
Specification of Secure Distributed Collaboration Systems
�

Anand R. Tripathi, Tanvir Ahmed, and Richa Kumar�
tripathi, tahmed, richa � @cs.umn.edu
Department of Computer Science

University of Minnesota, Minneapolis MN 55455

Abstract

The focus of this paper is on a specification model for
defining security and coordination policies for distributed
collaboration and workflow systems. This work is motivated
by the objective to build distributed collaboration systems
from their high level specifications. We identify here unique
requirements for secure collaboration, specifically role ad-
mission and activation constraints, separation of duties, dy-
namic access control, and a model for multi-user participa-
tion in a role. We present a role-based model for specifying
coordination and dynamic security requirements in collab-
oration systems. It also supports hierarchical structuring of
a large collaboration environment using the concept of ac-
tivities, which define a naming scope and a protection do-
main to specify security and coordination policies. We have
implemented this specification model in XML and used it to
construct the runtime environments for distributed collabo-
ration systems using a policy based middleware.

Keywords: Distributed collaboration, Role based access
control, Security policy specification.

1 Introduction

The objective of our research is to realize distributed
CSCW (Computer Supported Cooperative Work) systems
from their high level specifications. In this paper, our pri-
mary focus is on developing a specification model to ad-
dress security and coordination requirements of distributed
collaboration systems. The approach to realize the runtime
environment for a collaboration system from its specifica-
tion by means of a generic policy-driven middleware is pre-
sented in [19]. A policy-based approach decouples the coor-
dination and security aspects of a collaboration system from
the implementation of the collaboration objects. This makes
it easy for different policies to be plugged in, allowing flex-
ibility in designing as well as modifying a collaboration en-�

This work was supported by National Science Foundation grants ITR
0082215 and EIA 9818338.

vironment. Several factors motivate this approach. Col-
laboration environments often span multiple administrative
domains. The requirements of a collaboration system may
evolve with changes in administrative policies and user ex-
perience. With advances in technology, new devices, tools
or artifacts may need to be integrated into a collaboration
environment. This can warrant a reconfiguration of the sys-
tem with changes in the governing policies.

Coordination requirements in collaboration systems in-
clude synchronization and precedence constraints. The gen-
eral security requirements in such systems are related to
confidentiality and integrity of shared data, privacy, au-
ditability and non-repudiation of users’ actions, and the
integrity of operations to ensure that only authorized par-
ticipants perform certain sensitive tasks. Additionally,
CSCW systems pose several unique security requirements
not present in traditional operating systems and databases
[8]. An important characteristic of collaboration systems is
the need to have dynamic security policies such as dynamic
“separation of duties” constraints as well as context sensi-
tive access control mechanisms that depend on participants’
past actions and the execution state of the collaboration.

In this paper, we present a specification model that can
capture the various coordination and security requirements
outlined above. Past research in this area, such as Task
Based Access Control (TBAC) [2, 16], shows that the spec-
ification of many dynamic security requirements necessi-
tates a unified model for expressing coordination and secu-
rity policies. Our objective is similar to COCA [11] and
DCWPL [3] in their approach of constructing a distributed
collaboration environment from a high level specification.
However, these specifications are limited to coordination
policies. They do not provide adequate support for security
policies like user-assignment to roles, dynamic access con-
trol or history based security constraints. Moreover, they do
not provide any mechanisms for hierarchical organization
of collaboration systems and context sensitive privileges.

The role based specification model presented here sup-
ports the expression of requirements such as “separation
of duties”, intra-role and inter-role coordination, admission

1

control policies, role activation constraints, and dynamic ac-
cess control policies. An important aspect of this work is
reflected by the fact that the specification model has been
integrated with a policy-driven middleware to realize the
runtime environments for collaboration systems [19]. In
the specification model, we introduce the notion of reusable
activity templates, which provide a facility to dynamically
create activity instances, which can be hierarchically nested.
Based on this specification model, we have devised an XML
schema to express collaboration specifications using XML.
In this paper, rather than XML, we use a notation that is
simple and conceptually easy to follow.

