. We extend the programming framework presented in Section 2 with
the exception handling model.

– There are three types of exception handlers: (1) those that are attached with
role operations and object binding constructs; (2) those that are attached
to the role abstraction; (3) those that are provided at the activity-level.
Exception handlers attached to the role abstraction require participation
from role members for exception handling.

– Exceptions may need to be propagated from the role operation scope to the
role scope or may need to be signaled from the activity scope to the role
scope. Exceptions may also be propagated from one role to another role.

– An exception encapsulates relevant information about the error occurrence
that is essential for exception handling. For example, an exception occurring
in the role operation scope, encapsulates the following information tuple:
<role name, role member name, role operation name>.

4.1 Exception Handling in the Role Operation Scope

Exceptions in the role operation scope arise due to the failures in executing the
associated action or failures corresponding to the non-execution of an obligated
operation. An exception handler is statically associated with each role operation,
following the termination model. The control-flow of the thread executing the
operation is automatically transfered from the operation’s action to the exception
handler associated with the operation.

Exceptions are propagated from the role operation scope to the role scope
if there is no exception handler attached with the operation or if the handler
encounters an exception or if the handler explicitly signals the exception. A han-
dler may explicitly signal an exception if handling the exception requires some

170 A.R. Tripathi, D. Kulkarni, and T. Ahmed

role member to perform certain actions. The inability to handle the exception
completely in the scope of the role operation indicates that it cannot be han-
dled automatically and an external human intervention is required to handle it.
Hence the exception is propagated to the role scope and the operation execution
context, corresponding to the failed operation, is terminated. Figure 4 shows the
exception handling in the role operation scope and role scope.

Activity Scope
Propagate Exception Signal Exception

Exception Handling Interface

Operation

Exception Propagation

Exception Handler

Exception Operation

Role Operation Scope

Role Scope

Fig. 4. Exception Handling in the scope of Role

The role operation specification is extended to include the specification of
an exception handler as shown in Figure 5. The exception handler is specified
using the OnException clause. The exception handler may perform a sequence
of actions specified through the Action clause, such as resource interaction, or
binding action, or it may signal the exception to the role scope using the Signal
clause. The signaling target is specified through the Target clause. The role that
encapsulates the role operation is used as the default target if no Target clause
is specified.

The role operation specification is extended to incorporate the specification
of an obligation as shown in Figure 5. The obligation specification consists of
the specification of an event whose occurrence after the occurrence of Event-of-
Interest causes the obligation to fail.

Figure 6 shows the exam session activity in which role operations are provided
with exception handlers. The SubmitExam role operation is specified to be an
obligation operation. The obligation exception is handled separately for each role
member. The exception handling action consist of automatically performing the
action specified as part of the operation (lines 9-12). It may also be propagated
to the role scope by re-signaling it. On the other hand, the WriteExam operation
failure is handled by allowing the student to retake the exam. Correspondingly

Exception Handling in CSCW Applications 171

Operation opName
[Obligation {Before Event After Event-of-Interest}]
[{OnException exceptionObject Type ExceptionType

(Action sequence of actions |
Signal (exceptionObject) Target TargetName) }]

Fig. 5. Operation Syntax: Modified to incorporate Exception Specification

the WriteExamFailedException is propagated to the Student role scope through
the Signal clause (line 16-17).

4.2 Exception Handling in the Role Scope

Exceptions raised in the role scope are those that are propagated from the role
operation’s scope or signaled from the activity’s scope. Role member partici-
pation is required for handling exceptions in the role scope. Exceptions may
be required to be handled by a specific role member, any role member, or all
role members. Each role is provided with an exception interface. The exception
interface is similar to the role’s operation interface in that it provides a set of op-
erations to be performed for exception handling. However, the difference is that
the exception interface operation can be executed only when a particular type
of exception is delivered to the exception interface. Every exception operation is
preceded by a When clause that specifies the exception which will enable that
operation. The exception interface supports a queuing model for exception de-
livery and handling. Every exception delivered to the exception interface queue
is handled separately. In conjunction with enabling the exception interface op-
eration, the delivered exception may also be further propagated to the activity
scope if exception handling needs to involve some other role’s members.

