
1

Programming Secure and Robust Pervasive

Computing Applications
Devdatta Kulkarni, Anand Tripathi, and Tanvir Ahmed

Department of Computer Science

University of Minnesota, Minneapolis MN 55455

Contact Author Email: tripathi@cs.umn.edu

Abstract

We have developed a programming framework for building context-aware multi-user collaborative

applications in pervasive computing environments. It supports context-sensitive security and multi-user

coordination requirements. It also supports error handling in pervasive computing applications through

an exception handling model. In this paper we present the programming framework and demonstrate

its utility for building context-aware, secure, fault-tolerant pervasive computing applications. We also

demonstrate integration of an agent-based distributed event monitoring system for gathering context

information that is derived from sensor data.

I. I NTRODUCTION

In the last few years there has been considerable interest inthe research community in building

pervasive computing environments. Several research groups have developed system architectures and

programming frameworks for building pervasive computing applications [1], [2], [3], [4], [5]. There is

a large spectrum of pervasive computing applications reported in the literature [1], [2], [3], [4], [5], [6],

[7]. An important characteristic of such applications is the use of context information to enrich user

experience through adaptation and augmentation of their computing environment [8]. Such applications

transparently provide access to required resources and data based on the contextual information. A user’s

physical location has been one of the most prominent contextinformation used in many such applications,

allowing mobile users to seamlessly perform their activities while moving across different physical spaces.

A large body of research has addressed the issues related to modeling and representation of context

information involving other aspects such as the characteristics of the user’s computing environment (e.g.,

available bandwidth or devices), co-location with other users, and the user’s activity related preferences

and profiles [9], [10], [11].

Our work differs from the other research in this area in threeaspects. First, our work addresses

context-based security and coordination requirements of collaborative applications in pervasive computing

environments. Most of the pervasive computing applications and the middleware environments reported in

the literature do not address multi-user coordination and security issues. Though many of the applications

reported in the literature involve multiple users, the requirements of security are addressed purely from

the perspective of single user. Second, we provide a programming framework which allows one to

realize pervasive computing applications from their high level specification by automated integration

This work was supported by National Science Foundation grant 0411961.

2

of application components, environmental services, and context sensors. Only few other projects [1],

[5], have taken this kind of approach. The commonly used approach in other projects is to build

such applications through custom integration of components and services. Third, our work provides

error handling in pervasive computing applications by integrating an exception handling model in our

programming framework. The error handling issues in such environments have not been adequately

addressed by the research community.

We view a pervasive computing environment as a collaboration space involving multiple users and

environmental agents that collaborate for certain application-defined objectives. This approach stems

from our earlier work on building secure distributed collaboration environments from their high level

specification [12], [13]. The conceptual model of this approach was presented in [14], [15], where we

extended our earlier work to support context-based resource discovery/binding and context-based secure

coordination among users and environmental agents in pervasive computing applications.

In this paper we present the realization of this model in a programming framework and illustrate

its capabilities for supporting context-based security, dynamic resource binding, and exception handling

through the development of a comprehensive case study application. This is a collaborative application

involving multiple users in a secure distributed meeting environment that spans multiple physical lo-

cations. This application is intended to support context-sensitive security requirements that depend on

users’ presence in some physical space and their co-location with other users. We also present integration

of an exception handling model for pervasive computing applications that we had proposed [16], in

our programming framework. Lastly, we illustrate how an agent-based distributed event monitoring

system [17], [18], is used for gathering and providing context information.

Our work addresses important requirements related to four aspects of context-aware collaborative

applications in pervasive computing environments: context-based security and coordination, context-aware

proactive actions, context-based dynamic discovery and binding of resources , and exception handling for

robust operations. We consider context from an application’s perspective asinternal contextor external

context. The application’s execution state, such as the tasks performed by each user in a multi-user

application, forms itsinternal context, while any information that can be sensed from the external world,

e.g. a user’s physical location, forms itsexternal context.

Context-based security and coordination:Central to our programming framework is a role-based

security model. A role represents permissions for users to perform actions in a collaborative application.

We represent a role’s permissions through a set of operations associated with the role. Dynamic security

and coordination requirements of a role-based collaborative application requires that the user’s privileges

to execute role operations in such applications be based on certain internal or external context conditions.

Context-aware Proactive Actions:Pervasive computing applications need mechanisms for performing

proactive actions based on the context information. Examples of such proactive actions include turning

off lights in a room when no user is present in the room or transporting user’s computing environment

to the device close to the user. In our programming frameworksuch proactive actions are supported

through thereactionconstruct.

Context-based dynamic resource discovery and binding:An application defines a name-space for the

resources required in its execution. The binding of names ina name-space with physical resources in

an environment may need to be changed based on the context of the application. In our programming

framework we support different kinds of directives for resource discovery and binding.

Exception handling for robust operations:One of the characterizing features of pervasive comput-

3

ing applications is the dynamically changing integration of application components and environmental

services/resources. Different types of application errors are highly probable in such environments, such

as: required resources may not be always available in the application’s current environmental context,

the context condition under which a secure resource usage ispermitted may get violated because of

sudden changes in the environmental context, or a role member may encounter errors while interacting

with a resource/service. We handle such errors through the exception handling model integrated in our

programming framework.

Section II presents the distributed meeting application and its context-based requirements. Section III

presents the basic elements of our programming framework. In Section IV we present the complete

specification of the distributed meeting application. In Section V we present the implementation details

of this application. In Section VI we present the error conditions that arise in it and demonstrate how

they are handled in our programming framework through the exception handling model. Section VII

discusses the related work, and the conclusions are presented in Section VIII.

II. CONTEXT-SENSITIVE SECUREDISTRIBUTED MEETING

Consider a distributed meeting involving participants present in multiple rooms. Each meeting room

consists of a projector attached to a display device. The meeting application creates two audio channel

objects which can be connected to the users’ input devices such as a microphone and output devices such

as audio players. A user participates in the meeting using his/her own laptop/PDA with a microphone

and an audio player. The meeting may involve discussions related to classified as well as unclassified

information. The two audio channels, calledprivate channeland public channel, are designated to be

used separately for classified and unclassified presentations.

