
Context-Aware Role-based Access Control in Pervasive
Computing Systems

Devdatta Kulkarni and Anand Tripathi∗
Dept. of Computer Science, University of Minnesota

Twin Cities, MN 55455, USA
(dkulk,tripathi)@cs.umn.edu

ABSTRACT
In this paper we present a context-aware RBAC (CA-
RBAC) model for pervasive computing applications. The
design of this model has been guided by the context-based
access control requirements of such applications. These
requirements are related to users’ memberships in roles,
permission executions by role members, and context-based
dynamic integration of services in the environment with an
application. Context information is used in role admission
policies, in policies related to permission executions by role
members, and in policies related to accessing of dynamically
interfaced services by role members. The dynamic nature of
context information requires model-level support for revoca-
tions of role memberships and permission activations when
certain context conditions fail to hold. Based on this model
we present a programming framework for building context-
aware applications, providing mechanisms for specifying and
enforcing context-based access control requirements.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.2.6 [Software En-
gineering]: Programming Environments

General Terms
Design, Experimentation, Languages, Security

Keywords
Context-Aware Computing, Pervasive Computing, Context-
based Access Control, RBAC

∗This work was supported by NSF grants 0411961, 0708604.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

1. INTRODUCTION
Context-awareness is a central aspect of pervasive com-

puting applications, characterizing their ability to adapt
and perform tasks based on ambient context conditions.
There has been steady adoption of context-awareness in
number of application domains such as assisted living [8],
hospital information systems [5], tour guides [11], and
smart environments [30]. At the same time, there has
been an increasing concern among researchers for security
requirements of such applications [7]. Especially, in the
domain of medical information systems such concerns have
been recognized for a long time [32, 25], and system
models have been developed for access control in such
applications [4, 16].

Various definitions of context have been proposed in the
literature [1, 29]. Broadly, the notion of context in pervasive
computing applications relates to the characterization of
ambient conditions and physical world situations that are
relevant for performing appropriate actions in the computing
domain for its correct or desired behavior. A person’s
context is defined in terms of his/her current physical loca-
tion, devices being used, network on which the devices are
connected, and the activities in which the user is currently
engaged. Additionally, there can be other conditions and
characteristics that may be relevant in defining a context.
For example, in some situations the temporal attributes
associated with an activity, such as its duration and time
of occurrence, may be important. Other factors such as
device capabilities, physical proximity of devices, and avail-
able bandwidth can also be important in some situations.
Some of the typical context-based adaptive characteristics
include [29] dynamic integration of resources/services with
an application based on context information, context-based
access control, displaying information based on the context
information, and context-triggered actions.

The focus of this paper is on the issues related to building
role-based access control models and systems for pervasive
computing applications, utilizing context information in
making access control decisions. Several researchers have
developed RBAC models that support context-based access
control [13, 24, 28, 6, 9, 4, 16, 21]. Context-based
constraints may be specified on the User-Assignment (UA)
relation [21], or on the activation of role sessions [13], or
on the Permission-Assignment (PA) relation [24]. Different
kinds of context information have been considered as part of
building RBAC systems. These include users’ presence in an
active space [28], users’ presence in specific geographic ar-
eas [6], occurrence of specified environmental conditions [9],

a user’s memberships in other roles [4] or teams [16], or time
intervals as in the GTRBAC model [21].

Integrating context information as part of an access
control system is a challenging task due to several reasons.
First, acquiring appropriate context information requires
interfacing the access control system with various kinds
of ambient sensors. Integrity and authenticity of this
information is paramount because it may be used in making
access control decisions. Second, certain aspects of the
context information may be inherently dynamic in nature.
During the course of execution of a context-dependent task,
it is possible for the related context condition to become
false. For certain applications, it may be important that a
role member’s permissions to execute that task are revoked
when such context changes occur. Third, context-based
constraints may restrict the resources and services that
may be dynamically interfaced with a pervasive computing
application.

