Context-Based Secure Resource Access in Pervasive
Computing Environments

Anand Tripathi, Tanvir Ahmed, Devdatta Kulkarni, Richa Kumar, and Komal Kashiramka
Contact Author:Anand Tripathi, tripath@cs.umn.edu
Department of Computer Science
University of Minnesota, Minneapolis MN 55455

Abstract: This paper presents a system architecture for
supporting ubiquitous computing for mobile users across dif-
ferent environments by transparently performing context-
based discovery and binding of resources. A ubiquitous
computing environment is viewed as a collaboration space
among mobile users, system services, and sensors/resources
embedded in the physical environment. We present here dif-
ferent policies for binding resources to names in this space.
We also present here a role based specification model for
defining activities.

1. INTRODUCTION

With the Internet supporting ubiquitous connectivity across

the globe and a growing dependence of our day-to-day ac-
tivities on globally networked computing resources, a person
requires his or her computing environment to be accessible
from different locations. A user’s activities generally include
collaborative tasks in different environments involving inter-
actions with other users and system services.

In our approach, a pervasive/ubiquitous computing envi-
ronment is viewed as a collaboration space involving mobile
users, system services, and embedded computing resources
and sensors in the physical space. A mobile user’s comput-
ing tasks are viewed as collaborative activities in this space.
For this, our approach extends the middleware framework
for secure distributed collaboration [11] to include support
for context-based security policies for resource access by mo-
bile users. Moreover, we allow mobile users as well as system
level services to be represented as collaborating agents. We
term this as ubiquitous collaboration.

The focus of this paper is on policies for resource access
in ubiquitous and context-aware pervasive computing envi-
ronments. In this paper we define the resource access mod-
els in such environments and present a specification model
for ubiquitous activities. The goal of our work is to sup-
port construction of computing environments for unobtru-
sive mobility of users by providing secure as well as transpar-
ent access to resources and services for the user’s context-
based computing needs. The environment should be able
to proactively discover and transparently bind the resources
required by the user. The environment should be able to
negotiate the security policies specified by the user and the
security polices associate with the resources. Mobile users
in a new environment are relieved from the burden of per-
forming complex actions to discover resources needed in that
environment. Our goals are similar to many of the current
research activities in the field of pervasive computing [2, 5,
7, 8, 4].

There are several important security issues that need to
be addressed towards the above goals.

e A user’s access privileges for services and resources may
need to be determined based on the user’s role in collab-
orative activities. Such privileges may need to be further
constrained based on the physical context of the user.

e Authentication and authorization of access based on a
user’s context is required for proper enforcement of the re-
quired policies.

e As a user may not fully trust a foreign environment,
access as well as visibility of certain sensitive resources in
the user’s native environment may need to be forbidden for
privacy and safety concerns. Moreover, in discovering local
service/resources in an environment, the user may need to
ensure that the requested service/resource is being managed
by a trusted entity and meets certain security requirements.

e Similarly, an environment may need to impose restric-
tions on a visiting user’s access to local services and re-
sources.

An important aspect of our approach is to build ubig-
uitous and context-aware applications and computing envi-
ronments from their high level specifications coupled with a
policy-driven middleware. A number of other projects have
taken this kind of approach [3, 12]. In contrast most of the
other projects have used methods of custom design, imple-
mentation, and integration of services and components to
realize a specific environment.

2. ISSUESINSECURE RESOURCE ACCESS

A mobile user’s access to resources in a domain are con-
trolled by the policies defined at several different and inde-
pendent levels.

e A user specifies discretionary policies controlling context-
based visibility and access of his/her resources.

e A resource/service manager specifies the access control
policies for mobile users. Such policies specify if the
resource can be accessed from foreign domains and the
context under which the access should be permitted.

e A collaborative activity specifies the policies defining
conditions and context under which a user should be
allowed to access a resource. Such policies may also
control dynamic binding of a resource-name to a dif-
ferent resource when the context changes, such as the
user moves from one domain to another.

All such policies need to be integrated in a coherent fash-
ion at runtime. Associated with each user is the notion of a

resource namespace as described below:

e Name items in this space represent abstractions for
various entities such as resources, services, activities,
and user roles in an activity. This namespace is hi-
erarchical as each activity defines its own namespace,
and activities may be nested.

e Associate with each name item is a descriptor contain-
ing functional attributes and security policies required
for the entity to be bound to this name.