In this distributed meeting there are three roles corresponding to Chairperson, Participant andSecre-

tary. TheChairpersonand theSecretaryrole each have only one member, and all other authorized users

are in theParticipant role. TheParticipant role is provided with operations through which its members

can perform presentations of the classified or unclassified information. Such a distributed meeting has

the following context-sensitive security and resource access requirements:

R1: The presentation of the classified information by a user in the Participant role should only be

directed to the projector of the room in which that user is located and the audio presentation should

be directed to theprivate channel.

R2: The presentation of the unclassified information has no such restriction. It should be directed to

projectors in all the meeting rooms and both the audio channels.

R3: A user in theParticipant role can perform a classified presentation only when co-located with the

Chairpersonrole member in the same room. Furthermore, theChairpersonhas to explicitly grant

permission to that user for making the classified presentation.

R4: The room in which the user making a classified presentation and the chairperson are present becomes

the room for confidential discussions. Only those participants who are present in that room can talk

on and listen to the private audio channel. They cannot talk on the public audio channel but they

can listen to the public channel. On the other hand, participants in other rooms can talk and listen

only on the public audio channel.

R5: Some participants and the chairperson may move from one room to another. Requirement R4 above

should be satisfied corresponding to the room in which the chairperson is currently present.

4

R6: The projector in a room should be enabled if and only if there is any authorized user present in

that room.

Corresponding to the above application requirements the following functionalities need to be supported

in the programming framework.

P1: We need mechanisms for binding resources based on the context information. For example, for

making classified presentations as part of requirement R1, each Participant role member needs to

have access to the projector in the room where he/she is currently located, and for requirement

R5 this resource binding needs to change if the participant moves from one room to another. This

resource binding depends on the context information related to a particular role member and it is

completely independent of other role members’ context. Each such resource has to be identified

with a name that is private to a role member. On the other hand,global resource names are needed

to refer to resources that are shared among all the roles, forexample, public and private audio

channels in this application. This highlights two kinds of requirements: one is the separation of

global and role member’s private object name-spaces, and the other is the context-based dynamic

binding of these names to resources.

P2: We need mechanisms for handling collection of resourcesof a particular type as a single entity. For

example, as part of requirement R2, presentations related to unclassified data need to be directed to

the projectors of all the meeting rooms. An action performedon the collection will be performed

on all the objects in the collection.

P3: We need mechanisms for accessing application’s internal and external context information. For

requirement R3 we need internal context information corresponding to the execution of the operation

for approving participant’s presentation by theChairpersonrole, and we need external context

information corresponding to the location of theParticipant role member and his/her co-location

with the Chairpersonrole member in a particular room.

P4: We need mechanisms for constraining role operation invocation subject to external context infor-

mation. For example, corresponding to requirement R3 we need to disallow presentations of the

classified information by a user in theParticipant role and corresponding to R4 we need to disallow

participant’s interaction with the private audio channel,if that user is not present in the same room

where theChairpersonrole member is located.

P5: We need mechanisms for performing proactive actions in the environment based on the context

information. The need for such proactive actions is observed in requirement R6.

III. C ONCEPTUAL MODEL OF THESPECIFICATION BASEDPROGRAMMING FRAMEWORK

We present here the basic elements of the specification model. The specific constructs are presented in

the next section as part of the distributed meeting example.In our programming framework, a pervasive

computing application spanning over the Internet and involving distributed and mobile users is modeled

as anactivity. An activity represents a shared workspace for interactions among usersand environmental

agents. An activity definition contains three elements: a set of roles, an object name-space containing

the definitions of the required shared objects and resources, and a set of context-driven proactive actions,

called reactions.

5

A. Object Description and Binding

An object in an activity can refer to one of the three kinds of entities: a shared resource created by

the activity, a system-level resource or service existing in the environment, or an object which provides

abstractions for the physical environment. An object name can be defined either in the global scope,

which is visible to all the members of all the roles, or it may belong to a particular role’smember-private

name-space. For the latter kind of name-space, a separate instance of this object space is maintained

for each role member. An object name may refer to anindividual resource instance or acollection

of a similar type of resources. A collection represents a group of similar resources and any operation

performed on a collection is executed on each member in the group.

Associated with each object name there is a binding specification, which identifies the resource to

which that name should be bound to. Additionally, it also defines when the binding action should be

executed. The binding actions may be performed during the initialization of the activity or may be

triggered on the occurrence of external context events. There are three ways to specify the resource to

be used in binding an object name: one is to create a new instance of a specified type and bind object

name to it, second is to specify a resource to be bound throughits URL, and the third is to discover a

resource in the environment based on its description and bind the object name to it.

For resource description, we have developed an XML schema termed Resource Description Definition

(RDD) [19] which combines the features of RDF (Resource Description Framework) and WSDL (Web

Service Definition Language). A RDD description consists ofattribute-value pairs, interfaces supported

by the resource, and events exported by the resource.

B. Role Operations

A role operation has two parts:preconditionand action. A role operation’s precondition must be

satisfied before the operation’s action can be executed. Theoperation action starts aresource access

sessionas part of which a set of methods may be invoked on an object. Internal and external context

events and state of environmental objects are used as part ofoperation preconditions for enforcing context-

based coordination and security requirements. Internal context events are related to the role operation

invocations. Two types of events,start andfinish, are defined for a role operation and are generated by

the middleware framework indicating the beginning and the completion of a role operation session.

C. Reactions

A reaction represents a proactive action that is automatically executed when certain external context

related events occur. A reaction is triggered by external context events and consists of preconditions and

actions similar to a role operation. On triggering, the precondition of a reaction is evaluated, and the

corresponding action is executed only if the precondition is true.

IV. SPECIFICATION OFCONTEXT-SENSITIVE SECUREDISTRIBUTED MEETING

Figure 1 shows the logical view of the distributed meeting activity that spans two rooms, and Figure 2

shows its XML specification template.