Pervasive computing applications considered here are
deployed in an active space containing various kinds of
devices, services, and ambient sensors. Context manage-
ment services are deployed to aggregate sensor data for
detecting application-defined context conditions. Resource
discovery services are also deployed in an active space.
Other active space services register with the discovery
services. Applications use the discovery services to dy-
namically discover and interface with appropriate services
in a given context situation. We refer to this as dynamic
object binding. Applications may define context-based access
control policies for such dynamically interfaced services.

The main contribution of this paper is a context-aware
RBAC (CA-RBAC) model and its embodiment in a pro-
gramming framework for designing context-aware applica-
tions. The novel features of this programming framework are
high-level abstractions for specifying context-based access
control requirements, specifically addressing the following
aspects:

1. Role admission and validation constraints: These
constraints specify context-based conditions that need
to be satisfied before admitting a user to a role, and
also for continuing a user’s membership in a role.

2. Context-based role permissions: Dynamic object bind-
ing causes role operations to interface with different
services under different context conditions.

3. Personalized role permissions: Such permissions allow
different role members to access different active space
services based on their individual context.

4. Context-based permission activation constraints: These
constraints are associated with specific role permis-
sions, and specify context-based conditions that need
to hold for a role member to execute such permissions.

5. Context-based resource access constraints: These con-
straints restrict a role member’s access to a subset of
resources that are managed by an active space service.

The paper is organized as follows. In Section 2 we
present two representative context-aware applications which
we use to demonstrate the above kinds of access control
requirements. In Section 3 we present the CA-RBAC model.
In Section 4 we present our programming framework that

realizes this model. We compare our work with the related
work in Section 5, and conclude in Section 6.

2. RBAC REQUIREMENTS FOR CONTEXT-
AWARE COMPUTING

Here we present two representative context-aware ap-
plications to motivate the need for extending the NIST
RBAC model [13] to support context-based access control
requirements.

Context-Aware Patient Information System: Consider a
patient information system deployed in a hospital and
accessed by the hospital nurses and doctors. It supports a
number of different requirements as follows [12]. The system
supports assigning a nurse to a ward during certain time
periods. During these periods the assigned nurse works in
the capacity of a nurse-on-duty role in that ward. In this
role the system permits access to the records of only those
patients who are admitted to the ward where the nurse is
currently present. The nurse’s membership in the nurse-on-
duty role is revoked when she leaves the ward, or after the
end of her duty time. The system permits doctors to create
different kinds of reports about patients. For a nurse, access
to doctor’s reports is allowed only if some doctor is present
in the ward where the nurse is located. It may happen
that a nurse initiates access to the doctors’ reports while
a doctor is present in the ward, but the doctor leaves the
ward afterwards. In such a case the nurse’s on-going session
accessing such reports needs to be terminated. This ensures
that a nurse does not continue to access these reports in the
absence of a doctor. This system may also support location-
based access to active space services by nurses and doctors.

Context-Aware Music Player: Consider a music player
application which runs on a user’s mobile device. Depending
on the user’s physical location, it streams music either
to the user’s device or to the audio player service in the
room where the user is currently present. We consider the
following context-based access control requirements for this
application. When the user enters a room, the access control
system should allow the application to automatically start
streaming music to that room’s audio player service if no
other user is present in the room. The access control system
must revoke the application’s access to the room’s audio
player service when the user leaves the room or some other
person enters the room.