In the next section, we present our role based collabo-
ration model. Section 3 discusses requirements for secure
collaboration systems. Our specification model is described
in Section 4. Section 5 shows how the specification model is
used by a policy based middleware to build runtime collab-
oration environments. Sections 6 and 7 present the related
work and the conclusions.

2 A Role Based Collaboration Model

In a role based security model, a role represents a set of
privileges [14]. One can view a role as the characterization
of a protection domain. A user assigned to a role acquires
those privileges. The use of role based security policies in
collaboration and workflow systems has been found to be
quite natural as participants perform a set of well-defined
tasks pertaining to their expertise and responsibilities in
the organization [4]. However, in traditional RBAC (Role
Based Access Control) model [14], all the privileges in a
role are assigned statically thus lacking support for dynamic
access control policies. As roles are globally defined, con-
text based access control is not supported, unless new roles
are created based on the context. Additionally, the issue of
users’ assignment to roles is not addressed.

In an organization, many activities exist and new activ-
ities are constantly created. Existing roles and new roles
participate in these activities. A large collaborative envi-
ronment may sometimes need to be structured hierarchi-
cally. For example, a system supporting a team based de-
sign project running over several weeks or months may need
to have several dynamically created synchronous shared
‘whiteboard-like” activities of relatively shorter life-spans.

In workflow systems, such as [2, 10], dynamic task as-
signments to roles following authorization constraints are
addressed. Integration of roles, object types, and time in-
tervals in a task-based active security policy specification
is addressed in [10]. Though these works motivated us,
they do not address policy requirements on task creation,
meta-policies such as users assignment to roles, and admin-
istrative meta-policies such as who can enforce collabora-
tion policies. Also, they lack a framework for realizing a

system from its specifications.
In our collaboration model, an activity is an abstraction

of a shared task. An activity defines how a group of users
cooperate towards some common objectives by performing
their individual tasks on a set of shared objects. It repre-
sents a protection domain and a scope for the roles, ob-
jects, and privileges in a collaboration. In an activity, users
are represented by their roles, and roles within an activity
are assigned privileges to perform certain tasks. We term
these role specific tasks as operations. An operation can
be method invocations on shared objects, synchronization
actions, or activity management actions. A role operation
can also result in a sequence of interactions between the
user and a set of shared objects, representing a session in
the context of that role operation. Besides the application-
defined roles in an activity, there are several administrative
roles or meta-roles, such as Creator and Owner of an activ-
ity. An activity can be structured hierarchically, consisting
of multiple nested concurrent activities.

An activity template specifies a generic collaboration
pattern among a set of roles using some shared objects. To
support hierarchical structuring of a large collaboration sys-
tem into smaller activities, an activity template can define
nested activity templates. Activities are instantiated from
templates. Any number of instances of a template can be
dynamically and concurrently created.

3 Requirements for Secure Collaboration

Here we identify several important security requirements
that a role-based collaboration model should support.

3.1 Role Admission Constraints

A role based model needs to address role admission con-
straints. Role admission constraints specify the conditions
that need to be satisfied when a user requests to join a role.
The admission constraints can be based on several differ-
ent criteria: a list of users that should be allowed to join a
role, a list of those who should never be admitted, previous
qualifications requiring that the requesting user is currently
admitted in some other given roles, role membership car-
dinality, or events that must happen before a user could be
admitted in a role.

3.2 Coordination Requirements

Coordination between participants in different roles
within an activity is referred to as inter-role coordination.
The primary motivation of this requirement is to enforce
precedence constraints among different roles’ operations.
For example, an inter-role coordination requirement in a

conference workflow can be that the Reviewer role can re-
view a paper only after the Author role has made the final
submission.

However, when multiple users are allowed to be present
simultaneously in a role, they may require to coordinate
among themselves, which is termed as intra-role coordina-
tion. Multiple users present in a role can participate either
independently or cooperatively. In independent participa-
tion, all role specific task responsibilities are assumed in-
dividually by a participant, irrespective of the presence of
the other participants, e.g., every participant of a conference
Reviewer role has to independently write a review.