6

Notes
TakeMeeting

Role: Chairperson

RoomStatusChangeEvent

Role: Secretary

Interface
Role Operation

Projector Collection

Global Object Space

: Event Communication: Resource Binding

Room Collection

StartPublic

Activity: Distributed Meeting

Reaction

Channel
PausePublic

RequestClassified
PresentationPresentation

ListenOnPublic
Channel

ListenOnPrivate
Channel

Channel
SpeakOnPublic

Discovery Service

Environmental Services and Resources

Role Operation
Interface

Presentation
ApproveClassified

Member−private

Role: Participant

Object Space

Role Operation Interface

Channel

Presentation
StartClassified

SpeakOnPrivate

Agent Room2
ProjectorProjector

Room1 Agent
Room2

Agent
Room1

Audio
Public

Audio
Private

Channel Channel
Detector
Service

UserPresence

Resource
UserPresence

Projector

MyRoom

My

PauseDisplay

ResumeDisplay

Fig. 1. Logical view of context-sensitive secure distributed meeting

A. Global Object Space and Object Binding

The meeting activity requires various different kinds of resources, and the corresponding objects are

defined in the activity’s global object space. Object names corresponding to public and private audio

channels are bound with newly created audio channel objects. Two collections,RoomCollectionand

ProjectorCollection, are defined for the two meeting rooms and the two projectors in these two rooms.

These are bound, using URLs, with the agents representing the two rooms and the two projector objects,

respectively. An objectUserPresenceDetectorServiceis bound with theUserPresenceAgentavailable in

the environment, which provides location information for role members.

In our programming model, objects referring to an individual resource are defined using theOB-

JECTDEFINITION tag, and objects referring to collection of resources are defined using theOB-

JECTCOLLECTIONtag. Events may be imported from objects. Each such event is specified through the

IMPORTEVENTtag which is nested inside theOBJECTDEFINITION tag or theOBJECTCOLLECTION

tag. The meeting activity importsUserArrivalEventfrom theUserPresenceDetectorService, andRoom-

StatusChangeEventfrom theRoomCollection. Definition of UserPresenceDetectorServiceandRoomCol-

lection is shown in Figure 3 and Figure 4, respectively. Binding of anobject name with a resource is

specified using theBIND tag.

B. Role Member-private Object Space and Object Binding

Two objects,MyRoomandMyProjectorare defined in the member-private object space of each member

in the Participant role. For each role member,MyRoomobject refers to the room in which that user is

currently present, andMyProjector refers to the projector in that room.

7<ACTIVITY NAME=“DistributedMeeting”><OBJECTDEFINITION NAME=“PublicAudioChannel”></OBJECTDEFINITION><OBJECTDEFINITION NAME=“PrivateAudioChannel”></OBJECTDEFINITION><OBJECTDEFINITION NAME=“UserPresenceDetectorService”></OBJECTDEFINITION><OBJECTCOLLECTION NAME=“ProjectorCollection”></OBJECTCOLLECTION><OBJECTCOLLECTION NAME=“RoomCollection”></OBJECTCOLLECTION><ROLE NAME=“Secretary”><OPERATION NAME=“TakeMeetingNotes”></OPERATION></ROLE><ROLE NAME=“Participant”><OBJECTDEFINITION NAME=“MyRoom”></OBJECTDEFINITION><OBJECTDEFINITION NAME=“MyProjector”/><OPERATION NAME=“RequestClassifiedPresentation”></OPERATION><OPERATION NAME=“StartClassifiedPresentation”></OPERATION><OPERATION NAME=“SpeakOnPrivateChannel”></OPERATION><OPERATION NAME=“ListenOnPrivateChannel”></OPERATION><OPERATION NAME=“StartPublicPresentation”></OPERATION><OPERATION NAME=“SpeakOnPublicChannel”></OPERATION><OPERATION NAME=“ListenOnPublicChannel”></OPERATION><OPERATION NAME=“PausePublicChannel”></OPERATION></ROLE><ROLE NAME=“Chairperson”><OPERATION NAME=“ApproveClassifiedPresentation”></OPERATION></ROLE><REACTION NAME=“PauseDisplay”> ...</REACTION><REACTION NAME=“ResumeDisplay”> ...</REACTION></ACTIVITY>
Fig. 2. DistributedMeeting: Activity specification template<OBJECTDEFINITION NAME=“UserPresenceDetectorService”><IMPORT EVENT NAME=“UserArrivalEvent”/></OBJECTDEFINITION><BIND OBJECTREF=“UserPresenceDetectorService”><DIRECT URL=“//UserPresenceAgent”/></BIND>
Fig. 3. UserPresenceDetectorService: Object definition and binding

Dynamic Object Binding:Discovery based binding primitive is used for binding theseobjects. The

binding specification for theMyRoomobject is shown in Figure 5. The discovery service uses theRDD

of an object to search for an appropriate resource in its database. TheRDD for the room is shown in

Figure 6, with the attributeLOCATIONdeclared as a parameter.

The UserArrivalEventtriggers this binding directive. The event contains the identity of the user for

whom the event is generated. The attributeLOCATION in the RDD is filled by plugging the value

obtained by invokinggetLocationmethod on this event. The variablethisUser is passed as a parameter

to this method. In our specification framework, the pseudo variable thisUser refers to the particular

role member for whom an operation or a binding directive is executed. If the user name passed as the

parameter to this method matches the user name inside the event then the symbolic name of the room in

which the user is present is returned, otherwise null is returned. The binding ofMyProjector is similar.

C. Role Operations

The Participant role has two sets of operations to perform presentations of classified and unclassified

information. The operationsRequestClassifiedPresentation, StartClassifiedPresentation, SpeakOnPrivat-

eChannel, and ListenOnPrivateChannelare to be used for classified presentations, and the operations

8<OBJECTCOLLECTION NAME=“RoomCollection”><IMPORT EVENT NAME=“RoomStatusChangeEvent”></OBJECTCOLLECTION><BIND OBJECTREF=“RoomCollection”><DIRECT URL=“//Room1URL”/><DIRECT URL=“//Room2URL”/></BIND>
Fig. 4. RoomCollection: Object definition and binding<BIND OBJECTREF=“MyRoom”><WHEN EVENT NAME=“UserArrivalEvent” FROM=“UserPresenceDetectorService”/><DISCOVER RDDFILE=“//Required-RoomRDD.xml”><SET PARAM NAME=“LOCATION” ><METHOD INVOCATION OBJECTREF=“UserArrivalEvent” METHODNAME=“getLocation”

ARG=“thisUser”/></SET PARAM></DISCOVER></BIND>
Fig. 5. MyRoomobject binding

StartPublicPresentation, SpeakOnPublicChannel, PausePublicChannel, andListenOnPublicChannelare

to be used for unclassified presentations.

