
Paradigms for Mobile Agent-Based Active
Monitoring of Network Systems

�

Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, Megan Carney
�
, and Paul Dokas

�
�
tripathi, tahmed, spathak, mcarney, dokas � @cs.umn.edu

Department of Computer Science
University of Minnesota, Minneapolis MN 55455

Abstract

We present here a framework together with a set of paradigms for mobile agent
based active monitoring of network systems. In our framework mobile agents are
used to perform remote information filtering and control functions. Such agents
can detect basic events or correlate existing events that are stored in a database to
enforce system policies. A system administrator can securely modify the monitor-
ing policies and information filtering functions of its agents, or install new agents
at a node. The framework presented here includes monitor, subscriber, auditor
and inspector agents. The policies and itineraries of these agents can be modi-
fied dynamically. In response to certain trigger events agents may change their
itineraries to correlate event data. We present here a set of experiments that we
have conducted using the Ajanta mobile agent system to evaluate and demonstrate
the capabilities of our mobile agent framework.

1 Introduction

Managing and monitoring large networks with hundreds of computers has become a
challenging and tedious task for today’s system administrators. A typical computing
infrastructure in a medium to large-scale organization contains many nodes, possibly
of different kinds, organized into multiple local-area networks and administrative do-
mains. Administration functions require periodic upgrading of software as well mon-
itoring of user activities at various nodes to defend against potential attacks by mis-
creants. The complexity of monitoring large organizational networks — with different
kinds of hardware/software components frequently added to the environment or some�

This work was supported by National Science Foundation grants ANIR 9813703, EIA 9818338, and
ANI-0087514.�

The participation of Sumedh Pathak and Megan Carney was supported by REU (Research Experience
for Undergraduates) funds with NSF grant ANIR 9813703.�

Paul Dokas is a system security administrator at the Univeristy of Minnesota

1



existing ones periodically upgraded — requires new approaches of building system
monitoring protocols and functions. The mobile agent technology offers several unique
capabilities to address the challenges in this area.

A mobile agent represents a program capable of migrating from one node to another
in a network to perform certain designated tasks [7]. The ability to migrate code and
processing functions to a remote node offers the potential benefits of reduced network
traffic and bandwidth requirements. The use of mobile agents for network management
has been proposed and investigated by several researchers in the recent years with the
primary goal of reducing network traffic and building scalable systems [2, 3, 4, 11].

This paper presents a set of paradigms for using mobile agents in monitoring and
managing nodes in an organization’s local networks. Our research in the application
of mobile agents in network monitoring systems is motivated by many factors. Many
large-scale computing environments, such as university campus networks, tend to be
relatively open. It is desired for a system administrator to actively monitor the envi-
ronment for suspicious activities. Large distributed systems need dynamic and scalable
architectures for monitoring. Dynamic structures are needed to support changes to poli-
cies for monitoring, collection, and processing of information at all levels of a system’s
organizational hierarchy. It should support definition of new event types and installa-
tion of specific detection mechanisms at target nodes. It should be possible to install
a new monitoring agent at a node, change an existing one, or within a domain, update
the existing event notification policies to implement new data management structures.
It should also be possible to enforce desired security policies for event notification and
processing functions across different administrative domains. For scalability, the in-
frastructure should support any desired hierarchical and decentralized organization for
information collection and processing. Moreover, the system should support incorpo-
ration of new correlation and search functions across different event databases.

Network monitoring systems based on SNMP[5, 15] or periodic execution of script-
based cron jobs tend to be largely static and require tedious procedures to define new
monitoring policies. The SNMP agents provide a limited and fixed set of functions.

The primary motivation underlying the work presented here is to demonstrate that
a mobile agent based management system is a natural fit to meet the above mentioned
requirements. Such systems can be used in a network, in addition to an existing moni-
toring infrastructure such as SNMP, to provide dynamic and extensible functionalities.
Network management and monitoring is a promising area where agents can be used
to perform remote information filtering, data correlation, and control functions [13, 6].
Agents can be modified remotely to change their monitoring and aggregation policies
and functions, and if needed, new agents could be installed at a node to perform func-
tions different from the existing ones. We characterize our agent-based approach as
active monitoring because it permits easy installation of new monitoring and infor-
mation filtering functions by launching agents with new functionality to the network
nodes.