Consider again the exam session activity specification in Figure 6. An excep-
tion, WriteExamFailedException, is raised to indicate the failure of WriteExam
operation. Student role is provided with RetakeExam operation as part of its ex-
ception interface. This operation is enabled when an WriteExamFailedException
object is delivered to the exception interface of the Student role (line 19).

There are two requirements for handling this exception. First, we require that
students must receive an approval from the Examiner before they can invoke
the RetakeExam operation. Hence the WriteExamFailedException is propagated
to the activity scope (line 20) through which it is further propagated to the
exception interface of the Examiner role. Second, we require that the Retake-
Exam operation be enabled for only those role members who have encountered
the failure. Such an access restriction on the invocation of exception interface
operations is achieved through the specification of a special qualifier Invoker in
the Enable-For clause (line 21). In our specification model three qualifiers are
defined to be used in the Enable-For clause. These correspond to Invoker, ANY,
and ALL. The qualifier Invoker restricts the accessibility of the exception op-
eration to only that role member whose invocation of an operation resulted in

172 A.R. Tripathi, D. Kulkarni, and T. Ahmed

1. Activity ExamSession
2. Object examPaper

Object Collection StudentAnswers
Bind examPaper With direct (//ExamPaperURL)

3. Role Student
4. Object answerBook

Bind answerBook With new (//AnswerBookCodeBase)
5. Operation StartExam

...
6. Operation SubmitExam
7. Precondition #StartExam.start(invoker=thisUser) > 0
8. Action Bind answerBook With StudentAnswers
9. Obligation
10. Before TimerEvent(3:00:00 hours)

After StartExam.start(invoker=thisUser)
11. OnException ExceptionObject Type ObligationFailedException
12. Action Bind answerBook With StudentAnswers
13. Operation WriteExam
14. Precondition #StartExam.start(invoker=thisUser) > 0
15. Action answerBook.writeExam()
16. OnException ExceptionObject Type OperationFailedException
17. Signal (new WriteExamFailedException)
18. Exception Interface
19. When ExceptionObject Type WriteExamFailedException
20. Signal (ExceptionObject)
21. Enable-For Invoker
22. Operation RetakeExam
23. Precondition

#Examiner.RetakeApprovedEvent(user=Invoker) > 0
24. Action
25. Bind answerBook With new (//AnswerBookCodeBase)
26. answerBook.writeExam()

27. Role Examiner
28. Exception Interface
29. When ExceptionObject Type ExamInterruptedException
30. Enable-For ANY
31. Operation ApproveRetakeExam
32. Precondition true
33. Action NotifyEvent
34. (Student, ExceptionObject.getRoleMemberName(),

RetakeApprovedEvent)

35. Reaction HandleOperationFailedException
36. When ExceptionObject Type WriteExamFailedException
37. Precondition member(ExceptionObject.getRoleName(), Student)
38. Signal (new ExamInterruptedException) Target Examiner

Fig. 6. Exam Session Activity Specification

Exception Handling in CSCW Applications 173

raising the exception which is being handled. The qualifier ANY allows any role
member to perform the exception operation, and the qualifier ALL requires all
the role members to perform the exception operation.

Thus a Student role member can invoke RetakeExam operation only when
the following two conditions are satisfied. First, the particular student role
member must have encountered OperationFailedException while performing the
WriteExam operation. Second, the Examiner role member must have explic-
itly approved retaking the exam for that particular Student role member. The
second condition is specified as a precondition for the RetakeExam operation
(lines 22-23). This precondition gets satisfied when the Examiner role mem-
ber notifies the RetakeApprovedEvent as part of the exception handling action
corresponding to the ExamInterruptedException delivered to it by the activity
(lines 31-34).

4.3 Exception Handling in the Activity Scope

Primitive

Exception
Handler

Role A Role B

Scope

Exception
Interface

Scope

Exception
Interface

Role OperationRole Operation

Exception Handler

Exception Handler

Exception Handler

Exception
Propagate
Exception

External
World
Events

Signal

Activity−level Exception Handler

Binding

Activity

Activity Wide
Binding

Fig. 7. Activity-level Exception Handling Model

Figure 7 shows the activity-level exception handling model. An activity-level
exception handler is modeled as a reaction. There are three kinds of exceptions
that occur in the activity scope: (1) the exceptions corresponding to the ab-
normal events occurring external to the activity; (2) exceptions occurring due
to binding failures corresponding to the activity-level resource binding require-
ments; (3) exceptions that are propagated from the role scope.