Similar to a user’s namespace, each domain also has a
namespace representing various entities such resources, ac-
tivities, and services. We refer to this as the domain resource
space. The resource discovery and binding protocols bind a
name item to an entity in the domain resource space. The
binding of a name to a resource may change with time as the
user’s context changes. A user’s context could be defined in
terms of a number of different kinds of attributes, such as
the user’s current location, organizational/security domain
in which the user is currently present, activities in which
the user is currently participating, user’s role in an activity,
or devices through which the user is interacting with the
environment.

A name descriptor contains the following items:

e Functional attributes expressed in schema based on
WSDL (Web Services Description Language) and RDF
(Resource Description Framework).

e Security and privacy policies may require that only a
subset of the entities in the user’s namespace may be
visible to the user in a given context. This we refer
to as the the user’s “view” of the namespace in that
context. A user’s view is determined by the access
control policies at various levels as noted above. The
view access control directives in the name descriptor
determine in which context the name is visible.

e Specification of context-based binding policies is given
along two orthogonal dimensions as noted below:

— The binding of a resource name could be speci-
fied either as permanent binding or context-based
binding. A permanent binding never changes af-
ter initial binding is performed, unless explicitly
changed by the user. A context-based binding
requirement specifies the context-change events
that would cause implicit invocation of resource
discovery and rebinding of the name to a different
resource.

— Another binding directive would specify if a name
item in a shared namespace should reflect a shared
binding or a private binding. In case of shared
binding, all users would access the same resource
using that name. In contrast, a private bind-
ing means that for each user the discovery and
binding operations are performed independently.
Thus the same name may be bound to different
resources.

The name descriptor could also include the domains where
the resource is needed to be accessed by the user applica-
tions. This information is then used during resource dis-
covery to ensure that the resource provider’s policies permit

access from those domains. Additionally, a descriptor may
also specify if a resource could be cached or replicated in
other domains. The name descriptors are defined to be ex-
tensible to include new policy requirements.

3. ARCHITECTURE FOR CONTEXT-BASED
RESOURCE ACCESS

Here we briefly describe the system architecture for context-
based resource access to support various security policies
and binding requirements. This architecture is based on the
Ajanta mobile agent system [10] and our middleware for se-
cure collaboration [11].

Figure 1 shows an example of how a user’s view changes
when the user moves from one organizational domain to an-
other. This figure shows two domains and their system level
namespaces; it shows a user’s namespace view of some activ-
ity when the user moves from domain A to B. In domain A,
the user’s view contains several resources. This figure also
shows the binding policies for the resources shown in the
view. The policy for a printer named OfficePrinter, given
as Permanent, indicates that the binding should be done
only once and it should not change even if the user moves
to another domain. Its view access control policy, View
ACL, specifies that that this name should be visible in all
domains. The descriptor for LocalPrinter specifies that it
should be rebinded whenever the domain changes. When
the user moves from domain A to B, LocalPrinter is bound
to the printer named B:Printers:PSPrinter. The name F1 is
bound to a local file, and the caching directive causes a copy
of the file to be created in domain B. The View ACL for the
name F2 specifies that the file is visible only in Domain A.

In this architecture, a user’s context-based view for an
activity’s namespace is managed independent of other ac-
tivities of the user. This is because the user may be partic-
ipating in various activities through different contexts.

In the user’s environment, a view manager and a con-
text manager are associated with each activity as shown in
Figure 2. The context manager is responsible for detecting
the context change events and delivering such events to the
view manager. The view manager specifies the event detec-
tion policies for the context manager. The view manager is
responsible for managing and updating the view based on
the changes in the underlying context. The view manager
interacts with the resource discovery services to find the re-
sources matching the requirements in name descriptors.

Figure 2 illustrates the different ways in which the context
underlying a view could change, thus causing view updates
and rebinding of names. The user is executing an applica-
tion on a desktop, shown as View 1. He now moves this
application environment to a laptop. The context manager
informs the view manager of this “device context” change.
The view manager updates the view, based on the context-
based binding policies, to rebind certain names. The new
view is shown as View 2. Now suppose that the user moves
from domain A to B along with this laptop. Once again the
view manager is informed of such changes by the context
manager.

Our architecture utilizes mobile agents for context-based
view management functions for low power devices to con-
serve their resources. The view management task is off-
loaded from the device to an agent executing on some host
in the infrastructure. This is shown in Figure 2 View 4.