This paper presents our initial efforts towards building an infrastructure to exper-
iment with future generations of network monitoring and management techniques us-
ing mobile agents. Following are the major contributions of the work presented in this

2



paper:

� A set of paradigms for mobile agent based active monitoring that can be used as
building-blocks in a monitoring system. These paradigms exploit code mobility
as well autonomous migration of agents.

� A mobile agent based monitoring framework supporting the various paradigms
for agent-based monitoring. This system has been implemented using the Ajanta
mobile agent programming system [18, 10]. It uses Ajanta’s security facilities to
build secure monitoring systems.

� A set of experiments using this framework are presented here to demonstrate the
use of mobile agents in supporting active monitoring, dynamic extensibility, and
correlation of distributed data for detecting compound events.

In the agent-based monitoring system that we have developed, it is possible for
an administrator to remotely control the functions of its agents. Agents can be di-
rected to perform high level pattern detection and filtering functions. A monitoring
agent responsible for checking a given pattern can autonomously move to different
nodes in response to certain trigger events to check for other related events at those
nodes. Moreover, agents are able to monitor and generate event notifications based on
canonical definitions and representations of events, independent of differences in host
operating system mechanisms. In another paper [17] we have shown how an agent can
maintain Prolog-based logic databases to perform event data correlation for detecting
high level compound events.

In Section 2 we present a framework for agent-based monitoring. This provides
an infrastructure to support different paradigms for mobile agent based monitoring,
presented in Section 3. Section 4 presents a set of experiments using this framework
and the paradigms. In Section 5 we discuss the related work in this area. Section 6
presents the conclusions.

2 A Framework for Agent-Based Network Monitoring

Our agent-based network monitoring framework is designed to support a dynamically
extensible environment for monitoring network systems. The purpose and motivation
of this framework is to make an attempt to address the issues and requirements for an
emerging monitoring system, as described in the previous section, using the mobile
agent paradigm. In a large system, it may be inefficient to maintain a central database
of all events. Therefore this framework allows one to define any desired policies for
decentralized filtering, collection and correlation of event data, and these policies can
be changed dynamically. It facilitates designs of hierarchical and distributed organiza-
tions for managing event data, but no specific hierarchy is imposed. It also provides
definitions for new events in the system, and installation of appropriate monitoring
agents at different nodes in the system.

3



This monitoring framework is implemented using the Ajanta mobile agent system.
Each node in the monitored network environment executes a facility (an Ajanta agent
server), which allows migration and installation of new agents for event monitoring,
data collection, and correlation. We refer to this as the monitor server, which can
maintain resources to be shared by visiting agents.

2.1 Mobile Agents in Ajanta

Ajanta [18] is a secure Java-based framework for programming mobile agents in the
Internet. In Ajanta, mobile agents are mobile objects, which can migrate autonomously
in distributed environments. Agents encapsulate code and execution context along with
data, and they are executed on behalf of a user. The Ajanta system provides facilities to
build customizable servers to host mobile agents, a set of primitives for the creation and
management of agents, security related components and a global naming service. All
globally accessible entities are given location-independent names. This name service
is implemented to provide secure management of its data.

Security is an integral part of Ajanta design. Ajanta provides components for au-
thentication, public key maintenance, access control, host resource protection, and
cryptographic services. In contrast to other widely used mobile agent platforms such
as Aglets [9] and Voyager [12], the Ajanta system provides a comprehensive secu-
rity architecture to protect host resources as well as agents. Each agent is given a set
of unforgeable credentials, which contain the agent’s name, its owner’s name, and a
set of privileges granted by the owner. At a remote node an agent executes in a pro-
tection domain created corresponding to its owner. An agent-server can enforce any
desired policies for accepting remote agents. An agent server grants to a visiting agent
restricted access of its local resources, based on the agent’s credentials. Agents at
two different nodes can communicate with each other using RMI, if permitted by the
host servers. It is also possible for an application to remotely invoke methods of its
agents. This communication can be authenticated, provided the remote hosting server
is trusted. An application can also securely control its remote agents to either terminate
their execution or recall them back.