In Figure 6, the activity-level exception handler for the ExamSession activity
is shown in lines 35-38. This activity-level exception handler signals ExamInter-
ruptedException to the Examiner role if the WriteExamFailedException occurred
as part of some Student role member executing the WriteExam operation. The
exception interface specification for the Examiner role is shown in lines 27-34 in
Figure 6. The ApproveRetakeExam operation can be performed by any member

174 A.R. Tripathi, D. Kulkarni, and T. Ahmed

of the Examiner role. This is specified through the qualifier ANY meaning that
any member of the Examiner role can perform this operation. The Examiner
role member uses the ApproveRetakeExam operation for approving retaking of
the examination.

There can be multiple Student role members who may have encountered fail-
ures while executing the WriteExam operation and may require appropriate
approval. A RetakeApprovedEvent is generated corresponding to each such fail-
ure and is notified to the appropriate Student role member. This event causes
the precondition of the RetakeExam operation in the exception interface of the
Student role to become true (lines 23 of Figure 6) for that role member.

An activity-level exception handler may seem similar to the Guardian like
exception handler [10] for concurrent object-oriented systems. However there is
a crucial difference between the two. The guardian model of exception handling
is suited for timed asynchronous systems. The guardian handles an exception
by suspending all the participant processes and signaling appropriate exceptions
to the processes. Each process handles the exception according to its execution
context. CSCW applications are loosely coupled and asynchronous in nature.
Exception handling in such applications may require participation from human
users. Also, the generated exceptions may not be relevant immediately. Their ef-
fect may be felt by the application at some later stage. This is unlike synchronous
systems where exceptions affect the immediate execution of the application and
hence the exceptions need to be dealt with immediately.

The exception propagation model presented here loosely resembles the one
developed for mobile agent systems [11,12]. A scope defines a logical space of roles
through which agents coordinate with one another in [11]. Exceptions arising in
inter-agent coordination are propagated to all the agents present in the scope.
In [12] a specific agent is designated as the exception handling agent to which,
all the exceptions arising in an agent’s context, are propagated.

4.4 Discussion

Our exception propagation model does not propagate exceptions along the dy-
namic call chain. Instead, exceptions are propagated along the handlers that
are statically associated [13] with different scopes. We use this approach for the
following reasons:

– Exception propagation along the handlers that are statically associated with
different scopes allows determination of the complete exception handling
path for an exception at the activity design time.

– Restructuring of an activity, as part of the exception handling actions, is
specified at the activity design time. Such restructuring actions are relevant
only in the scope where an exception occurs and hence such actions should
be performed in the exception handlers associated with that scope.

– Propagating exceptions arising in the role operation scope along dynamic
call chain would mean propagating them directly to the role member who
invoked the operation. This is not appropriate in our role-based framework

Exception Handling in CSCW Applications 175

where users hold only as much privileges as are provided to them by the
role abstraction. Users may not have sufficient privileges or mechanisms for
handling exceptions that are directly propagated to them.

Concurrent exceptions may occur in an activity. We use a simple queuing
model which ensures that all the concurrent exceptions are handled in some serial
order. For example, multiple students may encounter failures while executing
the WriteExam operation. All the corresponding WriteExamFailedExceptions
are delivered to the exception interface queue of the Student role where they
are handled separately for each Student role member. Our current exception
handling model does not support exception resolution.

All the exceptions requiring participation of members from multiple roles
are propagated through the activity scope. This is a conscious design decision.
The set of roles that can participate in handling a particular exception can be
changed easily in a design by altering the activity-level exception handler for
that exception type.

5 Examples of Exception Handling in CSCW
Applications

In this section we present modeling examples of two context-aware CSCW ap-
plications. For each of these, we identify different error conditions and show how
these errors are programmatically addressed through the exception handling
model presented in Section 4.