User’sActiivity Namespace

m
Domain A user movesito domain B

Domain B

Namespace | Name Discriptor
|
[View ACL :*, Bind:Permanent, Shared
=A:Printers:ColorPrinter
I

- 1[View ACL :*, Bind:@DomainChange, Private
*A:Printers.ColorPrinter
|
[View ACL :*, Bind :@DomainChange,Private

FileF1 \ Caching Directive Domain B]
A:FileServers:FS1:F1

Office Printer

i
[View ACL : Domain A
Bind : @DomainChange, Shared

Namespace i

Name Discriptor
:[View ACL :*, Bind:Permanent, Shared

—— I
Office Printer | & A:printers:ColorPrinter

I
1[View ACL :*, Bind:@DomainChange, Private
> B:Printers:PSPrinter

|
[View ACL :*, Bind :@DomainChange,Private

File F1 1 Caching Directive Domain B]

B:FileServersFS3:F1
|
{View ACL: Domain A

Ly Bind : @DomainChange, Shared

‘ Discovery Service ‘ ‘ Agent Exe. Service ‘

‘ LocationService‘ ‘ Sentry Service ‘

Environment

‘ Discovery Service ‘ ‘ Agent Exe. Service ‘

}

‘ Location Service‘ ‘ Sentry Service ‘

Environment

| e
FAFleSevesFSLF2 T L
: Domain Resour ce Space :
Domain A A R? Sp B Domain B
T 3 .
Printers File Servers Projectors 1 Printers File Servers
Color Printer PSPrinter FS1 FS2 PR1 1 PS Printer FS3 F4
2 OFl-- ____.--=F1 F5
I cached copy
Figure 1: Namespace Mobility
. device moving to new domain .
) Domain A o--" e) Domain B)
View 1 ew 2 . } T View 3 View 4
I
View View . View View I _ _ View incarnated
Eg L — — — — — - g ! g .
view ! H : from persistent
Vi Context A Vi Context Vi Context i
migration : ‘ | remesps
| (N N ——]
! \
[romoeevmomen]| | | [hoonise ervromen | \
[emya rewreesinarg]| | |[Enry & Remropinang | !
| [
[vaorown]| | |[newokpooa] | view menagement
I
/7 off-loaded
desktop laptop | laptop PDA /
<~ | < > s
I
I
I
I
I
I
I
I
I
I
I
I

Figure 2: View Management

4. SPECIFICATION MODEL FOR UBIQUI-
TOUS ACTIVITIES

We have developed a role based specification model for
activity and security specification in ubiquitous collabora-
tion environment. In our specification model, coordination
and security policies are specified using roles. In our earlier
specification model [11] for collaboration systems, we have
extend traditional RBAC [6] to support specification and en-
forcement of various security policies such as “separation of
duties” and dynamic access control. The specification model
is extended for ubiquitous environment to include concepts
such as active entities, resource descriptions, resource bind-
ings, and view access control. Our roles are defined in the
context of an activity. Examples of context sensitive roles
include Team Based Access Control(TMAC) [9]. Like oth-
ers [1], roles in our model are not limited to represent priv-
ileges, tasks, or obligations of human users but also those
of active entities interacting with ubiquitous environment,

such as a room-controller.
Activity Specification: In our specification model, an ac-
tivity, which is an abstraction of a collaboration session, pro-

vides a protection domain and scope for roles, objects/resources,

and privileges. An activity can be structured hierarchically,
consisting of multiple nested concurrent activities. Objects
can be passed into nested activities and users in roles from
a parent activity can join roles in nested activities.

An activity template specifies a reusable interaction pat-
tern among a set of roles using some shared objects. Activ-
ities are instantiated from templates. Besides the roles in
an activity, there are several meta-roles, such as creator and
owner, to manage activities.

Role Specification: Users and other active entities in an
environment are represented by their roles, and roles are as-
signed privileges to perform certain tasks. We term these
role specific tasks as operations. Operations can be method
invocations on shared objects, synchronization actions, or

management related actions. A role operation can also re-
sult in a sequence of interactions between the invoker and
a set of shared objects. This represents a session in the
context of that role operation. Role operations may have
preconditions to coordinate users’ actions. Users acquire
privileges to perform tasks in the collaboration by joining
or being admitted to roles. For roles with human users, role
admission constraints specify the conditions that need to be
satisfied when a user joins a role. When a role operation’s
precondition is satisfied, a member in that role can invoke
that operation.

