SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

Experiences and Future Challenges in Mobile Agent

Programming
Anand R. Tripathi, Tanvir Ahmed, Neeran M. Karnik

Abstract—

The current research in mobile agent systems has demon-
strated the utility of this paradigm in building a wide range
of distributed applications and systems. We present in this
paper the promising areas for mobile agent based applica-
tions. These range from distributed collaborations, to net-
work management, to personal assistants over the Internet.
There are many mobile agent programming platforms avail-
able today. A large cross-section of these are based on Java.
The design of a mobile agent programming platform requires
addressing several important problems. In this paper we
discuss these design issues, and show how some of the con-
temporary mobile agent systems have addressed these in
their designs. We focus particularly on the Ajanta system,
which is a good representative of modern Java-based agent
programming platforms. We present here two applications
developed using Ajanta, and based on our experiences we
present the future challenges for research in this field.

Keywords: Internet programming, Internet agents, mobile
agents, mobile code, mobile objects, distributed computing, security,
fault tolerance

I. INTRODUCTION

A mobile agent is a program which represents a user in
a network and is capable of migrating autonomously from
node to node, performing computations on behalf of that
user. It represents an activity whose execution state is
preserved on migration, and the agent’s execution resumes
with this state after it is transported to the destination
node.

The main advantages of the mobile agent paradigm lie in
its ability to move client code and computation to remote
server resources, and in permitting increased asynchrony
in client-server interactions[15]. By moving computation
close to the needed resources, this paradigm can reduce
network communication, thus reducing bandwidth require-
ments and latency. Agents can be used for information
searching, filtering and retrieval, or for electronic commerce
on the Web, and for system administration tasks.

The current research interest in mobile agent technol-
ogy is largely driven by the wide-spread commercial utility
of the Internet in our daily life, and the general need for
ubiquitous access to computing resources and information
services. It has been propelled by the emergence of Java
as a universally available mobile code technology[31]. Mo-
bile code technology allows transportation and execution of
program code across networks of heterogeneous machines;
the program execution is guaranteed to conform to the pre-
scribed semantics.

Department of Computer Science, University of Minnesota, Min-
neapolis MN 55455

Now with IBM India Research Lab, New Delhi.
kneeran@in.ibm.com

Email:

In the early 1990s, General Magic developed the Tele-
script[34] language for mobile agent based network comput-
ing. It was followed by research systems like Tacoma[18]
and Agent Tcl[13]. These two systems were based on script-
ing languages such as a Perl and Tcl. The primary focus
of these systems was to demonstrate the agent paradigm.
They lacked several important and desirable features in
regard to security and programming abstractions. The
emergence of Java led to the next generation of systems
that leveraged its object-orientation and security features.
In addition to code mobility, Java also provides a secu-
rity architecture that helps in constructing suitable solu-
tions for the security problems in mobile agent systems.
Aglets[20], Voyager[25], Concordia[24] , Mole[28], Suma-
tra[27], and Ara[26] are examples of the first-generation
Java-based mobile agent systems.

Many of these early mobile agent systems demonstrated
the basic utility and functionality of the agent paradigm.
Some of them (or their later versions), and other subse-
quently developed systems have addressed a broader class
of issues related to mobility, security, and robustness. How-
ever, the field of mobile agent programming is still in its
early stages of development due to several challenging ob-
stacles, which need to be addressed in order to realize the
full benefits of this paradigm through the deployment of
a wide range of agent-based applications. The various
research systems and prototypes developed in the recent
years have helped the research community in building a
better understanding of the solutions needed in practical
systems for mobile agent programming.

The focus of this paper is on the current state of experi-
ences in designing and utilizing mobile agent programming
platforms, and the future research challenages that pose
significant obstacles to widespread use of this paradigm.
We first describe, in Section 2, the various potential appli-
cations of the mobile agent paradigm. We then describe the
salient features of today’s mobile agent programming plat-
forms, with specific focus on the capabilities of the Ajanta
system. In Section 3, we describe our experiences in using
the Ajanta system. The focus of Section 4 is on the future
challenges for research and development in this area.

II. MOBILE AGENT BASED APPLICATIONS

The mobile agents technology is an alternative imple-
mentation choice among distributed object technologies.
However, the additional facilities provided by this tech-
nology make mobile agents suitable for several application
areas. Some promising areas of mobile agent based appli-
cations and how mobile agents facilitate them are discussed

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

below.

Internet-wide collaborative systems, especially workflow
systems, are one of the emerging application areas as In-
ternet is becoming the primary computing environment.
Mobile agents can provide the programming abstraction
for such applications for several reasons. They can asyn-
chronously execute coordination actions. Mobile agent
based programming paradigm can be exploited to imple-
ment workflow systems in disconnected environments as
mobile agents can carry along all the application specific
data and code. The mobility of a shared object can be ex-
ploited, when implemented as a mobile agent, by moving
it from one participant to another at various stages of a
workflow. Moreover, if a user’s interaction environment in
a workflow is implemented as a collection of mobile agents,
it is possible for a user to physically move to a different
node by simply directing its agents to migrate to that node.
We have implemented a mobile agent based collaborative
middleware which is used for implementing workflow ap-
plications [32]. This system is described in more detail in
Section 4.