5.1 Case Study 1: Car Rental Activity

The purpose of this example is to demonstrate handling of exceptions arising
due to external world events. Consider the car rental activity consisting of an
Agent role and a Renter role. A renter can reserve a car to be picked up at some
time. One of the error conditions in this workflow corresponds to the case where
the car is involved in an accident or has encountered a mechanical failure. Such
an error condition is handled as follows. An alternate car is searched and given
to the renter, if available. This action may fail if no alternate car is available. In
that case, the agent needs to be involved for providing alternate car by discussing
with the renter.

The specification of this activity is shown in Figure 8. The renter can book
a car through the BookCar operation (line 6). The carBooking object is used to
describe the requirements of the car. It is declared to be of type carRDD which
is a RDD of the car. A car satisfying the requirements specified in the RDD is
discovered from the car database and assigned id of the renter (lines 4-8).

The activity-level exception handler is defined as a reaction CarFailureRe-
action (line 16). This reaction gets triggered when it receives CarFailedEvent
which is an external event. The carRDD (not shown) specifies that this event is
imported from a car resource. This event is generated when there is any failure
associated with a car such as an accident.

176 A.R. Tripathi, D. Kulkarni, and T. Ahmed

1. Activity CarRental
2. Object carBooking RDD carRDD
3. Object carDatabase
4. Role Renter
5. Bind carBooking With discover (category=<car-category>)
6. Operation BookCar
7. Precondition true
8. Action carDatabase.reserveCar(carBooking, bookingId=thisUser)
9. Role Agent
10. Exception Interface
11. When ExceptionObject Type BookedCarFailureException
12. Enable-For ANY
13. Operation HandleCarRelatedFailure
14. Precondition true
15. Action // discuss with the renter
16. Reaction CarFailureReaction
17. When ExceptionObject Type CarFailedEvent
18. Precondition true
19. Action
20. carDatabase.provideAlternateCar(CarFailedEvent.getBookingId())
21. OnException ExceptionObject Type

AlternateCarNotAvailableException
22. Signal (new BookedCarFailureException) Target Agent

Fig. 8. Car Booking Activity Specification

The exception handling action consists of providing an alternate car to the
renter (lines 17-20). This action may also encounter failure. In that case, Booked-
CarFailureException is signaled to the Agent role (lines 21-22). This exception
enables the HandleCarRelatedFailure operation provided as part of the exception
interface of the Agent role. Any member of the Agent role can handle this event.
This is specified through the qualifier ANY for the Enable-For clause (line 12).

5.2 Case Study 2: Museum Infodesk Activity

The purpose of this example is to demonstrate handling of exceptions related to
resource discovery/binding and resource interaction.

Consider the museum infodesk activity where a Visitor role member discovers
and binds to the audio commentary object of an artifact based on the user’s
location. We consider two representative error conditions that can arise in such
context-based discovery and binding. First type of errors correspond to the case
where audio commentary is not available in the user’s desired language. This
failure occurs because there is a mismatch between the resource specification
and available resources. It can be handled by changing some aspects of resource
requirements and retrying resource discovery. Alternate resource specifications
may be specified at the activity design time. The museum infodesk activity can
bind with an audio commentary resource in another language.

Exception Handling in CSCW Applications 177

1. Activity Museum Infodesk
2. Object locService RDD Location-Service-Description
3. Bind locService With direct(//LocationServiceURL)
4. Object audioChannel RDD Audio-Channel-Description
5. Object textInterface RDD Text-Interface-Description
6. Role Visitor
7. Bind audioChannel When LocationChangeEvent(thisUser)
8. With discover(<location=locService.getLocation(thisUser),
9. language=”ENGLISH”>)
10. OnException ExceptionObject Type ResourceDiscoveryException
11. Action Bind audioChannel
12. With discover
13. (<location=locService.getLocation(thisUser),
14. language=”SPANISH”>)
15. Operation ListenAudio
16. Precondition true
17. Action audioChannel.listenAudio()
18. Exception Interface
19. When ExceptionObject Type AudioServiceFailedException
20. Enable-For Invoker
21. Operation ReadText
22. Precondition true
23. Action Bind textInterface With Direct
24. (//textInterfaceURL)
25. textInterface.readText()

Fig. 9. Museum Infodesk Activity Specification

Second type of errors correspond to the case where audio commentary object
encounters a failure while the user is listening to the commentary. As part of
exception handling, the museum infodesk activity may bind to the textual com-
mentary resource and present the appropriate interfaces to the role member.