To support the construction of smart environments, a
variant of the operation construct called reaction is defined.
In contrast to an operation, whose execution involves inter-
action with one of the participants in a role, a reaction is
executed spontaneously when its precondition becomes true.
Even for the roles which represent human entities, the ex-
ecution of a reaction does not involve a human user unless
specified. In such cases, a reaction executes on behalf of the
role owner.

Event Specification: Events and event counters are used
for specifying interactions, context changes, and security re-
quirements. Events fall into three broad categories. The
first is the class of events that are defined by the applica-
tion programmer. Such events are explicitly signaled in a
role operation or reaction using the NotifyEvent primitive.
The second category of events are implicitly generated by
the system, and these events correspond to instantiation of
activities, execution of role operations, admission of users
in roles etc. Related to each operation are three types of
events: request, start, and finish. Our model also facili-
tates inclusion of application-specific data, in the form of a
generic context object associated with each such event. The
third category of events correspond to the underlying phys-
ical and runtime environment, and they are used for con-
structing “smart” environments. Examples of such events
include user-presence detection, context changes and notifi-
cation of resource utilization status. A specification explic-
itly declares such events being “imported” from the under-
lying middleware supporting the runtime environment.

In the specification model, multiple occurrences of a given
event type — such as multiple executions of an operation
— are represented by a list. The expression (eventName)
returns the list including all the instances of this type of
event. We provide a count operator # on lists. One can
also define a filtering predicate on an event list based on
certain event attributes to obtain a subset of the events. For
example, for a role operation execution, we can define a filter
based on invoker id, such as opName.start(invoker=Alice).

The OfficeLockManager as shown in Figure 3 provides an
example of our event based policy specification. In the ex-
ample, a smart office environment defines a OfficeLockMan-
ager role for automatically opening and locking the door to
the office everyday at a specified time, after ensuring that
no employees are still in the office. To facilitate this, en-
vironment events EmployeeArrival and EmployeeDeparture
are imported from the underlying physical system.

Example Specifications: We use two examples to illustrate
some of the requirements of ubiquitous collaboration envi-
ronments. Our specifications are expressed in XML. How-
ever, in this paper we use a notation that is simple to read
and conceptually easy to follow.

e Figure 4 shows a Meeting activity template, contain-

Import: EmployeeArrival, EmployeeDeparture;
Role 0fficeLockManager
Reaction LockDoor
Precondition:
#(EmployeeDeparture) - #(EmployeeArrival) = 0
& time > 16:30:00
& #(OpenDoor.finish) - #(LockDoor.start) > 0
Reaction OpenDoor
Precondition:
#(EmployeeArrival) - #(EmployeeDeparture) > 0
& time > 8:30:00
& #(OpenDoor.start) - #(LockDoor.finish) = 0

Figure 3: Specification for OfficeLockManager

ing three roles: Accountant, Manager and Staff. The activ-
ity needs a Room object which provides access to certain
resources within the meeting room such as the projector,
printer, and light, and also supports queries to detect user
presence. A DisplayFinancialData operation is defined for
the Accountant role, which allows the accountant to display
the financial data on the projector’s display. The opera-
tion’s preconditions ensure that the accountant can perform
this operation only when the participant and a manager are
present in the meeting room. The function members(role) is
a role membership function, which returns the list of mem-
bers in a role.

e Figure 5 represents a RoomController activity to model
a smart room environment. The LightController role is de-
fined to automatically switch the lights on/off based on pres-
ence of users in the room or dim the lights when there is a
user in the room and the projector is on. The appropri-
ate Room object is bound to the activity at the time of its
creation to provide a access to the light object.

The above two are independent activities, however they
may share the same Room object.

Context-Based Security Policies: In the specification model,
environment related queries are used to specify context sen-
sitive coordination and security policies, e.g. detection of
presence of a specific user in a room. Similarly, events re-
lated to the changes in a user’s context, such as those related
to domain, device, location, and network connection support
context sensitive policies. In Figure 4, to detect that the ac-
countant and a manager are present in the meeting room
when the accountant tries to display the financial data, the
room object queries for user presence information. More-
over, by computing the intersection of the Manager role’s
members with the set of all users present in the room, the
presence of a manager is detected.