On the other hand, when the participants in a role are
assuming task responsibilities cooperatively, they coordi-
nate among themselves to decide who is performing which
role specific task. For example, in a hospital patient ward,
several nurses may be present in the role of nurse-on-duty.
However, some medical procedure on a patient may need to
be performed only once by any of the members. Another
type of cooperation may require a task to be performed by
all the participants of a role, like jointly opening a bank
vault. Moreover, in some collaboration environments there
may be no coordination among participants’ actions, e.g. in
an unrestricted whiteboard sharing.

3.3 Separation of Duties

Several researchers have discussed “separation of duties”
requirements in role-based access control models [15, 17],
namely static separation of duty, dynamic separation of
duty, user-user conflict, user-role conflict, object based sep-
aration of duty, and operational separation of duty. A spec-
ification model for collaboration has to be able to express
these constraints. Static separation of duty requires that two
given roles should never be assigned to the same person.
Dynamic separation of duty requires that two given roles
cannot be concurrently assigned to or activated by the same
person. User-user conflict requires that two particular users
should not be assigned to the same role. A user-role conflict
specifies that a specified user should never be assigned to a
given role. In object based separation of duty, a user cannot
perform multiple operations of the same object by partici-
pating in two different roles. The operational separation of
duty requires that no single participant can perform all the
operations related to a business transaction.

3.4 Dynamic Access Control Policies

The privileges assigned to a user in a role may change
with time due to the actions executed by other participants.
For example, in a course examination activity, a security re-
quirement can be that students can only view the question
after the examiner has released it and only during the spec-

ified time period of the exam-session activity. Sometimes
permissions may change due to the user’s own actions, such
as making a final agreement on a document.

Several types of “separation of duty” constraints and
history-based access control conditions also fall into the cat-
egory of dynamic access control policies. In the context of
role based access control, dynamic access control policies
have to address issues, such as constraints requiring a max-
imum and minimum number of participants that must be
present for a role to perform any operation.

Traditional RBAC, and most of the existing MAC
(Mandatory Access Control) and DAC (Discretionary Ac-
cess Control) style security policies are static, i.e., they do
not depend on time or other events. In collaboration en-
vironments, permissions may need to be assigned to roles
based on various contexts and activated only in those con-
texts. For example, in the course examination activity, a
candidate can access the answer book only during an exam
session. Additional context based access control may be re-
lated to physical environment’s events. For example, in the
course examination activity, context based access control
may specify that the candidates can access answer books
only when they are physically present in the class room and
that too only during a predefined period.

3.5 Privacy

Privacy becomes an issue when one may need to hide
the identity of one participant from another. In such cases,
the presence of a participant may only be visible through
his/her role or a pseudonym in a role but not by name. It
may be required to hide identities of the participants of a
role from other roles. Consider a course examination activ-
ity, which has two roles: the Candidate takes the exam and
the Grader grades the answer book. A requirement can be
that the graders do not know the identities of the Candidate
role’s participants.

3.6 Meta-level Security Policies

An activity requires many administrative security poli-
cies: who can define new activities or instantiate an activ-
ity; during the lifetime of an activity, who can change var-
ious policies and enforce additional constraints on shared
objects. These meta level administrative policies need to be
specified based on meta roles, such as Creator and Owner
for various entities like activities, roles, and objects. Poli-
cies need to be specified on who can join or leave these meta
roles. Users in these roles are trusted with management re-
sponsibilities of the assigned entities.

4 Overview of the Collaboration Specifica-
tion Model

In this section, we present the seminal elements of the
collaboration specification model that we developed in our
project for supporting policy-driven construction of collab-
oration activities [18, 19].

4.1 Activity Definition

An activity defines a scope for shared objects, roles, and
nested activities. We illustrate the basic elements of activity
definition using an example of a course management related
activities. A schematic representation of the activity struc-
ture is shown in Figure 1. Here, a Course activity is defined
with a nested activity named Examination. In an environ-
ment, there can be many instances of the Course activity,
e.g. a chemistry course. The Course activity consists of
an Instructor role, an Assistant role with possibly multiple
teaching assistants as its members, and a Student role hav-
ing all registered students as its participants. Participants
in the Student role of the course are not allowed to join the
Assistant role. In the nested Examination activity, the par-
ticipant in the Examiner role creates an ExamPaper object.
In this example, participants of both the Instructor and the
Assistant roles in the Course activities are made members
of the Grader role of the Examination activity.