The specification of this activity is shown in Figure 9. The activity consists of
a Visitor role. The objects corresponding to audio interface (audioChannel) and
text interface (textInterface) are declared in the activity scope. Binding of the
audioChannel object is performed whenever an event indicating a change in the
Visitor role member location is delivered (lines 7-9). A resource that matches
Audio-Channel-Description for the new location and which provides commen-
tary in English language is searched. This discovery and binding action fails if
the audio commentary is not available in English. An exception, ResourceDis-
coveryException, is raised to denote this failure. The recovery action consists of
automatically retrying the discovery process by changing the requirement from
English language to Spanish language (lines 10-14).

The Visitor role member is provided ListenAudio operation (line 15) through
which the role member can listen the audio commentary. This operation en-
counters a AudioServiceFailedException if the audio object fails for some rea-
son. No exception handler is attached to this operation. Hence this exception is

178 A.R. Tripathi, D. Kulkarni, and T. Ahmed

propagated to the Visitor role’s exception interface (line 18-25). An operation
ReadText is defined (line 21) in the exception interface which gets enabled on the
receipt of AudioServiceFailedException. This operation allows the role member
to bind and use the textual interface of the artifact.

6 Related Work

Our work is related to research concerning exception handling in workflow sys-
tems [14,15,16,17,18]. In [14] a model for workflow failure handling that includes
both forward error recovery based on exception handling and backward error
recovery based on the notion of atomic workflow tasks is presented. Exceptions
generated in a subtask are propagated to its encapsulating task and are handled
there. Our exception handling model differs from this model along two aspects.
First, exception handlers are directly associated with role operations, roles, and
activities. Second, the model in [14] propagates exceptions along the task invoca-
tion hierarchy. Our exception propagation model allows exception propagation
across roles. Such inter-role exception propagation is required because of the
asynchronous and multi-user nature of CSCW applications.

A language for exception modeling based on event-condition-action (ECA)
paradigm, independent of any particular workflow system, is presented in [15].
Exception rules are compiled from this language and integrated with the under-
lying workflow system. In contrast to this, exceptions and exception handlers
are directly integrated with the activity specification in our approach.

A uniform framework for addressing data and process irregularities in work-
flow systems based on context-sensitive exception handling is presented in [16].
In their model, unanticipated exceptions are handled by human agents. Thus hu-
man assistance is enlisted as a last failure handling option. Human involvement
in exception handling is an intrinsic part of our model. Exception interfaces are
associated with roles and these interfaces are enabled only for those role members
that need to participate in exception handling.

Failures arising in pervasive computing environments are considered in [19].
The failure categories presented in [19] correspond to device failures, application
failures, network failures, and service failures. The resource interaction failure
defined in this paper can effectively model application, network and service fail-
ures. We also consider errors arising due to failures in context-aware resource
discovery and binding, obligation failures, and errors corresponding to the ex-
ternal world events that represent violations of application’s assumptions about
the external world. They propose failure handling through heart-beat based
status monitoring, redundant provisioning of alternate services/applications,
and restarting failed applications. In contrast to this, we present application
level exception handling mechanisms for programmed error recovery in such
applications.

The interference issues arising in software services deployed in home environ-
ments are considered in [20]. Interference can be considered as a form of failure
occurring in concurrent resource access in home environments. A resource access

Exception Handling in CSCW Applications 179

model based on locking primitives for preventing such interferences is presented
in [20]. Such concurrent resource access can be modeled as error conditions cor-
responding to the external world events that represent resource interference.

7 Conclusions

In this paper we have presented an exception handling model for programmed
error recovery in context-aware CSCW applications. The salient feature of this
model is the exception interface abstraction through which role members can
participate in exception handling. The exception propagation model consists of
propagating exceptions along the handlers that are statically determined based
on the exception occurrence scope. Our earlier specification model [5] is extended
to incorporate the exception handling model. Capabilities of the exception han-
dling model are demonstrated through three different context-aware CSCW
applications.