2.2 Event Definition Model

A basic event represents some significant change in the state of a resource to be moni-
tored. Higher level compound events are derived from other events by applying certain
inference rules.

We need a canonical definition and representation of events, independent of any
operating system specific details. We keep the events from different nodes in a standard
format. Each event has the following attributes: name, category, source-location, and
time of occurrence. Additionally, an event may have more attributes as needed. The
name field indicates the event type, and the category field indicates the broad class of
system functions in whose context the event is generated.

4



Associated with each event is the definition of a detection procedure. This deter-
mines the conditions when an event is detected and signaled. The detection could be
based directly on operating system services, and such events can be considered to be
basic events. For basic events, the detection rules can be of many different kinds, and
they may vary from one OS platform to another. Therefore, in our framework an agent
can probe its environment and then execute the appropriate methods. Compound events
can be detected and created by correlation of existing event data from the database.

2.3 System Level Architecture

The Ajanta system allows agents to be created and sent to visit a set of hosts on an
itinerary. It is also possible to create and launch an agent that creates its own itinerary
– as it executes in the network, it makes successive migration requests. All globally
accessible entities are given location-independent names, and the Ajanta name service
is used to find the current location and other attributes of an entity. This name service
is implemented to provide secure management of its data. It also stores public-keys of
various entities and principals in the system. Each agent is given a set of unforgeable
credentials, which contain the agent’s name, its owner’s name, and a set of privileges
granted by the owner. An agent server grants to a visiting agent restricted access to its
local resources, based on the agent’s credentials.

Figure 1 shows a typical system organization in our framework. The system ad-
ministration functions are performed through a set of secure nodes, termed System
Management Stations. These stations can launch new agents into the system, or can
modify or extend the capabilities of existing ones. At a node to be monitored, an agent
executes under privileges granted to it by the network monitoring system. For exam-
ple, based on its assigned privileges it can read certain system log files, check process
status, or remove old files from the /tmp directory.

2.4 Event Subscription, Notifications, and Correlation

Event communication between agents is based on the publisher-subscriber model. An
agent can be sent to a node to monitor a set of events. For each event to be monitored,
the monitoring agent has a list of subscribers. A new subscriber can be added or an
existing one can be removed from a monitor’s subscriber list. This is done through
Ajanta’s secure RMI communication between agents. A subscriber agent can add
(delete) itself to a monitor agent’s subscription list, or suspend (resume) its subscrip-
tion. These functions can also be executed by a system administration agent on its
remote monitor agents, and it can also add a new event detection rule and event notifi-
cation format.

In Figure 1, we have shown two subscriber agents executing at nodes where event
databases are to be maintained. These agents are registered as subscribers with the
event monitoring agents. How the event databases should be organized and distributed
needs to be determined by the system level architecture and policy. For example, all
records for events in a subdomain can be maintained at one node. Additionally, event

5



IA

AA

IA

MAMA AA

AA SA

AA

MA

AA

SA

SA

MAMA

policy

IA

AA

policy

Host A

Agent
Migration

Host B Host C Host D

Launch Launch AgentAgent

Monitor Agent

Subscriber Agent

Auditor Agent

Inspector Agent

FTP Event DatabaseLogin Event Database 

System Management Stations

Monitor Server Monitor Server Monitor Server Monitor Server

Event Database

Monitor Server Monitor Server

Event Database

Host E Host F

Event Notifications

Figure 1: Architecture for an Agent-Based Infrastructure for Network Monitoring

notifications can be recorded at other nodes based on the classifications of the events.
For example, one node can collect all successful or failed remote login events, another
one could collect all events for device crashes and disk system problems, and a third
node could collect all events related to FTP access at different nodes.

Subscriber agents can maintain their event data in a logic database to correlate
events received from different hosts. In our present experimental system, this database
is maintained using a Java-based Prolog system [8]. An agent can access this database
and add events to it as new facts. An agent can also execute a Prolog rule to perform
event correlation. New Prolog rules can be added dynamically to this database to add
new correlation capabilities.