Legend: Role AssignmentRole Reflection Parameter Objects

TEMPLATE ExamSession
ACTIVITY

ACTIVITY TEMPLATE Course
GradeSheet

ExamPaper

AnswerBook

ROLE Examinee

ROLE Checker ROLE Candidate

ROLE ExaminerROLE Grader

ROLE StudentROLE Assistant ROLE Instructor

ExamPaper

AnswerBook

ACTIVITY TEMPLATE Examination

Figure 1. Hierarchical Structuring of Collabo-
rative Activities

Each student in an Examination activity can instantiate a
nested ExamSession activity, which contains the roles Can-
didate and Checker. Only the student creating this activity
is assigned to the Candidate role, and one of the participants
in the Grader role is assigned to the Checker role. When an
ExamSession activity instance is created, references to the
ExamPaper object and a new AnswerBook object are passed
to it.

In the specification model, an entity (such as activity, ob-
ject, or role) encapsulated in the scope of an activity can be
referenced by a fully qualified name. Within an activity, one
can refer to its current instance using the pseudo variable
thisActivity, and its parent activity using parentActivity. The
user executing an operation is identified by thisUser. Within
a role’s operation, one can refer to the role by thisRole. The
pseudo variable this refers to its immediate nesting entity,
which can be an activity, role, object, or operation.

Figure 2, shows the complete specification of the nested
Examination activity of this course example. The various
elements of this activity specification are discussed in the
following parts of this section.

4.2 Event Model

Events and event counters are used in our model for spec-
ifying coordination and dynamic security policies. Event
types are related to different kinds of entities such as activ-
ities, roles, operations, and objects. For example, instan-
tiation of an activity, execution of a role operation, admis-
sion of users in a given role etc. represent different types of
events. Multiple occurrences of a given event type — such
as multiple executions of an operation — are represented
by a list. We provide a count operator # on lists. Hence,
#(eventName) returns the number of times the event has oc-
curred.

We use event counters for synchronization specification
based on the model presented in [13]. Related to each role
operation are three types of events: request, start, and finish.
For each activity, we have start and finish events.

In our model, one can also specify a derived event
type by filtering an event list based on certain event at-
tributes. For example, for a role operation execution, we
can define a filter based on invoker id, using the expres-
sion opName.start(invoker=John). We can count the
number of times a user has invoked an operation using
#(opName.start(invoker=John)).

Events related to the physical environment can be im-
ported from the underlying runtime system, if the specifica-
tion requires such events for context sensitive policies. For
example, the collaboration system may need to detect the
presence of a participant in a specific physical location to
enforce context based access control.

4.3 Shared Object Specification

Shared objects are represented in our specification model
only in terms of their types and method signatures, keep-
ing the semantics and implementation details transparent.
A specification for an object includes a type name to facili-
tate parameter bindings of operations in roles, a codebase to

ActivityTemplate Examination (Owner Instructor,
AssignedRoles Examiner) �

ObjectType ExamPaper (Codebase=http://codeserver) �
Method setPaper � Param PaperType �
Method readPaper � Return PaperType �

�
ObjectType AnswerBook (Codebase=http://codeserver) �

Method writeAnswer � Param AnswerType �
Method setGrade � Param GradeType �

�
Role Examiner �

Operation SetPaper �
Precondition #(SetPaper.start)=0
Action � exam=new Object(ExamPaper);

exam.setPaper(data) ���
�
Role Examinee (Reflect parentActivity.Student) �

Operation StartExam �
Precondition #(Examiner.SetPaper.finish)=1

& #(StartExam.start(invoker=thisUser))=0
Action � obj=new Object(AnswerBook);

act=new Activity ExamSession((exam,obj),
Canadidate=thisUser) ���

�
Role Grader (Reflect parentActivity.Assistant,

parentActivity.Instructor) �
�
ActivityTemplate ExamSession(Owner Grader,

Objects (ExamPaper exam,
AnswerBook ans),

AssignedRoles Candidate) �
TerminationCondition: #(Checker.Grade.finish) � 0
Role Candidate �

AdmissionConstraints
member(thisUser, parentActivity.Examinee)
& member(thisUser, thisActivity.Creator)
& #members(thisRole) � 1

ActivationConstraints
date � DATE(Apr, 10, 2003, 15:30)
& date � DATE(Apr, 10, 2003, 17:30)

Operation Read �
Action exam.readPaper() �

Operation Write �
Action ans.writeAnswer(data) �

Operation Submit �
Precondition #(Write.finish) � 0 ���

Role Checker �
AdmissionConstraints

#members(thisRole) � 1
& member(thisUser, parentActivity.Grader)

Operation Grade �
Precondition #(Candidate.Submit.finish)=1
Action ans.setGrade(data) �

�����

Figure 2. Specification of Collaborative Exam-
ination Activity Template

load the class of the object, and method signatures. Specifi-
cations of two object types — ExamPaper and AnswerBook
— are shown in Figure 2.

Our system supports both RBAC as well as traditional
DAC. We can specify access control at the granularity of
the methods invoked on these objects. For an object, access
control is derived from the various roles’ operations involv-
ing that object. Based on the security and coordination re-
quirements specified in a collaboration, our system derives
appropriate policy modules, which are used by the object
servers to control access to their objects [19]. Moreover,
after an object is created the owner can specify additional
access control based on the traditional DAC models.

4.4 Definition of Roles

In our model, a role can be viewed as a protection do-
main with a set of privileges to perform certain tasks in the
shared workspace defined by its activity’s scope. A role
definition involves specification of two aspects: meta-level
policies in regard to admission of users to the role, and role
related operations and associated preconditions for coordi-
nation and dynamic security requirements.

A role is defined in the scope of an activity and it can
refer to the objects and other roles in that activity. It can
invoke methods on the objects in that activity. A role spec-
ification includes role owners, reflected roles, admission
constraints, activation constraints, and role operations with
their preconditions.

The owner of a role must be an existing role from its
outer scope. If the owner is not specified in a role defini-
tion, the owner of its activity is the owner. If the activity
owner is not specified, the default owner of any activity is
the owner of its parent activity. For the top level activity, a
meta-role Convener is defined as the owner. The owner of
a role can admit users to it, subject to the specified admis-
sion constraints; it can also remove an existing participant.
Importantly, a role is managed by participants in its owner
role. For example, in Figure 2, the Instructor role from the
outer scope is specified as the owner of the Examination ac-
tivity. As no owner is specified for the individual roles in
this activity, by default, the Instructor becomes the owner
of the Examiner, Examinee and Grader roles.

In the specification model several functions are defined
for a role. A boolean function member(user, role) checks
if a participant is present in a role. The function mem-
bers(role) gives the list of participants in a role. Hence,
a count of the participants admitted in a role is given by
#(members(role)). A role definition may specify privacy
constraints as to which other roles are permitted to query
its participants’ identities.

4.5 Role Admission Constraints

These constraints control a user’s admission to the role
to meet the security requirements stated in Section 3. For
example, the Assistant role in Figure 1 can have several ad-
mission constraints, as shown below.

#members(thisRole) � 2
& member(thisUser, parentActivity.Staff)
& !member(thisUser, Student)
& #members(Instructor) � 0
& (thisUser �� B � !member(C,thisRole))
& (thisUser �� C � !member(B,thisRole))

This example illustrates the following aspects of security
requirements:

1. Static separation of duties constraint specifying that
a student in the Course activity cannot join the teaching as-
sistant role.

2. Role cardinality constraint requires that the member
count for this role cannot exceed two.

3. Previous role membership constraint, which requires
that the person joining this role must already be a member
of the Staff role defined in the parent activity.

4. A user is admitted to this role only after some user has
been assigned to the Instructor role.

5. A “user-user separation of duties” requirement spec-
ifying that users B and C cannot both be assigned concur-
rently to this role.