The pseudocode of theStartClassifiedPresentationis shown in Figure 7. For readability purpose

we present here its specification in a pseudocode form instead of the XML specification1. In the

pseudocode, the terms inboldface represent XML tags and# represents a count operator. The count

operator, when applied to an event, returns the count of the times that event has occurred. The operation

StartClassifiedPresentationstarts a resource access session with the projector referred to byMyProjector

and as part of this session various presentation related methods can be invoked on the projector. In order

to satisfy requirements R3 and R4 we need that theStartClassifiedPresenationbe allowed to be invoked

only under the following conditions: (i) both theChairpersonrole member and theParticipant member

invoking this operation are present in the same room; (ii)Chairpersonhas approved the presentation

by executing theApprovePresentationoperation; (iii) theParticipant role member’s microphone is

not connected to thePublicAudioChannel. These conditions are specified as part of the operation’s

precondition in Figure 7.

The first condition is evaluated by querying the presence of the participant and the chairperson by

invoking methodisPresenton theMyRoomobject (line 3). TheParticipant role member’s ID and the

Chairpersonrole member’s ID are passed as parameters to this method by specifying thisUser and

members(Chairperson), respectively. The functionmembers(RoleName) returns the list of members

present in the role specified byRoleName. The second condition specified in lines 4-5. The condition

in line 4 checks for an outstanding request by theParticipant role member. The condition in line 5

checks for the equality between the counts ofApproveClassifiedPresentationoperation invoked by the

Chairpersonrole member and theRequestClassifiedPresentationoperation invoked by theParticipantrole

member where thegranteeand theinvokerattributes in the events associated with these two operations

are set tothisUser, respectively. This ensures that only that participant, for whom theChairpersonhas

granted approval, is able to execute this operation. The third condition specified in line 6, checks whether

the difference in the counts ofSpeakOnPublicChanneland PausePublicChanneloperations invoked by

1XML specification of the activity is available at http://www.cs.umn.edu/Ajanta/publications.html/DistributedMeeting.xml

9<RDD CATEGORY=“ROOM”><INTERFACE><OPERATION NAME=“isPresent”><INPUTPARAM TYPE=“String”/><OUTPUTPARAM TYPE=“boolean”/></OPERATION><OPERATION NAME=“isPresent”><INPUTPARAM TYPE=“Vector”/><OUTPUTPARAM TYPE=“boolean”/></OPERATION><OPERATION NAME=“presentUserCount”><OUTPUTPARAM TYPE=“Integer”/></OPERATION></INTERFACE><ATTRIBUTELIST><ATTRIBUTE NAME=“LOCATION” VALUE=“?PARAM”/ ><ATTRIBUTE NAME=“CAPACITY” VALUE=“25”/ ></ATTRIBUTELIST><EXPORTEVENTS><EVENT NAME=“RoomStatusChangeEvent”/></EXPORTEVENTS></RDD>
Fig. 6. Required-RoomRDD.xml: Parameterized Room RDD

thisUser is equal to zero, implying that currently the participant isnot connected to the public audio

channel. As part of the operation’s action, methoddisplay is invoked on theMyProjectorobject (line 7).

The operationSpeakOnPrivateChannelconnects the microphone associated with theParticipant’s

device with thePrivateAudioChannelobject. In Figure 8, the pseudocode for theSpeakOnPrivateChan-

nel operation is shown. Its precondition is similar to the first condition of StartClassifiedPresentation

operation precondition. OtherParticipant role operations are specified in a similar manner.

1.Role Participant
2. Operation StartClassifiedPresentation
3. Precondition MyRoom.isPresent(thisUser) & MyRoom.isPresent(members(Chairperson))
4. & (#Participant.RequestClassifiedPresentation(invoker=thisUser)> 0)
5. & (#Chairperson.ApproveClassifiedPresentation(grantee=thisUser) -

#Participant.RequestClassifiedPresentation(invoker=thisUser)= 0)
6. & (#Participant.SpeakOnPublicChannel(invoker=thisUser) - #Participant.PausePublicChannel(invoker=thisUser) = 0)
7. Action MyProjector.display(//ClassifiedInformation)

Fig. 7. Participant role:StartClassifiedPresentationoperation pseudocode

1. Role Participant
2. Operation SpeakOnPrivateChannel
3. Precondition MyRoom.isPresent(thisUser) & MyRoom.isPresent(members(Chairperson))
4. Action PrivateAudioChannel.registerToSend(thisUser)

Fig. 8. Participant role:SpeakOnPrivateChanneloperation pseudocode

D. Reactions

Pseudocode of the reaction that pauses the projector is shown in Figure 9. The reaction is triggered by

the RoomStatusChangeEventreceived from any one of the room agents. The room agent corresponding

to which theRoomStatusChangeEventoccurred is selected from theRoomCollectionby matching the

10

room agent’s identifier with the location identifier in theRoomStatusChangeEvent, obtained by invoking

the getEventLocationIDmethod on this event. The number of users present in that roomis queried by

invoking presentUserCountmethod on the selected room agent (line 3). The projector belonging to that

room is selected from theProjectorCollectionsimilar to the selection of the room agent as discussed

above, and the presentation is paused by invokingpauseDisplaymethod on the selected projector (line

4), if the number of users in the room is zero.

1.Reaction PauseDisplay
2. When RoomStatusChangeEvent
3. Precondition (RoomCollection.select(RoomStatusChangeEvent.getEventLocationID())).presentUserCount() = 0
4. Action (ProjectorCollection.select(RoomStatusChangeEvent.getEventLocationID())).pauseDisplay()

Fig. 9. PauseDisplayreaction pseudocode

V. I MPLEMENTATION OF CONTEXT-SENSITIVE SECUREDISTRIBUTED MEETING

In order to realize an application in our programming framework we need to integrate three entities:

middleware components that are derived from the activity specification by integrating policies with

generic middleware components, context information agents, and environmental resources and services

such as a discovery service.

A. Middleware Environment and Components

The runtime environment for a given application is generated by the middleware by constructing

appropriate managers for the activities, roles, and objects defined in that application. For each such

entity defined in the specification, a manager object is created by integrating a generic manager of that

type with the policy modules that are derived from the activity specification. The middleware provides

these generic managers [12], [13], [20]. All managers are run on a set oftrusted servers, which provide

a secure execution environment for policy enforcement.