Resource Description: To be able to use the same ac-
tivity template in different environments, the specification
model includes a description of the environment related re-
sources needed by the activity. Such descriptions are pro-
vided in XML based on WSDL and RDF. These include
the following: (1) The desired attributes and components
of the resource. For example, in Figure 4 the template for
the Room object provides the necessary components of the
object, based on which the resource is discovered and bound
when the activity is created. (2) A View ACL which lists all
domains in which the resource should be visible in the user’s
namespace. (3) Caching Directives - that list the domains
where the resource, if visible, could be cached.

From the activity specification, we derive namespace de-
scriptors. The view mangers associated with the users’ envi-

ActivityTemplate Meeting {
ObjectType Room {
Components:
Projector projector {...}
Light light {...}
Printer printer {...}
Methods:
Boolean isPresent(userld)
List presentUsers()
} as room;
Role Accountant {
Operation DisplayFinancialData {
Precondition
room.isPresent(thisUser)
& #(room.presentUsers()
N members(Manager)) > 0
Action projector.display(data)

}
Role Manager {....}
Role Staff {....}

Figure 4: Context aware collaboration activity

ronments perform the required resource discovery and bind-
ing functions.

5. CONCLUSIONS

The work presented in this paper extends our previous
work on specification-based construction of secure collab-
oration systems to support ubiquitous and pervasive com-
puting environments. In this paper, we have presented a
model for secure resource access in pervasive computing en-
vironments based on different levels of policies. This work
demonstrates that the notion of collaborative activities is
a natural abstraction for specifying and building pervasive
computing environments.

Acknowledgment This work was supported by National
Science Foundation grant ITR 0082215.

6. REFERENCES

[1] Michael J. Covington, Wende Long, Srividhya
Srinivasan, Anind K. Dev, Mustaque Ahamad, and
Gregory D. Abowd. Securing context-aware
applications using environment roles . In Proceedings
of the sizth ACM symposium on Access control models
and technologies , pages 10-20, May 2001.

David Garlan, Dan Siewiorek, Asim Smailagic, and
Peter Steenkiste. Project Aura: Toward
Distraction-Free Pervasive Computing. IEEE
Pervasive computing, 1(2):22-31, April-June 2002.
Christopher K. Hess, Manuel Roman, and Roy H.
Campbell. Building Applications for Ubiquitous
Computing Environments. In International
Conference on Pervasive Computing (Pervasive 2002),
August 2002.

Tim Kindberg and Armando Fox. System Software for
Ubiquitous Computing. IEEE Pervasive computing,
1(1):70-81, January/March 2002.

MIT Project Oxygen. Available at url
http://oxygen.lcs.mit.edu/.

ActivityTemplate RoomController

(ObjectType Room room) {

Role LightManager {
Reaction SwitchOnLight {

Precondition
#(room.presentUsers()) > 0
Action room.light.switchOn()

Reaction SwitchOffLight {

Precondition
#(room.presentUsers()) = 0
Action room.light.switchOff()

Reaction Dim {

[10

11

[12

]

]

Precondition
#(room.presentUsers()) > 0
& room.projector.on()

Action room.light.setLevel(LOW)

Figure 5: Smart Room activity

Ravi Sandhu, Edward Coyne, Hal Feinstein, and
Charles Youman. Role-Based Access Control Models.
IEEE Computer, 29(2):38-47, February 1996.

M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Personal Communications,
8(4):10-17, August 2001.

Bill Schilit, Norman Adams, and Roy Want.
Context-Aware Computing Applications. In IEEE
Workshop on Mobile Computing Systems and
Applications, pages 85-90, Santa Cruz, CA, US, 1994.
Roshan K. Thomas. Team-based access control
(TMAC): a primitive for applying role-based access
controls in collaborative environments. In ACM
Workshop on Role-based Access Control, pages 13 —
19, 1997.

A. Tripathi, N. Karnik, T. Ahmed, R. Singh,

A. Prakash, V. Kakani, M. Vora, and M. Pathak.
Design of the Ajanta System for Mobile Agent
Programming. Journal of Systems and Software,
62:123-140, 2002.

Anand Tripathi, Tanvir Ahmed, and Richa Kumar.
Specification of Secure Distributed Collaboration
Systems. In IEEE International Symposium on
Autonomous Distributed Systems (ISADS), pages
149-156, April 2003.

Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang,
and Sandeep K.S. Gupta. Reconfigurable
Context-Sensitive Middleware for Pervasive
Computing. IEEE Pervasive Computing, 1(3):33-40,
July/September 2002.