4.6 Role Reflection and User Assignment

A nested activity may need to have access to the objects
in the scope of its parent activity, or a role in the parent ac-
tivity may need to be bound to a role in a nested activity.
For this purpose, an activity definition needs mechanisms
for role binding and passing object references as parame-
ters to an activity instance. A role in the parent activity can
be bound to a role in the child activity in the static defini-
tion. We refer to it as role reflection, which means that all
the members of the parent role implicitly become members
of the role in the child activity. Removal of a participant
from the reflected role, also implies removal from the role
in the child activity. A participant in the reflected roles (i.e.
a role in the parent activity) gains expanded privileges com-
prising of the operations of the child activity role. More-
over, the child activity role can have operations that access
the objects in the scope of the reflected role. However, a
participant of the reflected role has to comply with the child
role’s admission constraints if any. In our model, roles are
not defined based on permission inheritance [14, 12], rather
defined in the scope of hierarchically nested activities. In
Figure 2, the Student role is reflected in the Examinee role
of all of the nested Examination activities.

The specification also indicates assignment of users to
certain roles at the time of activity creation. For example,
in Figure 2, users must be assigned to the Examiner role in
the Examination activity, and the Candidate role in the Ex-
amSession activity. The user assignments maybe specified
as part of the activity creation specification. In Figure 2,
the examinee invoking the StartExam operation is assigned
to the Candidate role of the new ExamSession activity in-
stance. The users specified to be assigned to a role also
need to comply with the role’s admission constraints.

4.7 Operation Specification

An operation specification includes a name, and may
include a precondition and an action. The precondition
must be true when the operation is invoked. The precon-
ditions associated with operations allow one to specify co-
ordination constraints as well as various dynamic security
requirements, such as condition-based access control, dy-
namic “separation of duties”, context-based access control.

The action part of an operation may invoke an object
method, or create a new object or a nested activity. If the
action part is empty, then the operation is used primarily
for coordination purposes. A keyword new is reserved for
specifying creation of an object or activity. As shown in
the specification of the Examiner role’s SetPaper operation
in Figure 1 the SetPaper operation can be performed only
once as specified by the precondition. This operation re-
sults in the creation of an object exam of type ExamPaper
and an invocation of the setPaper method of this object.

Use of preconditions enables us to specify fine grain
“separation of duties” policies, like the “object based sepa-
ration of duties” and the “operational separation of duties”.
For example, in an office system, a manager may prepare
an invoice and approve an invoice, but should not be able
to approve his/her own invoice. This specification is shown
below which can be also considered as an example of an
“operational separation of duties” policy.

Operation ApproveInvoice
Precondition #(PrepareInvoice.finish(invoker=thisUser))=0
Action /* approve the invoice */

Preconditions also enable us to specify coordination con-
straints, for both inter-role and intra-role coordination. In
Figure 2, a student in the Examinee role can not execute
the StartExam operation until the Examiner has set the
exam paper. The precondition for this operation also illus-
trates an intra-role coordination policy, which allows each
participant in the Examinee role to independently start an
exam session. This illustrates the independent participation
model for the members in the Examinee role. The precon-
dition of the SetPaper operation in the Examiner role illus-
trates the cooperative participation model where only one
role member can execute the SetPaper operation.

4.8 Role Activation Constraints

Role activation constraints must be true when a user ex-
ecutes a role operation. In contrast, role admission con-
straints are checked only when a user is admitted to a role.
Such constraints may not be valid when an operation is ex-
ecuted. Role activation constraints apply to all role opera-
tions and can be viewed as preconditions that are common
to all operations of a role. Certain security requirements can
be enforced only by activation constraints. A “dynamic sep-
aration of duties” constraint, such as a user should not acti-
vate two roles at the same time needs to be specified as part
of role activation constraints. Similarly, previous qualifica-
tions that must be ensured during role operation invocation
need to be specified as activation constraints. For exam-
ple, the following activation constraint of the Assistant role
in Figure 1 ensures that the role can perform any operation
only as long as the participant is a member of the Staff role.

ActivationConstraints
member(thisUser, parentActivity.Staff)

Moreover, minimum cardinality constraints, which spec-
ify a minimum number of participants that must be present
before any role operation can be performed, are specified as
activation constraints.

In the following example, we present several activation
constraints for an admission committee member role of a
computer engineering department. Such a role may specify
a minimum (e.g. 2) number of participants to be present
for the committee to be active. Moreover, a constraint can
be that at least a member from both the computer science
and the electrical engineering departments must be present
during role activities.