The policy modules contain the policies related to event subscription/notification between various roles,

policies for binding of object names to resources, and policies for context-based access control and role

operation execution. Role managers control execution of role operations and generate the corresponding

start and finish events. All resources are accessed through their corresponding object managers which

provide method level access control through method ticketsfor all the method invocations on the resource.

Users are provided aUser Coordination Interface (UCI)through which they can invoke the role

operations. The GUI objects for resource access session started by a role operation are executed by the

UCI.

B. Context Information Agents

Contextual information is gathered through sensors that are interfaced with a set of agents that generate

events corresponding to the sensed environmental conditions. We have previously developed a middleware

framework for agent-based distributed event monitoring system [17], [18]. Central to this framework are

a set of event detectors and event handlers deployed in an Ajanta agent [21]. An event detector for a

particular event type monitors some specific condition by sensing the physical environment and generates

an event of that type. Such events may trigger other detectors in the same or remote agents. An event

11

handler performs the function of triggering local detectors, storing the events in local or global databases,

and sending them to remote subscribers.

Users participate in the meeting using their personal devices such as laptops and PDA that are enabled

with Bluetooth. These devices are used for detecting user presence in the meeting rooms. Figure 10 shows

the configuration of agents for our experiment involving tworooms. Each room is equipped with an agent

that runs theBluetoothEventDetectorwhich periodically performs Bluetooth discovery and generates the

BluetoothEventfor each Bluetooth device discovered in the vicinity. This event contains the Bluetooth

reader ID corresponding to the agent that detected the Bluetooth device and the detected Bluetooth device

ID. This event triggersDeviceLocationChangeEventDetectorthat determines whether a Bluetooth device

hasarrived in or departed fromthe room by checking its membership in the Bluetooth device list that

was obtained in the previous discovery cycle. This event then triggersRoomStatusChangeEventDetector

which uses a database of known reader locations to determinethe location of the reader that detected

this Bluetooth device.

The RoomStatusChangeEventfrom both the agents is subscribed by theUserPresenceAgent. This

agent contains three detectors: aUserStatusChangeEventDetector, a UserArrivalEventDetector, and a

UserDepartureEventDetector. TheUserStatusChangeEventDetectoruses a database to map the Bluetooth

device ID to a particular user name. AUserStatusChangeEventis generated only if the Bluetooth device

ID maps to a valid user name known in the system. TheUserStatusChangeEventlocally triggers the

UserArrivalEventDetectorand theUserDepartureEventDetector. These detectors respectively generate

UserArrivalEventandUserDepartureEventdepending on the status of the Bluetooth device, set toarrival

or departure, inside theUserStatusChangeEvent.

RoomStatusChangeEvent

Detector

Detector

Detector

DeviceLocationChangeEvent

Room2Agent

UserPresenceAgent

BluetoothEvent

RoomStatusChangeEvent

Room1Agent

Detector

Detector

Detector

DeviceLocationChangeEvent

Remote InterfaceRemote Interface

isPresentisPresent

presentUserCountpresentUserCount

Detector
UserStatusChangeEvent

UserDepartureEvent UserArrivalEvent

UserDepartureEvent
Detector

UserArrivalEvent
Detector

BluetoothEvent

RoomStatusChangeEvent

Fig. 10. Configuration of Context Information Agents

C. Discovery Service

A discovery service is provided in the middleware for discovering and binding required resources in

the environment. A resource/service registers theRDD of the resource, the interface definition, and the

Java RMI URL of the resource/service with the discovery service. The discovery service is queried by

object managers for finding appropriate resources based on the user’s context information.

12

VI. ROBUSTNESSISSUES ANDEXCEPTION HANDLING REQUIREMENTS

In our initial experiments with the implementation of the distributed meeting application we observed

that theParticipant role member who was performing classified presentation was able to continue it even

after Chairpersonrole member left the room. This is a potential security violation. This situation arises

because the precondition of theStartClassifiedPresentationoperation is evaluated only oncebefore the

operation is initiated. For long running operation sessions this is inadequate as the context condition

may become invalid while the session is still in progress. Weconsider such a security violation as an

erroneous application behavior caused due to the change in environmental context that is required to

remain valid for the duration of the execution of an operation session.

A. Exception Handling Requirements

We call the application errors due to changes in context conditions ascontext invalidation errors. In

this paper we present two distinct approaches for handling such errors. There are other types of errors

that arise in pervasive computing applications [16] which we do not address in this paper.

A role operation encounters acontext invalidation errorwhen the context condition associated with

that role operation gets violated while the operation session is active. Such an error, occurring in

StartClassifiedPresentationoperation, can be handled in two ways. One approach is to automatically

initiate analternate actionon some resource as part of error handling. Another approachis to perform

cooperative error handlinginvolving different members from one or more roles. For example, we could

allow continuation of the presentation through some other operation after receiving appropriate approval

from the secretary. Both these approaches are supported in our programming framework through the

exception handling model as discussed below.

B. Exception Handling Model

We have proposed an exception handling model for pervasive computing applications in [16]. Here

we present its implementation and demonstrate its utility for handlingcontext invalidation errors. In

this model two mechanisms are defined for exception handling: (i) exception handlers that are statically

associated with role operations; and (ii) the set of exception operations, defined in theexception interface

of a role. Exception handlers attached to role operations are used to specify automatic exception handling

actions, while theexception operationsin a role’sexception interfaceare used for specifying exception

handling actions that require participation of members from one or more roles for performing error

recovery.

An exception handler for a particular exception type can be statically associated with a role operation,

based on thetermination model. Information about the exception occurrence, such as the role name, role

member name, role operation name, and time is saved with eachexception object. The exception handler

contains anaction, similar in syntax to the action specified for the role operation, which may specify

execution of alternate actions on a resource or may explicitly signal the same or a different exception

to theexception interfaceof the same or a different role.

Operations in the role’sexception interfaceare similar to the normal role operations with one difference.

An operation in the exception interface is only enabled whenan exception of a particular type is delivered

to the exception interface. This association between an exception and the operation is statically specified

by theWHENtag in the role’sexception interface. The exception interface supports a queuing model for

13

exception delivery and handling whereby the exception operation is enabled only when an exception is

delivered to theexception interfacequeue and the exception is consumed when the associated operation

is invoked.