In network management, stationary software agents like
SNMP agents are familiar. However, mobile agents based
implementation of network management and monitoring
systems has several advantages. Mobile agents can up-
date protocols or interfaces of networked components by
encapsulating the new protocols or interfaces and migrat-
ing to the corresponding nodes. Mobile agents can update
administrative policies dynamically and autonomously to
reflect the network changes. Moreover, mobile agents can
collaborate following an administrative hierarchy among
themselves, which provides a stronger integration among
networked tools and components. An example of mobile
agent based network monitoring application can be intru-
sion detection system. Mobile agents are suitable for such
applications as they can adapt dynamically with network
changes like network partitioning and can collaborate with
other agents to monitor the network.

Mobile agents can be utilized in different areas of
telecommunication networks. Mobile agent are used for
network traffic control and resource management [17],
where agents are launched in different nodes of a network.
These network nodes are classified as service switching
points, service control points, and intelligent peripherals,
where agents reside and participate with some strategy to
control network resources. A mobile agent based frame-
work for intelligent network and how such an architecture
can be used for multimedia and other services are discussed
in [4].

In the emerging computing environment of thin clients or
resource limited devices, also known as ubiquitous or per-
vasive computing, mobile agents can be deployed as proxies
to reduce system resource consumptions. For example, a
personalized mobile agent can be launched from a handheld
palm to the connecting server, where the agent can filter
web traffic, email, or any other application specific data.
Mobile agents provide a better solution to program these
environments as they can navigate and sense the network,

discover resources, and collaborate among themselves. Net-
work service subscription and service configuration in the
context of a universal mobile telecommunication system
based on mobile agents are discussed in [14].

Research in the area of active networking[30], [1] has also
relied on the use of mobile code to dynamically program the
functions of network layer components. The problems ad-
dressed there are very similar to those in building a mobile
agent programming infrastructure for open systems. How-
ever, the mobile agent paradigm represents a more gen-
eral model and facility for distributed applications than
active network systems whose functions tend to be mostly
confined to network level components. Mobile agent tech-
nology provides a rich set of abstractions for the needs in
active network research.

In mobile or wireless computing, mobile agents can play
an important role as the solution to deal with the difficul-
ties introduced by users’ mobility can be easily abstracted
in a mobile agent based middleware. Mobile agents can en-
capsulate the user’s computing environment including any
networked resources like filesystem. These agents can be
redirected when a user moves from a node to another in
the network. This migration of code and data provides a
flexible computing model for loosely connected or wireless
network as network resources are smartly distributed.

Mobile agents are used as personal assistants where
agents represent users and can migrate to a large pool of
service providers to get the best value. In e-commerce,
these personal assistants are used in a range of applica-
tions, from buying goods and services online to stock mar-
ket monitoring. Buyer and seller agents can act and nego-
tiate on behalf of their owners, which accomplishes a better
value for the participants. With mobile agent based per-
sonal assistants, buyers and seller can easily change their
marketing strategy encapsulated in the agents and dispatch
them on the web to meet their specific criteria. Moreover,
mobile agents based personal assistants can build commu-
nities of special interest groups on the web.

As the web is getting larger and more independently
maintained, it is difficult to get frequently changing infor-
mation in a timely manner and information which are not
indexed. This is due to the fact that indexing is done pe-
riodically. With mobile-agent based approach, agents can
be launched to the source of the data to index and report.
This will result in a finer grain model of information re-
trieval than the existing solutions. Agents for distributed
information retrievals are investigated by others [5], and
we present an example web search application in Section 4.

Another promising area is mobile agents based paral-
lel processing as an alternative to existing metacomput-
ing tools. In a mobile agents based distributed processing
environment, cooperating agents can partition tasks and
migrate to nodes with unused computing resources. This
kind of computing model can also utilize unused personal
computing resources. Mobile agents for distributed prob-
lem solving of large scale scientific simulation is presented
in [9].

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

III. FEATURES OF MOBILE AGENT PROGRAMMING
PLATFORMS

The design of a general purpose mobile agent program-
ming infrastructure for open systems such as the Internet
requires design choices and solutions to problems in several
areas. These include definition of a computation model
and related programming primitives, design of a naming
scheme and a reliable and secure name service, mechanisms
for agent mobility, security mechanisms to protect host
resources and agents, inter-agent communication mecha-
nisms, primitives for fault-tolerance and remote agent con-
trol, and support for program development and debugging
tools [22]. We discuss below the various design options
in regard to these aspects and how various mobile agent
platforms and Ajanta address them.