#members(thisRole) � 2
& #(members(thisRole) � members(EE.Professor)) � 0
& #(members(thisRole) � members(CS.Professor)) � 0

5 Policy Based Construction of Collabora-
tion Environment

A collaboration environment in our model is realized in
several steps through a policy driven middleware that we
have developed [19]. Initially, the coordination and secu-
rity policies for a collaboration are specified based on the
schema. From the specification, various policy modules are
derived for different kinds of requirements: role based se-
curity, object level access control, and secure event notifi-
cation for coordination. A generic middleware facility dis-
cussed in [19] provides a set of generic components which
are coupled with these application specific policy modules
to realize the desired runtime collaboration environment.

In our distributed execution model [1], entities – roles,
objects, and activities – are managed in a decentralized
manner. In our collaboration model, all users are not equally
trusted. To ensure the proper enforcement of various collab-
oration policies, the collaboration entities need to be main-
tained at trusted sites. We derive a distributed trust relation-
ship among the owners of various entities based on owner
assignment as specified in the activity definition. As roles
from the outer scope of an entity are specified (or assigned
through default rules as discussed in Section 4) as the owner
of that entity, the owners represent a hierarchical trust rela-
tionship. An entity is managed at its owner’s site.

In our specification model, the coordination policies are
specified based on serialized evaluation of dependent oper-
ation preconditions. In a decentralized environment, where
users’ actions are communicated by means of events, com-
munication of coordination states to other users may be de-
layed. In the absence of a central coordinator, such delays
may cause coordination inconsistencies. In [1], we have
presented a technique for ensuring coordination consistency
among distributed entities.

Coordination and dynamic access control are based on
events communicated among distributed entities. To en-
sure integrity of our collaboration system, the middleware
needs to ensure reliable delivery of events, and that events
are not falsified or omitted. In [1], we present a protocol
which ensures integrity of events by subscribing corrobo-
rating events.

6 Related Work

Our goal is similar to those of COCA [11] and DCWPL
[3] in their approach of constructing a distributed collabo-
ration environment from a high level specification. COCA
[11] is a logic-based coordination policy specification lan-
guage for interactive CSCW applications. DCWPL [3] ad-
dresses user level mechanisms to deal with group interac-
tion issues and is limited to its predefined policies and func-
tions. The specification of confidentiality using Z notation
in [7] is limited to its theoretical foundation and lacks an
implementation model.

The concept of role has been used in many CSCW sys-
tems to represent groups of users with different tasks within
a collaboration. Decentralized management of role mem-
berships based on role certificates in a distributed service
model is presented in [9]. Suite [5] presents an access-
control model for multiuser GUI interfaces, mainly for co-
ordination of shared editing-based synchronous collabora-
tion, and deals with fine grain access rights on shared data.
In contrast, our work focuses on a broad range of appli-
cation wide security requirements, addressing the needs of
data confidentiality, integrity, and dynamic security poli-
cies. Intermezzo [6] is one of the first systems to introduce

the basic concepts of role based policies, with primary focus
on user-presence awareness environments.

A task-based constraint specification language for work-
flow management systems is discussed in [2]. There, con-
straints are specified with a mapping between roles and
tasks. In contrast, our work specifies both the security and
the coordination policies, with realization of such policies
in an implemented system. SecureFlow [10] imposes work-
flow authorization constraints on tasks using Authorization
Template (AT), which is a tuple specifying privileges to be
granted to a subject of a given role on an object of a given
type during a specified time interval, and the permissions
are activated based on tasks. In our model, an activity is
a higher level abstraction than AT, representing a collabo-
ration pattern, which involves multiple roles, objects, and
their coordination. An activity specification may contain
multiple tasks or operations and is able to capture workflow
stages. Moreover, in [10] roles are bound to tasks at runtime
based on AT. This requires certain rules to resolve conflicts
when multiple roles for a user can be bound to a task. This
approach is mainly to impose role based access control on
existing workflow tasks. In our specification, roles and ac-
tivities incorporate collaboration tasks, and tasks are encap-
sulated as operations within the role definition, providing a
deterministic view of roles’ privileges.