C. Exception Handling for Context Invalidation Errors

The role operation specification is modified to include theContext-Guardtag through which the

context-condition to be monitored is specified. A context guard specification consists of two things:

specification of the trigger event, specified through theWHEN tag, and the specification of the condition

to be monitored, specified through theVALIDATIONCONDITIONtag. The context condition is evaluated

whenever the trigger event is received. When theVALIDATIONCONDITIONgets violated, it results in

raising of theContextInvalidationException, which causes the operation session to terminate. Below

we present two approaches for handlingContextInvalidationExceptionrelated to theParticipant role’s

StartClassifiedPresentationoperation.

1) Approach 1 - Alternative Action based Exception Handling: In Figure 11 we present the XML

specification of theStartClassifiedPresentationoperation that includes context-guard. The precondition

and the action parts of the operation are the same as the corresponding parts in Figure 7. The context-

guard is triggered by the occurrence ofRoomStatusChangeEventcorresponding to the room in which

the Participant is present and the classified presentation is in progress (line 5). The context condition

to be monitored is specified in lines 6-9. The condition evaluates the presence of theChairpersonrole

member inMyRoomby invoking isPresentmethod on the corresponding room agent. The identity of the

Chairpersonrole member is passed as the parameter to this method (line 7). TheContextInvalidationEx-

ceptionis thrown by the runtime system if the validation condition is false, and the operation session is

terminated. An exception handler for this exception is attached to the role operation (lines 11-16) which

displays an unclassified presentation onMyProjectorobject (lines 12-15).

1. <OPERATION NAME=“StartClassifiedPresentation”>
2. <PRECONDITION> ... </PRECONDITION>
3. <ACTION> ...</ACTION>
4. <CONTEXT GUARD>
5. <WHEN EVENT NAME=“RoomStatusChangeEvent” FROM=“MyRoom”/>
6. <VALIDATION CONDITION>
7. <METHOD INVOCATION OBJECTREF=“MyRoom” METHOD NAME=“isPresent”

ARG=“members(Chairperson)”>
8. </METHOD INVOCATION>
9. </VALIDATION CONDITION>
10. </CONTEXT GUARD>
11. <ON EXCEPTION NAME=“ContextInvalidationException”>
12. <ACTION>
13. <METHOD INVOCATION OBJECTREF=“MyProjector” METHODNAME=“display”

ARG=“//Unclassified-Presentation”>
14. </METHOD INVOCATION>
15. </ACTION>
16. </ON EXCEPTION>
17. </OPERATION>
Fig. 11. Specification of context-guard andContextInvalidationExceptionhandler

2) Approach 2 - Cooperative Exception Handling:In this approach we require that the participant may

be allowed to resume presentation, after the chairperson has left the room, only ifSecretaryrole member

approves of such a resumption and the chairperson has previously delegated such an approval to the

14

secretary. Correspondingly, an operation to delegate the meeting control is required in theChairperson

role, and an operation to grant permission for resuming the presentation is required in theSecretary

role. Furthermore we require that secretary’s privilege togrant permission for resumption should be

enabled only whenContextInvalidationExceptionoccurs in theStartClassifiedPresentationoperation of

the Participant role. To support this we need to propagate theContextInvalidationExceptionfrom the

Participant role to theSecretaryrole and we need to define an operation in theSecretaryrole’s exception

interface that is enabled only whenContextInvalidationExceptionis delivered to its exception interface

queue. The exception handler that propagates the exceptionis shown below where theTARGETattribute

specifies the target to which the exception should be sent:<ON EXCEPTION NAME=“ContextInvalidationException”><ACTION> <SIGNAL TARGET=“Secretary”/> </ACTION></ON EXCEPTION>

Presentation
ResumeClassified

User 3
User 2

User 1

Handler

Signal ContextInvalidationException

ResumePresentationEvent

1 2

3

Role: Chairperson

Delegate

Control
Meeting

Exception
Interface

Role: Secretary

Continuation
Presentation
Approve

Role: Participant

Notify finish event

Exception

StartClassified
Presentation

Fig. 12. Cooperative exception handling involving membersfrom different roles

In Figure 12 we present a schematic of cooperative exceptionhandling. TheChairpersonrole is

provided with DelegateMeetingControloperation. By executing this operation theChairperson role

member delegates the meeting control to theSecretaryrole member (step 1). When theContextIn-

validationExceptionoccurs in theStartClassifiedPresentationoperation invocation by anyParticipant

role member, the attached exception handler explicitly signals it to theSecretaryrole (step 2). The

Secretaryrole member approves the resumption, which results in notifying ResumePresentationEvent

to the particularParticipant role member (step 3). In Figure 13 we present the XML specification of

the Secretaryrole. TheSecretaryrole is provided withApprovePresentationContinuationoperation in

its exception interface (lines 2-19). TheWHEN tag associated with this exception operation (line 3)

specifies that this operation is enabled when aContextInvalidationExceptionobject is delivered to the

exception interface queue. The precondition of this operation (lines 5-9) checks whether the count of

DelegateMeetingControl.finishevent is greater than zero indicating that theChairpersonhas performed

theDelegateMeetingControloperation. The action part of the operation (lines 10-16) consist of notifying

the ResumePresentationEvent, specified through theNOTIFYEVENT tag, to the particular participant

whoseStartClassifiedPresentationsession had resulted in theContextInvalidationException. Thegrantee

attribute value inside this event is set by assigning the value obtained by invokinggetRoleMemberName

method on theContextInvalidationExceptionobject, thus granting resumption permission to the particular

participant who encountered the exception. The Figure 14 presents the specification of theParticipant

role’s ResumeClassifiedPresentationoperation. The precondition (lines 3-9) checks if the countof Re-

sumePresentationEvent.finishevent, in which thegranteeattribute is set tothisUser, is greater than zero.

This ensures that only the participant for whom the secretary granted the resumption permission is able

to invoke this operation.