Ajantal[33], [21] is a Java-based framework for pro-
gramming mobile agent based applications on the Internet.
We developed the Ajanta system as a research infrastruc-
ture for secure distributed programming using mobile au-
tonomous objects. In Ajanta, the mobile agent implemen-
tation is based on the generic concept of a mobile object[19)].

In order to support an agent based application, a host
provide execution environment for visiting agents. Such fa-
cilities are typically called places or agent servers. An agent
server creates a confined execution environment for visiting
agents and allows the local resource owner to grant access
of its resources to agents in a selective manner. It provides
primitives for agents to migrate to other servers, commu-
nicate with each other, query their environment, etc.

A. Agent Mobility

There are two models for supporting agent mobility, In
the weak mobility model, on migration , the agent state
essentially consists of the agent’s program-defined data
structures, whereas the strong mobility model captures the
agent’s state at the level of the underlying thread or pro-
cess[12], [3]. With weak mobility, an agent’s migration is
possible only at specific points in the agent’s code, and typ-
ically a migration is explicitly requested in the agent’s code.
The strong mobility model allows an agent to be migrated
at any point in its execution. This model is certainly use-
ful if agents need to be moved at unpredictable points in
time for fault-tolerance or load-balancing. Several systems
— such as Agent Tcl, Sumatra, Ara, Nomads[29] — have
supported strong mobility. In the context of Java based
systems, this support has generally required development
of specialized virtual machines for mobile code execution.
In order to remain compatible with the standard distribu-
tion of the Java virtual machine, a majority of the current
mobile agent programming systems have based their de-
signs on the weak mobility model. Ajanta and several other
systems, such as Mole, Aglets, Concordia, Voyager, SOMA
[7] fall in this category. Today, it is generally felt that
program-controlled migration under weak mobility suffices
for majority of the applications.

1See http://www.cs.umn.edu/Ajanta for more documentation and

information on the availability of a public domain version of this
system.

In agent migration, the most difficult problems are open
files and network communication channels, as faced in sup-
porting process migration in distributed systems [8]. To
keep the design simple and efficient, most agent program-
ming systems do not support resumption of sessions, deal-
ing with open files or communication channels, on migra-
tion. This avoids dependencies on remote nodes. Besides,
under program-controlled mobility, one can properly close
any open sessions before migration, and reopen them after
migration.

If an agent is multithreaded, then under the weak mobil-
ity model, the programmer needs to take special care when
making explicit requests for migration in the agent’s code.
Problems can arise if one thread requests migration when
other threads have not yet completed their tasks. Also, one
needs to prevent a situation when two threads issue migra-
tion requests to move to different hosts. For Java based
systems, one should also keep in mind that the Java run-
time implicitly creates threads to support GUI and RMI.
Therefore, even when an agent programming system does
not explicitly support a multithreaded model for its agents,
the programmer must be cognizant of such implicitly cre-
ated threads. Agents in Ajanta could be multithreaded
either implicitly or explicitly. Therefore, when requesting
migration, it is the programmer’s responsibility to ensure
that all other threads have either terminated or reached a
state when it is safe to terminate them and migrate the
agent.

There are several approaches for transporting an agent’s
code on its migration to another node. One approach is
that all classes required by an agent are transported as a
part of the agent transfer protocol. This approach makes
agent transport heavyweight, since an agent may be com-
posed of a large number of classes, whereas only a few are
actually needed for the task to be performed at a partic-
ular server. However, this has the advantage that once
the agent is transferred, no further remote communication
is needed for code transfer during the agent’s execution at
that server. Another approach, which is adopted in Ajanta,
is to obtain the agent’s classes on demand from a desig-
nated code-base server during the agent’s execution. It
makes agent transfer lightweight as it transfers only those
classes that are needed during the execution. This was
the primary reason for adopting this approach in Ajanta.
There are certainly some disadvantages of this approach.
This approach makes agent’s execution slow, and it is not
suitable when an agent have to execute in a disconnected
environment.

B. Naming scheme and Name Service Architecture

A global naming scheme and name service is needed for
locating resources, specifying agent servers for agent migra-
tion, and establishing inter-agent communication. A nam-
ing scheme defines a name-space, which could be hierarchi-
cally structured. A location-independent naming scheme
is particularly attractive for mobile agent systems, because
the name of an agent does not change on migration. This
simplifies the programmer’s task significantly, because a

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

program can be written without regard to the current lo-
cations of various entities referenced by it during its execu-
tion. A name service is needed to support mechanisms for
mapping a resource name to its physical address. It could
also contain information about the type of the resource rep-
resented by a name and the protocol used for accessing it,
as in URLs. Alternatively, a system could adopt different
naming schemes and name services for different kinds of
resources, thus optimizing the name resolution protocols
according to the resource types. In the Ajanta design, we
have adopted a uniform naming scheme based on the URN
model for all entity types; however, subclasses of the base
name registry entry distinguish between different kinds of
resources for directory management and name resolution.