Every agent also implements the RemoteControl Interface defined by Ajanta, for
its owner to remotely terminate or recall it. Additionally, an agent may implement
the Monitor Interface and the Subscriber Interface as needed by the specific roles for
which it is created. The roles are defined according to different paradigms identified
below. The Monitor Interface defines methods that allow another authorized agent to
add, delete, suspend, or resume a subscriber for an event. It can also add or remove an
event from the detection set. The Subscriber Interface defines remote methods that are
invoked by a monitor agent to deliver notification messages to a subscriber.

6



3 Paradigms for Agent-based Monitoring Mechanisms

Here we define some paradigms that we have adopted for using mobile agents in our
network monitoring framework. These paradigms are centered around the core set of
agent roles, namely: monitors, subscribers, information filters.
Transportable Monitor Agents: Such agents are launched to a remote node to reside
there permanently to perform functions that require continuous monitoring of certain
events. A monitor agent of this kind is given a set of events to be monitored, along with
a list of subscribers for each event. A monitor agent supports interfaces for adding a
new event detection functionality, besides adding or removing subscribers for events.
The system administrator can remotely control such an agent, and possibly replace it
with a new one. The structure of such an agent is shown in Figure 2.

A monitoring agent, when transported to a target node, probes its host environment
and determines which kind of OS-specific detection mechanisms to use for a given
event. It is possible for an administrator to remotely instruct its agent to start monitor-
ing a new kind of event, for which the agent is able to obtain the detection code from a
trusted server.

Event Set 

RemoteControl Interface Monitor Interface

Detection
Procedure

Agent Credentials

Interface to the Host Monitor Server 

Event Name

List
Subscriber

Privileges

Agent Name
Agent Owner Name

Figure 2: Transported Monitor Agent

Event Set 

Event Database on Host File System 

Subscriber Interface

Event Registry

RemoteControl
Interface

List
Subscriber

Trigger Rules

Event Name

Filtering and
Correlation
Procedure

Agent Credentials

Interface to the Host Monitor Server 

Monitor Interface

Figure 3: Transported Subscriber Agent

Transportable Subscriber Agents: An agent of this kind is shown in Figure 3. Its
primary function is to receive notification of events from a set of monitors, perform any
filtering functions, store them in a database in stable storage, and possibly forward them
to other subscribers. It receives event notifications through its Subscriber Interface
and stores them in the local database. An agent of this kind also contains a set of
trigger rules, which indicate if some additional actions are needed to process a received
event, besides storing it in the local database. An event may initiate execution of some
correlation functions to detect a compound event representing a pattern of suspicious
activities, such as a large number of failed remote login attempts originating from a
foreign site. A trigger rule for an event contains a target list of compound events
whose detection should be performed when a notification for this event is received. The
definitions of such compound events together with the associated detection procedures
and a set of subscribers are contained in the event set of the agent. It is possible for the
detection procedure of a compound event to create and send a mobile auditor agent to

7



other nodes in the system.
Mobile Auditor Agents: The structure of a mobile auditor agent is shown in Figure
4. An agent responsible for event data correlation can also be mobile, carrying with it
code for performing event correlation and pattern detection functions using databases
at different nodes. The system administrator can define policies determining when a
mobile auditor agent is created. Such an agent’s itinerary is dynamic, determined as the
agent visits different nodes. The function of a mobile auditor is to visit other nodes, as
determined during the correlation function execution, to audit the event logs to check if
some other corroborating events appear at other nodes, possibly indicating an intrusion
or abnormal situation that needs the attention of the security administrator.