References

1. MIT: (Project Oxygen) Available at url http://oxygen.lcs.mit.edu/.
2. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal

Communications 8 (2001) 10–17
3. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In:

IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
CA, US (1994) 85–90

4. Tripathi, A., Kulkarni, D., Ahmed, T.: A Specification Model for Context-Based
Collaborative Applications. Elsevier Journal on Pervasive and Mobile Computing
1 (2005) 21 – 42

5. Tripathi, A., Ahmed, T., Kumar, R.: Specification of Secure Distributed Collab-
oration Systems. In: IEEE International Symposium on Autonomous Distributed
Systems (ISADS). (2003) 149–156

6. Tripathi, A., Ahmed, T., Kumar, R., Jaman, S.: Design of a Policy-Driven
Middleware for Secure Distributed Collaboration. In: Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS). (2002)
393 – 400

7. RDF: Resource Description Framework (RDF) (1999) Available at url
http://www.w3.org/RDF/.

8. WSDL: Web Services Description Language (WSDL) 1.1 (2001) Available at url
http://www.w3.org/TR/wsdl.

9. Randell, B., Lee, P., Treleaven, P.C.: Reliability Issues in Computing System
Design. ACM Comput. Surv. 10 (1978) 123–165

10. Miller, R., Tripathi, A.: The Guardian Model and Primitives for Exception Han-
dling in Distributed Systems. IEEE Transactions on Software Engineering 30
(2004) 1008 – 1022

11. Iliasov, A., Romanovsky, A.: CAMA: Structured Coordination Space and Ex-
ception Propagation Mechanism for Mobile Agents. In: ECOOP Workshop on
Exception Handling. (2005)

180 A.R. Tripathi, D. Kulkarni, and T. Ahmed

12. Tripathi, A., Miller, R.: Exception Handling in Agent-Oriented Systems. In: Ad-
vances in Exception Handling Techniques, LNCS 2022, Berlin Heidelberg, Springer-
Verlag (January 2001) 128–146

13. Knudsen, J.L.: Better Exception-Handling in Block-Structured Systems. IEEE
Software 4 (1987) 40 – 49

14. Hagen, C., Alonso, G.: Exception Handling in Workflow Management Systems.
IEEE Transactions on Software Engineering 26 (2000) 943–958

15. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Trans. Database Syst. 24
(1999) 405–451

16. Murata, T., Borgida, A.: Handling of Irregularities in Human Centered Systems:
A Unified Framework for Data and Processes. IEEE Transactions on Software
Engineering 26 (2000) 959–977

17. Li, J., Mai, Y., Butler, G.: Implementing Exception Handling Policies for Workflow
Management System. In: Software Engineering Conference, 2003. Tenth Asia-
Pacific. (2003) 564 – 573

18. Chiu, D.K.W., Li, Q., Karlapalem, K.: Exception Handling with Workflow Evo-
lution in ADOME-WFMS: a Taxonomy and Resolution techniques. SIGGROUP
Bull. 20 (1999) 8–8

19. Chetan, S., Ranganathan, A., Campbell, R.: Towards Fault Tolerant Pervasive
Computing. IEEE Technology and Society 24 (2005) 38 – 44

20. Kolberg, M., Magill, E., Wilson, M.: Compatibility Issues Between Services
Supporting Networked Appliances. IEEE Communications Magazine 41 (2003)
136 – 147

	Introduction
	Specification Model for Context-Aware CSCW Systems
	Event Based Coordination Model
	Role, Operation, and Reaction
	Binding Specification

	Failures in Context-Aware CSCW Applications
	Resource Discovery and Binding Failure
	Resource Interaction Failure
	Obligation Failure
	Environmental Failure
	Summary of Error Handling Requirements in Context-Aware CSCW Applications

	Model for Exception Handling in Context-Aware CSCW Applications
	Exception Handling in the Role Operation Scope
	Exception Handling in the Role Scope
	Exception Handling in the Activity Scope
	Discussion

	Examples of Exception Handling in CSCW Applications
	Case Study 1: Car Rental Activity
	Case Study 2: Museum Infodesk Activity

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