C. Security and Protection Issues

Security is one of the most important requirements of an
agent programming environment. Service providers need
protection mechanisms to enforce the desired security poli-
cies for preventing unauthorized or malicious agents from
using, destroying or altering the server’s resources, or dis-
rupting its normal functioning by mounting “denial of ser-
vice” attacks.

An agent needs to be authenticated to verify the owner-
ship of its user, on whose behalf it is to be granted access
to a host’s resources. For this, an agent needs to carry a
set of credentials, identifying its owner and the privileges
delegated to it by the owner. Mechanisms are needed for
an agent server to verify an agent’s credentials to detect
any tampering or replay attacks. Access control policies
for server resources are required to identify access rights of
an agent, based on its credentials. Such policies need to de-
fine access control for application-defined resources as well
as system level resources such as files, disk storage, I/0
devices, network ports, etc. Ajanta allows specification of
policies for an agents’ access to files and network resources.

Some systems, such as Aglets, have also incorporated
definition of security policies based on authorship of the
agent’s code. In Ajanta, all access control policies are based
solely on the agent’s owner and do not take code authorship
into consideration. This is to keep the security policies
simple and easy to understand.

An agent server may also need mechanisms to enforce
policies for resource consumption limits, such as usage of
disk storage, CPU time, number of threads, number of win-
dows, network bandwidth, etc. The Nomads system[29]
provides an explicit mechanism for this purpose. However,
this necessitates a custom-designed Java virtual machine.
SOMA [7] has used JVM Profiler Interface (JVMPI) to
build APIs for metering resource usage. The Ajanta de-
sign has concerned itself mainly with the resource access
control mechanisms. For this, it supports a proxy based
resource access mechanism.

An agent may need to be protected from malicious
servers or intermediate nodes on its travel path, because
it may carry sensitive information about the user it repre-
sents. Such information could be read or modified by unau-
thorized servers. For example, agent’s credentials could be

modified or stolen, or some critical information, such as
its itinerary, task plans, preferences, etc. could be altered
maliciously. An agent may also need to carry some con-
fidential information intended only for some specific hosts
on its travel path. One also needs mechanisms for pre-
serving the integrity or secrecy of the information collected
by an agent during its visit to various hosts. In this re-
gard the Ajanta design presents an abstraction for a secure
append-only container. Most of the other systems, such
as Concordia and Grasshopper[23], protect an agent state
only during transfer by using secure communication chan-
nels and message authentication codes. These systems do
not address the problem of secure collection of data by an
agent from the servers it visits, or protection of an agent’s
credentials from theft or tampering.

Security of the name service is essential for secure op-
erations of a mobile agent platform. If the name registry
entries are not protected from unauthorized modifications,
an attacker can delete a name, or change the contents of
a registry entry, such as an entity’s location or its public
keys. The name-spaces assigned to various principals in
the system also need to be protected. A user should not be
allowed to create names in the name-spaces of other users,
unless properly authorized. Otherwise, a potential attacker
could create and register a distinguished name in another
user’s name-space, thus acting as an impostor. Ajanta’s
name service is designed with such considerations.

D. Computation Model and Programming Primitives

A simple event driven model for agent computation has
been adopted in large number of mobile agent platforms.
Aglets design was mainly influenced by the applet model;
handlers are defined for different types of events such as
migration, dispatch, arrival at a server, etc. In Aglets and
Grasshopper, on arrival at a host, one specific method of
the agent is executed as the entry point; this method de-
termines the actions to be executed on the next hop based
on the state captured at the previous host. In contrast, in
Ajanta any of the public methods of the agent object can
be specified as the entry point on arrival at a host. This
model is also supported by Concordia and Voyager. This is
certainly a more flexible model than the single-entry point
approach.

As a higher level programming abstraction, Ajanta sup-
ports the itinerary concept. Migration control is abstracted
into a single object, rather than scattered at various points
in an agent’s code. A novel aspect of this facility is that
itineraries can be programmed using composable migration
patterns. This permits a composition of a complex travel
plan from some basic patterns. The notion of itineraries
has also been supported by other mobile agent systems —
such as Aglets, Mole, and Concordia. The concept of mi-
gration patterns has also been used in Aglets [16], [2], but
the patterns are described in terms of single hops.

Only a few agent programming system allow an agent to
create child agents, which is useful for executing a set of
subtasks in parallel. For example, in an information search
or data mining application, an agent may create multiple

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

child agents to visit different sites concurrently. In Ajanta,
creation of child agents is supported using a pattern class
called fork. It also supports synchronization of child agents
using a pattern called fork-join. There are several issues
involved in supporting such a facility. One is to provide
mechanisms for such agents to synchronize and coordinate
their activities. Security considerations are also important
here: an agent should not be allowed to create any arbitrary
number of agents at a remote site.