Event Set 

Interface
Subscriber InterfaceRemoteControl Monitor Interface

Auditing
Procedure

Interface to the Host Monitor Server 

Event Name

List
Subscriber

Agent Credentials

Dynamic
ItineraryCorelation

Figure 4: Mobile Auditor Agent

Event Set 

Interface to the Host Monitor Server 

Monitor InterfaceRemoteControl Interface

Procedure

Configuration

Event Name
Subscriber

List
Inspection

Itinerary

Secure Container

Agent Credentials

Figure 5: Itinerant Inspector Agent

Itinerant Inspector Agents: The primary role of such an agent is to periodically visit
a node and perform certain consistency checks. For example, an inspector would com-
pute the checksums of all important files for critical system services. For this it may
retrieve previously computed checksum values from some secure site, or it may carry
with it in a tamperproof container facility provided by Ajanta. An inspector agent
may also check that the permissions of certain files have not been altered or no new
suspicious changes have been made to the system configuration, such as the addition
of a new device or hosts. On detecting an abnormal condition, it would send event
notifications to the registered subscribers. The tasks of an inspector agent are to peri-
odically check the status of the nodes, or to change the system configuration such as
adding software patches for all the nodes. In an environment that consists of hundreds
of nodes, usually there are numerous such tasks to be performed, and new ones are
added everyday. If a separate agent is launched to each node for each of these tasks,
the agent-server on a node would be overloaded. Using itinerant inspector agents, such
periodic tasks can be encapsulated and new tasks can be added in an agent in every
round.

Though, an inspector agent is programmed with a fixed itinerary, which is repeated
periodically, the choice of the next hop from this itinerary can be dynamic based on
the state of the nodes the agent has visited. For example, if an inspector agent finds
an abnormal condition at a node, such as the file system being full or many run-away
processes created by a user, it may postpone its current activity and start checking other

8



nodes for similar conditions. During an inspection round, such an agent can also decide
to migrate to lightly loaded nodes first. An inspector agent can thus prioritize its tasks
and change its plans based on the state on the nodes.

4 Experiments in Agent-Based Network Monitoring

In this section, we present five of our experiments to demonstrate the novel utilities of
mobile agents in a network monitoring framework as described in the previous section.
We are not currently concerned with scalability and have conducted these experiments
on a small set of nodes in our laboratory environment. However, these experiments
clearly demonstrate the functional capabilities of the agent-based monitoring frame-
work presented here. We conducted a set of experiments to add to our experimental
environment, incrementally and dynamically, capabilities for monitoring a few select
situations. These situations are of interest to a system security administrator, as they
represent a possible threat to the integrity and security of the system. They are as
follows:

1. A user has switched to more than two different users. No user in our network is
assigned more than two user accounts. A user’s ability to log into more than two
accounts is either a possible unauthorized sharing of accounts or a system breach
showing compromised accounts.

2. A user is logged in at a local domain host and also simultaneously from a remote
domain. This activity shows possible misuse of a user’s account.

3. Root login activities reach more than a certain threshold number. An unusual
number of root login activities require system administrators’ attention. These
activities should increase an intrusion monitoring system’s alert level. These
activities may also need to be correlated with other activities, like the above two,
to generate higher levels of alarm events.

4. An FTP to a local host from an outside domain fails, and login activities are also
observed from that domain. FTP failure is an indication of a potential intrusion
step towards finding systems vulnerability, known as FTP scan. A domain may
be classified as untrusted based on this situation.

5. Periodically check the consistency of files in bin directories of all UNIX hosts.
Inconsistency of checksum values indicates modifications of files in bin directo-
ries.

Our experimental system was set up on our lab environment of ten nodes and it
was similar to the configuration shown in Figure 1. In our setup, each monitored host
executes a monitor server, and provides a database where events can be stored. The
syslog file generates lines such as :

9



“May 1 14:15:25 a.umn.edu in.rlogind[460]: connect from X@b.umn.edu”

The monitor agents, which read these lines, have Perl regular expression
�

patterns
which correspond to the strings they want to match. If a match is made, then the cor-
responding event object is created with information from the string. In this experimen-
tal environment, monitor agents are launched to monitor for all login-success, login-
failure, and FTP events. A login event subscriber agent and an FTP event subscriber
agent are also installed at nodes E and F, respectively. All the alarm events generated by
the subscriber agents are sent to the management stations. The management stations,
running under the same user’s privilege, can launch other monitor, subscriber, auditor,
or inspector agents with new tasks as detailed below for these experiments.