15

1. <ROLE NAME=“Secretary”>
2. <EXCEPTIONINTERFACE>
3. <WHEN EVENT NAME=“ContextInvalidationException”>
4. <OPERATION NAME=“ApprovePresentationContinuation”>
5. <PRECONDITION>
6. <EVENT CONDITION RELATION=“GreaterThan” VALUE=“0”>
7. <EVENT COUNT EVENT TYPE=“DelegateMeetingControl.finish” FROM=“Chairperson”>
8. </EVENT CONDITION>
9. </PRECONDITION>
10. <ACTION>
11. <NOTIFY EVENT NAME=“ResumePresentationEvent” TARGET=“Participant”>
12. <SET PARAM NAME=“grantee”>
13. <METHOD INVOCATION OBJECTREF=“ContextInvalidationException”

METHOD NAME=“getRoleMemberName”/>
14. </SET PARAM>
15. </NOTIFY EVENT>
16. </ACTION>
17. </OPERATION>
18. </WHEN>
19. </EXCEPTIONINTERFACE>
20.</ROLE>
Fig. 13. Secretaryrole: Exception interfacespecification

1. <ROLE NAME=Participant>
2. <OPERATION NAME=“ResumeClassifiedPresentation”>
3. <PRECONDITION>
4. <EVENT CONDITION RELATION=“GreaterThan” VALUE=“0”>
5. <EVENT COUNT EVENT NAME=“ResumePresentationEvent.finish” FROM=“Secretary”>
6. <EVENT ATTRIBUTE NAME=“grantee” RELATION=“Equal” VALUE=“thisUser”/>
7. </EVENT COUNT>
8. </EVENT CONDITION>
9. </PRECONDITION>
10. <ACTION>
11. <METHOD INVOCATION OBJECTREF=“MyProjector” METHODNAME=“display”

ARG=“//Unclassified-Presentation”/>
12. </ACTION>
13. </OPERATION>
14.</ROLE>
Fig. 14. Participant role: ResumeClassifiedPresentationoperation specification

VII. R ELATED WORK

Several other projects have developed middlewares for pervasive computing applications [1], [2],

[3], [4], [5]. In [1] a programming model for building applications in active spaces is presented that

enables selection of optimal resources for the task in the given environment. The main focus of the

event translation middleware presented in [2] is to enable interoperability among various devices in

pervasive computing environments. An adaptive middlewarefor pervasive computing applications, based

on the negotiation of contracts between components, is presented in [3]. The Aura system [4] supports

capturing user intent through representation of user tasksin pervasive computing applications. In [5]

a middleware supporting context-sensitive interfaces, enabling context-aware application adaptation and

ad-hoc communication, is presented.

The distinguishing aspect of our approach is automatic generation of a pervasive computing application

environment through the integration of high-level application specification with a middleware. Our

approach differs from all of the other projects along two dimensions: First, our programming frame-

16

work supports multi-user coordination and security requirements for building context-aware pervasive

computing applications involving multiple users. Second,we handle exceptions arising in pervasive

computing applications through an exception handling model that we have developed and integrated in

our programming framework. Among other systems, only [3] considers failures resulting due to change

of application’s components. However they do not consider context-sensitive security requirements and

their violations arising due to changes in context conditions.

Other researchers have also looked at failures arising in pervasive computing environments [22], [23].

In [22] heart-beat based status monitoring, redundant provisioning of alternate services and applications,

and restarting failed applications are proposed as possible failure handling approaches in pervasive

computing applications. In contrast to this, we present a working application-level exception handling

model integrated with our programming framework. In [23] a data-flow oriented architecture for building

dependable pervasive computing systems is presented. The main objective of their design is to perform

failure handling in pervasive computing applicationswithout any user involvement. In contrast to this,

human involvement is an integral part of our exception handling model.

There has been considerable work done on exception handlingin workflow systems and office infor-

mation systems [24], [25], [26], [27], [28], [29]. The traditional workflow and office information systems

are fairly static. In contrast to this, context-aware pervasive computing applications are dynamic where

resources are discovered and securely accessed based on thecontext information. This gives rise to the

errors due to context failures which do not occur in the traditional workflow and office information

systems. We handle such errors through our exception handling model.

Our programming framework supports dynamic security policies based on user’s context in role-

based collaborative applications. This role-based security model is more flexible than the standard NIST

RBAC [30] model as it provides context-based permission activation and belongs to the family of active

security models [31]. Other researchers have also considered context information as part of making access

control decisions [32], [33], [34]. Our work differs from these in that we handle security violations due

to dynamically changing context conditions through our context invalidation exception handler.

VIII. C ONCLUSIONS

In this paper we have presented our programming framework for building pervasive computing ap-

plications that supports context-based resource discovery and binding, context-based proactive actions,

and context-sensitive secure resource access. We have usedthis programming framework for building

several pervasive computing applications such asa distributed meeting, a shared whiteboard, and a

context-aware examination environment. In this paper we used the distributed meeting application to

demonstrate the utility of this framework. We also presented integration of an agent-based distributed

event monitoring system for collection and dissemination of context information. Lastly we identified

errors occurring in the distributed meeting due to invalidation of context conditions and demonstrated

two approaches for handling these errors using the exception handling model that we have integrated in

our programming framework.

REFERENCES

[1] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. Campbell, and M. Mickunas, “Olympus: A High-level Programming

Model for Pervasive Computing Environments,” inProceedings of the Third IEEE International Conference on Pervasive

Computing and Communications, PerCom 2005, March 8-12 2005.

17

[2] R. Ballagas, A. Szybalski, and A. Fox, “Patch Panel: Enabling Control-Flow Interoperability in Ubicomp Environments,”

in Proceedings of the Second IEEE International Conference onPervasive Computing and Communications, March 14-17

2004, pp. 241–248.

[3] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM- A Component System for Pervasive Computing,” in

Proceedings of the Second IEEE International Conference onPervasive Computing and Communications, PerCom, March

14-17 2004, pp. 67–76.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project Aura: Toward Distraction-Free Pervasive Computing,”

IEEE Pervasive computing, vol. 1, no. 2, pp. 22–31, April-June 2002.

[5] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Reconfigurable Context-Sensitive Middleware for Pervasive

Computing,”IEEE Pervasive Computing, vol. 1, no. 3, pp. 33–40, 2002.

[6] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat, “Usingand Determining Location in a Context-Sensitive Tour Guide,”

IEEE Computer, vol. 34, no. 8, pp. 35–41, 2001.

[7] M. Fleck, M. Frid, T. Kindberg, E. O’Brien-Strain, R. Rajani, and M. Spasojevic, “From Informing to Remembering:

Ubiquitous Systems in Interactive Museums,”IEEE Pervasive Computing, vol. 1, no. 2, pp. 13–21, 2002.