E. Inter-agent Communication

The design challenges for inter-agent communication
mechanisms arise due to the mobility of the agents. There
are several design choices: connection-oriented communi-
cation (such as TCP/IP), connection-less communication
(RMI, RPC, or CORBA-IIOP), or indirect communication
— not requiring the names of the communication partners
— based on event-notification and shared group/meeting
objects (as in Concordia and Mole) or global shared tuple-
spaces based on the Linda model [6]. Several systems (such
as Aglets, Grasshopper, Voyager) have supported syn-
chronous, asynchronous, one-way, and future-based com-
munication models.

In TCP/IP or RMI based communication, agents need
to know each other’s names in order to establish communi-
cation. Connection-oriented schemes raise the issue of ses-
sion disruption due to a participating agent’s migration.
In comparison, RMI based connection-less model throws
an exception when a remote invocation fails due to the mi-
gration of the server agent; the client agent only need to
re-execute the lookup and binding protocol to re-establish
communication with the migrated agent at its new loca-
tion. This approach is taken by the Ajanta design. Support
for mutual authentication of mobile agents is a challeng-
ing problem, because a challenge-response based protocol
is difficult to use as agents cannot carry their private keys
when executing in foreign domains.

In Aglets, communication takes place through the ex-
change of Message objects — an agent cannot simply invoke
an arbitrary public method of another agent. In Concor-
dia, agents do not communicate directly with each other.
Communication is mainly supported in the form of event
notifications, which are communicated based on a subscrip-
tion oriented model. Agents can also communicate and col-
laborate by communicating data indirectly through group
objects. Concordia supports encryption of communication
using SSL, and authentication of users and groups using
symmetric keys.

Security is an important concern in providing remote
communication facilities to visiting agents. An agent could
copy or transfer information in an unauthorized manner,
or it could gain access to protected resources inside a fire-
wall. It can also launch denial of service attacks by cre-
ating a large number of ports and using excessive amount
of network bandwidth. It is also important to protect an
agent from other malicious agents. For this, support for
encrypted and authenticated inter-agent communication is
important. Such support is provided in varying degrees by

the current mobile agent programming systems.

F. Fault Tolerance and Agent Control

A number of mobile agent platforms provide support for
persistence (e.g., Aglets, Concordia, Grasshopper); this al-
lows an agent to deactivate itself and store its state in the
stable storage. This state can be used for system level
recovery from crashes. Beyond this facility, only a cou-
ple of systems, Mole and Tacoma, have devised system
level mechanisms for failure recovery in mobile agent ex-
ecutions. The Mole project has investigated mechanisms
for atomic transactions for mobile agents, and Tacoma has
developed an approach based on the rear-guard concept,
where an agent’s state is checkpointed at its previously
visited servers and used for failure recovery.

In most systems, there is little support for features
that are required for robustness, such as failure detection
and recovery. Ajanta provides a unique mechanism for
application-level exception handling in mobile agent pro-
grams. It presents a guardian [33] based mechanism that
allows the programmer to perform recovery actions for ex-
ceptions that are encountered but not handled by a remote
agent. This facility also helps us in debugging an agent
program. For remote control of agents, Ajanta provides a
secure mechanism for recalling or terminating its remote
agents. Aglets also supports recalling of an agent from a
remote location. However, it does not enforce any security
restrictions in executing a recall operation, which makes an
Aglet application vulnerable to attacks.

G. Interoperability Standards

OMG developed Mobile Agent System Interoperability
Facility (MASIF), to address the interoperability of differ-
ent mobile agent platforms, and also to support the inte-
gration of this new paradigm with legacy applications us-
ing CORBA. Using this facility, mobile agent platforms can
communicate with each other using CORBA primitives. Its
MAFFinder interface provides methods for agent registry
and database management functions. The MA FAgentSys-
tem provides methods for agent management, transfer, etc.
Grasshopper is the only system that has provided MASIF
support, which is primarily motivated due to its commer-
cial interests. FIPA (Foundation for Interoperability of
Physical Agents) [10], [11] has also developed specifications
for external behavior of agents and interoperability with
other agents, non-agent software, humans and the physical
world. FIPA’s reference model includes Directory Facili-
tator, Agent Management System, and Agent Communica-
tion Channel, which are specific types of agents support-
ing agent management and reside on every agent platform.
Grasshopper provides support for FIPA using add-on sta-
tionary agent objects to support these functionalities by
interfacing with its native facilities.

Ajanta does not impose restriction on agents’ external
behavior and only provides system level support for agent
execution. It can interoperate with any agent communi-
cation language. For agent naming, Ajanta matches FIPA
specification which require unique GUID for agents. In

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

Ajanta, some of the required Agent Management System
functionalities are encapsulated in the generic agent server
class. As done by the Grasshopper system, suitable FIPA
adapters can be added into the Ajanta framework.

IV. EXPERIENCES WITH AJANTA SYSTEM

We have developed a number of agent-based applications
using the facilities of the Ajanta system, with the primary
goal to test and demonstrate its functional capabilities. We
now describe two of these applications.