The purpose of the first experiment is to show how host-based attacks can be easily
identified by the agent-based framework. When a user switches to a different user, a
string, as mentioned above, is generated in the system log file. The monitor agent at the
node detects this string through its pattern matching rules, generates the corresponding
switchUser event, and delivers it to the login subscriber agent at host E in Figure 1.
The login subscriber agent contains a trigger procedure for this event, which gets exe-
cuted upon receiving this event. This procedure queries its event registry for previous
switchUser events. If a user is found to have switched to more than one other user, the
subscriber delivers an alarm event to the management stations.

The second experiment shows how capabilities to monitor new kinds of events can
be added through correlation of existing event database entries. For this experiment,
we launch an auditor agent to colocate with the login event subscriber at node E in
Figure 1. Upon arriving at the monitor server, this agent subscribes the successful login
events from the login subscriber. It also has access to the event registry object using
the agent server’s resource access protocol. Whenever any successful remote login or
console login events occur, the auditor queries the local event registry and database for
a concurrent presence of the user. If there is a login event of a user from an outside
domain, it may indicate a password security compromise.

For the third experiment, another auditor agent is created by a management station
and is launched to colocate with the login event subscriber. Whenever this agent sees a
root login event (success or failure), it checks for the count of such activities over some
specified period of time, and if the count passes a threshold number an alarm event is
delivered to the management stations. The management stations raise the monitoring
system’s alert level based on this event.

The fourth experiment is designed to illustrate how a remote auditor could be cre-
ated and launched to a remote host for correlation purposes as a part of the actions of a
trigger procedure. This experiment requires correlation of events recorded by the FTP
subscriber and the login subscriber agents. Whenever the the FTP subscriber agent
notices an FTP failure event from an outside domain, it creates an auditor agent and
launches it to the login subscriber. At the login subscriber’s server, the auditor queries
the event registry for remote login events initiated from the same domain that caused

�

OROMatcher(TM), a Perl5 compatible regular expression library for Java from ORO, Inc. is used. It is
available at http://www.oroinc.com.

10



the FTP failure event. It delivers an alarm event to the management stations when a
successful correlation is found.

The last experiment involves use of an itinerant agent with an itinerary containing
all the hosts to be monitored. This agent contains the one way hash values for the
bin directories of the monitoring UNIX hosts in a read-only container. It periodically
migrates to a host on its itinerary, computes and verifies the hash values of files in
certain directories, delivers an alarm event to the management nodes, and moves to the
next host.

The experiments presented above concentrate on the use of mobile-agent based
paradigms for network monitoring. These paradigms are the building blocks for a fu-
ture generation monitoring system, and the experiments proved them to be capable and
useful for that purpose. The Ajanta mobile agent system provided the right set of capa-
bilities to implement an infrastructure, which supports the monitoring paradigms. We
found that Ajanta provides adequate mechanisms to address the security requirements
of this agent-based monitoring architecture. The specific features utilized are: proxy
based access control of resources, policy based access control of server resources,
agent’s credentials based allowance, secure public key distribution by the name reg-
istry, and secure containers.

5 Related Work

Network system monitoring is mainly addressed by various SNMP-based network
management tools. However, SNMP manages and monitors only network elements.
Our goal is to monitor activities of users in a network and their impact on the system
consistency. Thus our monitoring system relates more to network intrusion detection
systems (IDS). Network monitoring not only provides functionality to monitor users’
intentional misuses or intrusions but also monitors inconsistency of systems introduced
by any means. Though our work resembles the monitoring task of SNMP-based sys-
tems, we try to provide solutions to the shortcomings of SNMP as mentioned earlier.

Only the new generation of IDS, like Emerald [14], Grid [16], are hierarchical,
can support both host and network based monitoring, and provides some extensibil-
ity of adding new data analysis and reporting modules. However, they are difficult to
reconfigure or add new capabilities and functionalities. These IDS usually have to be
restarted to make any changes to take effect. Our monitoring system can be dynam-
ically reconfigured or new functionalities can be added in the system by creating and
launching new agents with added functionalities to co-exist with the old ones. More-
over, Emerald and Grid do not provide mechanism for detecting what events need to
be monitored and where such events should be collected [19]. Correlator agents in our
mobile agent based monitoring framework can move to the event publishing hosts for
efficiency.