7 Conclusion

We have presented in this paper a role-based specifica-
tion model for collaboration systems based on requirements
of dynamic security policies, role admission and activation
constraints, and separation of duties constraints. The spec-
ification model unifies coordination specifications with dy-
namic access control policy specifications. Roles are de-
fined and instantiated in the context of activities. We have
presented the concept of activity template, which enables
dynamic creation of activities and hierarchical structuring
of sub-activities. An activity defines a protection domain for
roles, objects, and operations. We have implemented this
specification model using an XML schema and shown how
the model supports the various coordination and security re-
quirements characteristic of collaboration systems. Policy
modules are derived from the XML specifications and are
integrated with a generic middleware for the automated re-
alization of collaboration environments. This approach rep-
resents a novel technique for constructing the runtime en-
vironments for collaboration systems from their high level
specifications.

References

[1] T. Ahmed, R. Kumar, and A. Tripathi. Secure Manage-
ment of Distributed Collaboration Systems. Technical re-

port, Dept. of Computer Science, Univ. of Minnesota, Aug.
2002. Available at http://www.cs.umn.edu/Ajanta.

[2] E. Bertino, E. Ferrari, and V. Atluri. A Flexible Model Sup-
porting the Specification and Enforcement of Role-based
Authorizations in Workflow Management Systems. In ACM
Workshop on Role-based Access Control, pages 1–12, 1997.

[3] M. Corts and P. Mishra. DCWPL: A Programming Lan-
guage for Describing Collaborative Work. In Proc. of
CSCW’96, pages 21 – 29, November 1996.

[4] S. Demurjian, T. Ting, and B. Thuraisingham. User-role
Based Security for Collaborative Computing Environments.
Multimedia Review, 4(2):40–47, Summer 1993.

[5] P. Dewan and H. Shen. Controlling Access in Multiuser In-
terfaces. ACM Transaction Computer-Human Interaction,
5(1):34 – 62, March 1998.

[6] W. K. Edwards. Policies and Roles in Collaborative Appli-
cations. In Proc. of CSCW’96, pages 11–20, 1996.

[7] S. Foley and J. Jacob. Specifying Security for Computer
Supported Collaborative Computing. Journal of Computer
Security, 3(4):233–253, 1995.

[8] I. Greif and S. Sarin. Data Sharing in Group Work. ACM
Transactions on Information Systems, 5(2):187–211, 1987.

[9] R. Hayton, J. Bacon, and K. Moody. Access control in an
open distributed environment. In IEEE Symposium on Secu-
rity and Privacy, pages 3 –14, 1998.

[10] W.-K. Huang and V. Atluri. SecureFlow: A Secure Web-
enabled Workflow Management System. In ACM Workshop
on Role-based Access Control, pages 83 – 94, 1999.

[11] D. Li and R. Muntz. COCA: Collaborative Objects Coordi-
nation Architecture. In Proc. of CSCW’98, pages 179–188,
1998.

[12] E. C. Lupu and M. Sloman. Reconciling Role-Based Man-
agement and Role-Based Access Control. In ACM workshop
on Role-based Access Control, pages 135–141, 1997.

[13] P. Roberts and J.-P. Verjus. Towards Autonomous De-
scriptions of Synchronization Modules. In Proc. of IFIP
Congress, pages 981–986, 1977.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38–
47, February 1996.

[15] R. Simon and M. Zurko. Separation of Duty in Role-
based Environments. In 10th Computer Security Founda-
tions Workshop, pages 183 –194, 1997.

[16] R. K. Thomas and R. S. Sandhu. Conceptual Foundations
for a Model of Task-based Authorizations. In Proceedings
of IEEE Computer Security Foundations Workshop , pages
66–79, 1994.

[17] J. E. Tidswell and T. Jaeger. Integrated Constraints and In-
heritance in DTAC. In ACM Workshop on Role-based Access
Control, pages 93 – 102, July 2000.

[18] A. Tripathi. Adaptive Middleware: Challenges Designing
Next-Generation Middleware Systems . Communications of
the ACM, 45(6):39–42, June 2002.

[19] A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman. Design
of a Policy-Driven Middleware for Secure Distributed Col-
laboration. In Proc. of ICDCS’2002, pages 393 – 400, July
2002.