A. Mobile Agent based Web Search

Our web search facility in built on top of a middleware
implemented using the agent paradigm for implementing
a system for sharing files over the Internet. This middle-
ware system allows users to selectively share files across a
network with other users. Each user runs a FileServer,
which is an agent server customized with a FileSystemre-
source. This resource provides visiting agents with access
to a user-specified ‘root’ directory on the local file system
(and to all underlying files and directories). Its interface in-
cludes basic primitives that an agent can invoke like fetch,
deposit, transfer, and search. The user can control which
agents have access to the files using a simple access control
list checked against visiting agent’s owner’s privileges.

The web search facility dispatches an agent to a remote
user’s file access server and perform full-text searches on
the files in the user’s web directory. The file server first
constructs an index for the user’s web directory and stores
the index in the shared global file system. This allows vis-
iting agents to search the web index of the user with any
desired combination of keywords. The client can also pro-
gram the agent to look for only those files which have more
than a specified number of occurrences of the keywords,
or the files that have been recently modified. The search
agent brings back the URLs of the documents that were
found to meet the search specifications. A utility program
at the client side suitably formats the search result URLs
as hypertext links in an HTML document, which can then
be viewed through a browser.

B. Internet Workflow System

We have conducted some proof-of-concept experiments
to investigate the use of mobile agents in implementing
workflow environments[32]. Our approach is based on con-
structing a distributed collaboration system starting from
its XML specification in terms of various participants’ roles,
access rights based on roles, shared objects, operations,
and collaboration constraints. The specifications are in-
tegrated with an agent-based distributed middleware for
collaboration implementation. This middleware enforces
coordination and security constraints specified in the XML
description of the plan. Moreover, shared objects in the col-
laboration environment are distributed to the participants
according to their role-specific views of the plan.

The overall approach of constructing a collaborative sys-
tem [32] involves three steps. The first step is to devise
a schema in the form of XML Document Type Definition

(DTD), which provides constructs for defining roles, shared
objects, and operations associated with a workflow task.
It also provides constructs for associating privileges with
roles and participants, coordination actions and workflow
constraints with operations. The semantics of objects and
their actual definitions are not described but left to the
applications. The second step is the description of a work-
flow plan, using XML, in conformance with the DTD. The
designer of the workflow plan, whom we refer to as the
convener, is responsible for preparing this description. In
the third step, the XML specification is interfaced with a
distributed agent-based middleware. This system provides
to each user an agent-based coordinator on his system. We
refer to this as the User Coordination Interface (UCI). A
UCI maintains with it copies of the shared objects that
are required as per the user’s roles and it provides suitable
interfaces to its user.

We have implemented an Internet-wide workflow author-
ing system based on this generic mobile agent based mid-
dleware, where several users participate according to their
roles to prepare a document in different stages of a work-
flow. We are able to leverage the Ajanta system for sup-
porting the security requirements prescribed in the work-
flow specifications by using Ajanta’s security related com-
ponents like authentication, public key maintenance, ac-
cess control, host resource protection, and cryptographic
services. However, the convener of a workflow system
only needs to specify the XML plan without being con-
cerned about underlying agent-based implementation layer.
Ajanta framework can also provide simple abstractions for
addressing many other challenging problems in workflow
systems like exception handling, activity tracking, statis-
tical data collection, and workflow object migration re-
lated issues. With our approach, an Internet workflow sys-
tem can be easily reconfigured through XML manipulation
compared to other approaches for building workflow sys-
tems.

Based on our experience in developing these and several
other applications using Ajanta and considering Ajanta as
a good representative of modern mobile agent program-
ming platforms, we can make the following observations on
mobile agent programming.

o The mobile agent paradigm can be effectively used as
an implementation mechanism, just like RPC and message
passing, for building distributed applications.

o Mobile agents provide easy abstraction for code mobility
to encapsulate distributed computing. As an additional
level of abstraction to existing object technologies, mobile
agents are a powerful facility for distributed computing.

o Secure mobile agent programming platforms, such as
Ajanta, provide a more secure computing environment than
existing RPC technology, where in many cases security
is traded for robustness and performance. With mobile
agents, after authentication, code and data migrate to the
destination host, eliminating the need of maintaining se-
cure channels among distributed objects.

e Our experiments in distributed collaborations demon-

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

strated that a high level markup language, such as XML,
can be effectively used to specify an agent-based distributed
computation. This kind of approach in programming agent
applications can hide many complexities of mobile agent
programming from application programmers.

o The exception handling model introduced in the Ajanta
system was found to be very beneficial in debugging during
application development. In this model, an agent encoun-
tering an unhandled exception is colocated with an appli-
cation defined exception handler called guardian. However,
more sophisticated tools are needed for developing and de-
bugging medium to large-scale agent-based applications.