Advantages of using agents have been mentioned in the context of an IDS called
AAFID (Autonomous Agents For Intrusion Detection) [1]. Agents can be hierarchi-
cally organized such that lower level agents would perform information filtering and

11



digesting, and then report digested data to the upper layer agents, which makes such
systems scalable [1]. Agents can be upgraded when increased functionality is required
while keeping backward compatibility. AAFID is programmed in Perl, and it demon-
strates the feasibility of an agent-based intrusion detection system, but it lacks a well
defined middleware or mobile agent programming environment to fully exploit the ben-
efits of the agent paradigm in such systems. Also the rigid hierarchy in AAFID imposes
a delay on the intrusion notification as an intrusion event has to traverse through the
intermediate entities in a hierarchy.

The use of mobile agent technology in network management and monitoring is
relatively new and its functional capability is recently addressed by other researchers
[13, 2, 3]. The primary motivation of most of these efforts is to reduce network traf-
fic. In [11], a hierarchical organization of mobile agent for network monitoring is
presented. Our framework is not tied to any kind of hierarchy and can be dynamically
modified. We do not address the issues of using our framework to query SNMP agents
as in [20], where such an experiment is conducted. However, this paper is also mo-
tivated by mobile agents’ capability to reduce network load. Contrary to most of the
existing mobile agent based monitoring systems, our work concentrates on identifying
mobile agent paradigms to realize a secure, extensible, and dynamically configurable
monitoring system.

6 Conclusions

This work is motivated by the need of having capabilities to dynamically introduce new
kinds of monitoring procedures and correlation functions in today’s evolving network
systems. We also need capabilities for supporting flexible organizations for decentral-
ized collections and correlation of event data. We have presented here a framework
with a set of paradigms for agent-based active monitoring to dynamically add new
functionalities. Based on these paradigms, we have built an experimental network
monitoring system for our lab environment using the Ajanta system. Through a set of
experiments we have demonstrated the functional capabilities of this system to dynam-
ically add monitoring of new kinds of events and correlation functions over data stored
at different nodes.

The use of mobile agents provides a richer execution model than just code mobility.
In a system with code mobility only, we need to have at each node an entity to download
from a remote location code to perform any new monitoring functions. In contrast, the
use of the mobile agent paradigm allows an agent to determine the node to which it
should migrate to perform certain monitoring functions, as demanded by the present
situation. In case of mobile code, with Java 2 security model, one can assign different
protection domains to the downloaded code based on its origin. In comparison, an
Ajanta mobile agent is executed in a separate protection domain with privileges based
on its owner’s id. This allows us to define different protection domains for agents with
different kinds of functionalities, rather than having all agents to have equal access
rights to all system resources. This adds another level of security in the monitoring

12



system itself. Our work demonstrates that a secure agent programming system such as
Ajanta can be effectively used for implementing the framework presented here.

We have primarily concentrated in this paper on the functionalities of an agent
based monitoring system using different paradigms. In our future research, we plan to
investigate performance and scalability of this system. Our future goal is to experiment
in an environment with close to hundred nodes with different types of operating system
platforms. We also plan to investigate use of SQL databases instead of Java-Prolog for
more efficient event correlation involving large databases.

Acknowledgment
We would like to thank Juergen Schoenwaelder of Technical University Braunschweig,
Germany and the anonymous reviewers for their comments.

References

[1] BALASUBRAMANIYAN, J., GARCIA-FERNANDEZ, J. O., ISACOFF, D., SPAF-
FORD, E. H., AND ZAMBONI, D. An Architecture for Intrusion Detection using
Autonomous Agents. Tech. Rep. Coast TR 98-05, Department of Computer Sci-
ences, Purdue University, 1998.

[2] BALDI, M., GAI, S., AND PICCO, G. P. Exploiting Code Mobility in Decen-
tralized and Flexible Network Management. In Proceedings of the Workshop on
Mobile Agents (MA’97) – LNCS 1219 (April 1997), pp. 13–26.