[8] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applications,” in IEEE Workshop on Mobile Computing

Systems and Applications, Santa Cruz, CA, US, 1994, pp. 85–90.

[9] A. K. Dey, “Understanding and Using Context,”Journal Of Personal And Ubiquitous Computing, vol. 5, no. 1, pp. 4–7,

2001.

[10] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Modeling context information in pervasive computing systems,” in

Pervasive ’02: Proceedings of the First International Conference on Pervasive Computing. London, UK: Springer-Verlag,

2002, pp. 167–180.

[11] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology Based Context Modeling and Reasoning using OWL,”

in PERCOMW ’04: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications

Workshops. Washington, DC, USA: IEEE Computer Society, 2004, p. 18.

[12] A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman, “Design ofa Policy-Driven Middleware for Secure Distributed

Collaboration,” inProceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS), July

2002, pp. 393 – 400.

[13] A. Tripathi, T. Ahmed, and R. Kumar, “Specification of Secure Distributed Collaboration Systems,” inIEEE International

Symposium on Autonomous Distributed Systems (ISADS), April 2003, pp. 149–156.

[14] A. Tripathi, T. Ahmed, D. Kulkarni, R. Kumar, and K. Kashiramka, “Context-Based Secure Resource Access in Pervasive

Computing Environments,” in1st IEEE International Workshop on Pervasive Computing andCommunications Security

(PerSec’04), March 2004, pp. 159–163.

[15] A. Tripathi, D. Kulkarni, and T. Ahmed, “A SpecificationModel for Context-Based Collaborative Applications,”Elsevier

Journal on Pervasive and Mobile Computing, vol. 1, no. 1, pp. 21 – 42, May-June 2005.

[16] ——, “Exception Handling Issues in Context Aware Collaboration Systems for Pervasive Computing,” inECOOP Workshop

on Exception Handling, Technical Report No 05-050, Department of Computer Science, LIRMM, Montpellier-II University,

vol. 4119. Springer LNCS, 2005.

[17] A. Tripathi, T. Ahmed, S. Pathak, M. Carney, and P. Dokas, “Paradigms for Mobile Agent-Based Active Monitoring,” in

Networks Operations and Management Symposium, April 2002, pp. 65–78.

[18] A. R. Tripathi, M. Koka, S. Karanth, A. Pathak, and T. Ahmed, “ Secure Multi-agent Coordination in a Network Monitoring

System,” in Software Engineering for Large-Scale Multi-Agent Systems: Research Issues and Practical Applications,

Springer, LNCS 2603, January 2003, pp. 251 – 266.

[19] K. Kashiramka, “Semantic-Based Secure Resource Registration, Resource Discovery and Binding in Ubiquitous Computing

Environments,” University of Minnesota, Twin Cities, Tech. Rep., December 2003, MS Plan B Report.

[20] T. Ahmed, “Policy Based Design of Secure Distributed Collaboration Systems,” Ph.D. dissertation, University of Minnesota,

Twin Cities, 2004.

[21] A. Tripathi, N. Karnik, T. Ahmed, R. Singh, A. Prakash, V. Kakani, M. Vora, and M. Pathak, “Design of the Ajanta

System for Mobile Agent Programming,”Journal of Systems and Software, vol. 62, pp. 123–140, 2002.

[22] S. Chetan, A. Ranganathan, and R. Campbell, “Towards Fault Tolerant Pervasive Computing,”IEEE Technology and

Society, vol. 24, no. 1, pp. 38 – 44, 2005.

[23] C. Fetzer and K. Hogstedt, “Self*: A Data-Flow OrientedComponent Framework for Pervasive Dependability,” inEighth

IEEE International Workshop on Object-oriented Real-timeDependable Systems (WORDS 2003), Jan 2003.

[24] C. Hagen and G. Alonso, “Exception Handling in Workflow Management Systems,”IEEE Transactions on Software

Engineering, vol. 26, no. 10, pp. 943–958, October 2000.

18

[25] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and Implementation of Exceptions in Workflow Management

Systems,”ACM Trans. Database Syst., vol. 24, no. 3, pp. 405–451, 1999.

[26] T. Murata and A. Borgida, “Handling of Irregularities in Human Centered Systems: A Unified Framework for Data and

Processes,”IEEE Transactions on Software Engineering, vol. 26, no. 10, pp. 959–977, October 2000.

[27] D. K. W. Chiu, Q. Li, and K. Karlapalem, “Web Interface-driven Cooperative Exception Handling in Adome Workflow

Management System,”Inf. Syst., vol. 26, no. 2, pp. 93–120, 2001.

[28] D. M. Strong and S. M. Miller, “Exceptions and ExceptionHandling in Computerized Information Processes,”ACM Trans.

Inf. Syst., vol. 13, no. 2, pp. 206–233, 1995.

[29] H. Saastamoinen, “Survey on Exceptions in Office Information Systems,” inTechnical Report CU-CS-712-94 Department

of Computer Science - University of Colorado, Boulder, 1994.

[30] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model forRole-based Access Control: Towards a Unified Standard,”

in RBAC ’00: Proceedings of the fifth ACM workshop on Role-basedaccess control. New York, NY, USA: ACM Press,

2000, pp. 47–63.

[31] R. K. Thomas, “Team-based Access Control (TMAC): A Primitive for Applying Role-based Access Controls in

Collaborative Environments,” inRBAC ’97: Proceedings of the second ACM workshop on Role-based access control.

New York, NY, USA: ACM Press, 1997, pp. 13–19.

[32] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas, “Flexible Team-Based Access Control Using Contexts,”

in SACMAT ’01: Proceedings of the sixth ACM symposium on Accesscontrol models and technologies. New York, NY,

USA: ACM Press, 2001, pp. 21–27.

[33] G. Neumann and M. Strembeck, “An Approach to Engineer and Enforce Context Constraints in an RBAC Environment,”

in SACMAT ’03: Proceedings of the eighth ACM symposium on Access control models and technologies. New York, NY,

USA: ACM Press, 2003, pp. 65–79.

[34] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd, “Securing Context-Aware Applications

Using Environment Roles,” inSACMAT ’01: Proceedings of the sixth ACM symposium on Accesscontrol models and

technologies. New York, NY, USA: ACM Press, 2001, pp. 10–20.