V. CONCLUSIONS AND FUTURE CHALLENGES

In this paper we have discussed the various design issues
of mobile agent programming platforms. We have discussed
how Ajanta and other mobile agent systems address these
issues. The large number of mobile agent programming
systems developed in the recent years have demonstrated
the capabilities of this new paradigm for distributed pro-
gramming. The spectrum of problems related to the devel-
opment of a mobile agent programming platform is broad,
and various systems have made their unique and novel con-
tributions in different aspects of this spectrum.

The field of mobile agent programming is still in the state
of infancy. The full potential of this technology is yet to
be realized for real-world applications, as several problems
yet remain to be fully addressed.

o Security and fault-tolerance remain to be the most chal-
lenging problems in this field. Many of the currently avail-
able Java-based mobile agent platforms are able to provide
adequate support for protecting host resources, including
metering and controlling the resource usage levels. How-
ever, there are several areas related to security that demand
further investigations. The most important of these is the
specification and verification of security policies for access
control for host resources and delegation of rights to an
agent by its owner. Another area that needs further inves-
tigation is the development of distributed trust models for
mobile agent systems.

o Fault-tolerance mechanisms are required at both the ap-
plication level and the system level. The system level mech-
anisms hide the effects of failures of the underlying system
components such as node crashes, links failures etc. Appli-
cation level recovery mechanisms allow an agent applica-
tion to perform exception handling when some anticipated
abnormal conditions arise. The Ajanta system provides a
basic model and mechanism for exception handling. More
work is needed to develop a methodology, and possibly
some design patterns, for handling exceptions in agent ap-
plications with multiple agents. In general, there is a lack of
experience in this field in regard to the use and evaluation
of various approaches to fault-tolerance in agent programs.
o There is a lack of experience with large-scale agent-based
applications. Most of the existing mobile agent applica-
tions are generally “small” in size, requiring at most a few
tens of agents. The lack of good program development and
debugging tools has certainly been a reason for this.

¢ In most of the current mobile agent platforms, sup-
port for managing and coordinating agent groups is not
present. For developing large-scale agent applications, such
as agent-based monitoring of a large network, this kind of
support is crucial. The development of any models and
mechanisms in this directions needs to undertaken with
complete consideration of the underlying security concerns.
For example, security policies may prohibit communication
between two agents while any of one of them is located
at some untrusted host. Also, support is needed for mu-
tual authentication of mobile agents, keeping in mind that
agents cannot carry with them any secret keys.

o The agent-to-agent communication is mainly investi-
gated in reference to knowledge exchange, based on KQML
or XML. However, a well defined interface for coordina-
tion among agents’ for administrative tasks is lacking. A
high level specification of coordination actions supported
by Linda like model is needed for multi-agent systems.

o For an agent’s tasks specification, description of the
agent’s intentions may be desirable than the method level
description used in the itinerary. Support for intention-
oriented specification of agent tasks using a high level lan-
guage like XML, and resources-discovery at remote hosts
based on such intention specifications is needed for large
scale agent based applications.

REFERENCES

[1] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis,
and Jonathan M. Smith. A Secure Active Network Environment
Architecture. IEEE Network, May 1997.

[2] Yariv Aridor and Danny B. Lange. Agent Design Patterns: El-
ements of Agent Application Design. In Second International
Conference on Autonomous Agents, May 1998. Available at
http://www.acm.org/~danny/ag.pdf.

[3] Joachim Baumann, Fritz Hohl, Kurt Rothermel, and
Markus Strafler. Mole - Concepts of a Mobile Agent
System, August 1997. http://www.informatik.uni-

stuttgart.de/ipvr/vs/projekte/mole.html.

[4] M. Breugst, L. Faglia, O. Pyrovolakis, I. S. Venieris, and F.Zizza.
Towards mobile service agents within an advanced broadband IN
environment. Computer Networks, 31(19):2037-2052, 1999.

[5] Brian Brewington, Robert Gray, Katsuhiro Moizumi, David
Kotz, George Cybenko, and Daniela Rus. Information retrieval.
In Matthias Klusch, editor, Mobile Agents for Distributed Intel-
ligent Information Agents, chapter 15. Springer-Verlag, 1999.

[6] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli.
Mobile-Agent Coordination Models for Internet Applications.
IEEE Computer, pages 82-89, February 2000.

[7] Antonio Corradi, Marco Cremonini, Rebecca Montanari, and
Cesare Stefanelli. Mobile Agents Integrity and Electronic Com-
merce Applications. Information Systems, 24(6):519-533, 1999.

[8] Fred Douglis and John Ousterhout. Transparent Process Migra-
tion: Design Alternatives and the Sprite Implementation. Soft-
ware — Practice and Ezperience, 21(8):757-785, August 1991.

[9] Tazvetan Drashansky, Elias N. Houstis, Naren Ramakrishnan,

and John R. Rice. Networked Agents for Scientific Computing.

Communications of the ACM, 42(3):48-54, 1999.

FIPA (Foundation for Intelligent Physical Agents) 97 Specifica-

tion . Available at URL http://drogo.cselt.it/fipa/spec/fipa97,

1997.