[3] BELLAVISTA, P., CORRADI, A., AND STEFANELLI, C. An Open Secure Mobile
Agent Framework for Systems Management. Journal of Network and Systems
Management (JNSM) 7, 3 (September 1999), 323–339.

[4] BOHORIS, C., PAVLOU, G., AND CRUICKSHANK, H. Using Mobile Agents for
Network Performance Management. In Network Operations and Management
Symposium (2000), pp. 637–652.

[5] BOUTABA, R., GUEMHIOUI, K. E., AND DINI, P. An Outlook on Intranet
Management. IEEE Communications Magazine 35, 1 (October 1997), 92–9.

[6] CROSBIE, M., AND SPAFFORD, E. H. Defending a Computer System using
Autonomous Agents. In Proceedings of the 18th National Information Systems
Security Conference, Baltimore MD, USA (October 1995), pp. 549–558.

[7] HARRISON, C. G., CHESS, D. M., AND KERSHENBAUM, A. Mo-
bile Agents: Are They a Good Idea? Tech. rep., IBM Research
Division, T.J.Watson Research Center, March 1995. Available at URL
http://www.research.ibm.com/massdist/mobag.ps.

[8] JIPL: Java Interface for Prolog. Available at URL
http://Prolog.isac.co.jp/index e.html, 2001.

13



[9] KARJOTH, G., LANGE, D., AND OSHIMA, M. A Security Model for Aglets.
IEEE Internet Computing (July-August 1997), 68–77.

[10] KARNIK, N., AND TRIPATHI, A. A Security Architecture for Mobile Agents in
Ajanta. In Proceedings of the International Conference on Distributed Computing
Systems 2000 (April 2000).

[11] LIOTTA, A., KNIGHT, G., AND PAVLOU, G. Modelling Network and System
Monitoring over the Internet with Mobile Agents. In Network Operations and
Management Symposium (1998), pp. 303–312.

[12] OBJECTSPACE. ObjectSpace Voyager Core Package Technical Overview. Tech.
rep., ObjectSpace, Inc., July 1997. Available at http://www.objectspace.com/.

[13] PINHEIRO, R., POYLISHER, A., AND CALDWELL, H. Mobile Agents for Ag-
gregation of Network Mangagement Data. In First International Symposium on
Agents and Applications, and Third International Symposium on Mobile Agents
(October 1999), pp. 130–140.

[14] PORRAS, P. A., AND NEUMANN, P. G. EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances. In Proceedings of the Nineteenth
National Computer Security Conference (May), 1990, pp. 296–304.

[15] STALLINGS, W. SNMP and SNMPv2: the Infrastructure for Network Manage-
ment. IEEE Communications Magazine 36, 3 (March 1998), 37–43.

[16] STANIFORD-CHEN, S., CHEUNG, S., CRAWFORD, R., DILGER, M., FRANK,
J., HOAGLAND, J., K. LEVITT, C. W., YIP, R., AND ZERKLE, D. GrIDS: A
Graph Based Intrusion Detection System for Large Networks. In Proceedings
of the 19th National Information Systems Security Conference (October 1996),
National Institute of Standards and Technology, pp. 361–370.

[17] TRIPATHI, A., AHMED, T., PATHAK, S., AND CARNEY, M. Design of a
Dynamically Extensible System for Network Monitoring using Mobile Agents.
Tech. rep., Department of Computer Science, University of Minnesota, July 2001.
http://www.cs.umn.edu/Ajanta.

[18] TRIPATHI, A., KARNIK, N., VORA, M., AHMED, T., AND SINGH, R. Mobile
Agent Programming in Ajanta. In Proceedings of the 19th International Confer-
ence on Distributed Computing Systems (May 1999).

[19] VIGNA, G., AND KEMMERER, R. NetSTAT: A Network-based Intrusion Detec-
tion System. Journal of Computer Security 7, 1 (1999), 37–71.

[20] ZAPF, M., HERRMANN, K., AND GEIHS, K. Decentralized SNMP Manage-
ment with Mobile Agents. In Proceedings of the Sixth IFIP/IEEE International
Symposium on Integrated Network Management (1999), pp. 623 –635.

14