FIPA (Foundation for Intelligent Physical Agents) 98 specifica-

tion . Available at URL http://drogo.cselt.it/fipa/spec/fipa98,

1998.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Un-

derstanding Code Mobility. IEEE Transactions on Software En-

gineering, 24(5):342-361, May 1998.

Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent

system. In Proceedings of the Fourth Annual Tcl/Tk Workshop

(TCL 96), July 1996.

SUBMITTED TO MICROSYSTEMS, VOL. XX, NO. Y, MONTH 2000

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(28]

[26]

L. Hagen, J. Mauersberger, and C. Weckerle. Mobile agent
based service subscription and customization using the UMTS
virtual home environment. Computer Networks, 31(19):2063—
2078, 1999.

Colin G. Harrison, David M. Chess, and Aaron Ker-
shenbaum. Mobile Agents: Are they a good idea?
Technical report, IBM Research Division, T.J.Watson
Research Center, March 1995. Available at TURL
http://www.research.ibm.com/massdist/mobag.ps.

IBM. JMT (Javarbased Moderator ~ Templates)
Specification - Alpha3. Available at URL

http://www.trl.ibm.co.jp/aglets/jmt/index.html, 1998.
Brendan Jennings, Rob Brennan, Rune Gustavsson, Robert
Feldt, Jeremy Pitt, Konstantinos Prouskas, and Joachim
Quantz. FIPA-compliant agents for real-time control of Intel-
ligent Network traffic. Computer Networks, 31(19):2017-2036,
1999.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider.
Operating System Support for Mobile Agents. In Proceedings of
the fifth IEEE Workshop on Hot Topics in Operating Systems
(HotOS-V), pages 42-45, May 1995.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.
Fine-Grained Mobility in the Emerald System. ACM Transac-
tions on Computer Systems, 6(1):109-133, February 1988.
Gunter Karjoth, Danny Lange, and Mitsuru Oshima. A Security
Model for Aglets. IEEE Internet Computing, pages 68-77, July-
August 1997.

Neeran Karnik and Anand Tripathi. A Security Architecture for
Mobile Agents in Ajanta. In Proceedings of the 20th IEEE Inter-
national Conference on Distributed Computing Systems, pages
402-409, April 2000.

Neeran M. Karnik and Anand R. Tripathi. Design Issues in Mo-
bile Agent Programming Systems. IEEE Concurrency, 6(6):52—
61, July—September 1998.

Thomas Magedanz, Christoph Baumer, Markus Breugst,
and Sang Choy. Grasshopper — A Universal Agent
Platform Based on OSF MASIF and FIPA Standards.
http://www.ikv.de/products/grasshopper.

Mitsubishi Electric. Concordia: An Infrastructure for Collabo-
rating Mobile Agents. In Proceedings of the 1st International
Workshop on Mobile Agents (MA °97), April 1997.
ObjectSpace. ObjectSpace Voyager Core Package Technical
Overview. Technical report, ObjectSpace, Inc., July 1997. Avail-
able at http://www.objectspace.com/.

Holger Peine and Torsten Stolpmann. The Architecture of the
Ara Platform for Mobile Agents. In Proceedings of the First In-
ternational Workshop on Mobile Agents (MA’97), Berlin, Ger-
many, April 1997. Springer Verlag, LNCS #1219.

M. Ranganathan, Anurag Acharya, Shamik Sharma, and Joel
Saltz. Network-aware Mobile Programs. In Proceedings of
USENIX ’97, Winter 1997.

Markus Strafler, Joachim Baumann, and Fritz Hohl. Mole -
A Java Based Mobile Agent System. In Proceedings of the 2nd
ECOOP Workshop on Mobile Object Systems, 1996.

Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T.
Groth, and Gregory A. Hill. Strong Mobility and Fine-Grained
Resource Control in NOMADS. In to appear in the Proceedings
of the Second International Symposium on Agent Systems and
Applications and the Third International Symposium on Mobile
Agent Systems (ASA/MA’2000), September 2000.

David Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
and David J. Wetherall. A Survey of Active Network Research.
IEEE Communications Magazine, 35(1):80-86, January 1997.
Tommy Thorn. Programming Languages for Mobile Code. ACM
Computing Surveys, 29(3):213-239, September 1997.

Anand Tripathi, Tanvir Ahmed, Vineet Kakani, and Shremat-
tie Jaman. Distributed Collaborations using Network Mobile
Agents . In 2nd International Symposium on Agent Systems and
Applcations/ 4th International Symposium on Mobile Agents,
September 2000.

Anand Tripathi, Neeran Karnik, Manish Vora, Tanvir Ahmed,
and Ram Singh. Mobile Agent Programming in Ajanta. In
Proceedings of the 19th International Conference on Distributed
Computing Systems, May 1999.

James E. White. Mobile Agents. Technical report, General
Magic, October 1995.