2.1 Role Model
Role-based models such as the NIST RBAC have been

traditionally used for designing access control systems for
organizations. In such systems, roles generally have a
long lifetime. Users are assigned to a role by the system
administrator, and such memberships also tend to have
long duration. In contrast to this, in our model roles
are defined as part of an application’s design. Such
roles come into existence only when that application is
deployed and executed, and they last only during the
application’s lifetime. In our model, we use the following
RBAC terminology [2]. Users may be added to the roles at
the time of application deployment, or they may request
to join a role when the application is executing. The
access control system underlying the application execution
environment admits a user to a role based on the role
admission constraints. A user admitted to a role is called

a role member. The permissions associated with a role
are represented by a set of operations through which a
role member may access an object. The execution of such
operations by a role member amounts to role activation.
In this model, there is no explicit notion of sessions as in
the NIST model. This is because the static and dynamic
separation-of-duty constraints can be specified using event
history based constraints on role operation executions [2].
In some applications, a user’s membership in a role may be
transient, as it may need to be revoked depending on the
context conditions.

2.2 Role admission and validation
User admission to a role may be based on different kinds

of context information such as temporal constraints, prior
membership in other roles, or user location. Examples of
each of these constraints are seen in the patient information
system. In this application we may define different roles such
as Nurse and Doctor. We may also define a NurseOnDuty
role for different wards. Temporal constraints may be
used to restrict user membership in the NurseOnDuty role
only during certain time periods. Prior role membership
constraints may be used to restrict only the members of the
Nurse role to be admitted to the NurseOnDuty role for a
particular ward. A role member’s physical location may be
used to allow only those nurses who are physically present
in a ward to be admitted to the NurseOnDuty role for that
ward.

A complementary aspect to context-based role admission
is the need to revoke a user’s role memberships when
specified context conditions fail to hold. For example, in
the patient information system a nurse’s membership in the
NurseOnDuty role needs to be revoked when the nurse leaves
that ward or after expiration of the specified time interval.
We call the above requirement as role validation constraint.
It determines the validity of a user’s membership in a role.

In the NIST RBAC model, there is no explicit notion of
role membership revocations. Role membership revocation
requirements have been considered by the OASIS RBAC
model [4], where a user’s membership in a role may be
contingent on the membership in some other roles. Some
models [21, 6] have used the notion of deactivating a
role under certain context conditions. A deactivated role
becomes inaccessible to all of its members. In our model, a
specific user’s privileges for a role are revoked by removing
the user from the role membership. Such role membership
revocation can be crucial for enforcing policies that may be
sensitive to role membership cardinalities.

2.3 Context-based role permissions
In the NIST RBAC model the set of objects for which

access control needs to be enforced are statically known.
However, in pervasive computing applications specific ser-
vices that may be accessed by a role member may not
be known a priori. They may depend on the context
information associated with an application. The application
may need to discover an appropriate service in the active
space and grant access to it under certain context conditions.
Because the specific services with which the application
would be interfaced is generally not known a priori, the
permissions may only be specified on an abstract object.
At runtime, this object is dynamically bound to a specific
service available in the active space.

We see above kind of requirement in the context-aware
music player application. We need the music to stream
either to the user’s device or to the audio player service
in the room where the user is present. Moreover, we need
the music to stream to the room’s audio player service only
if no other person is present in the room. To program this
requirement we may define an abstract object named audio
player to represent the service through which the music
would be played. This object would be dynamically bound
either to the audio player service in the room where the user
is present, or to the audio player service on the user’s device.
We may also define a User role and provide the permission
to play music on the audio player object. As part of binding
the object we first authenticate the audio player service and
then check for its compatibility to allow invocation of the
permission to play music.

2.4 Personalized role permissions
The services that are accessible through a role permission

may be different for different role members and may depend
on the context information associated with a role member.
In the NIST RBAC model the set of objects accessed
through a permission are always the same for all the
members of a role. A role permission invoked by any member
of a role is executed on the same object. However, this model
is inadequate for pervasive computing applications where a
permission invoked by different role members may need to
be invoked on different object instances based on each role
member’s individual context, such as the physical location.

As an example consider the permission to print which is
associated with the Nurse role in the patient information
system. We may require that when this permission is
invoked by a nurse, the system chooses the most appropriate
printer for satisfying that request. The choice of a particular
printer for a specific nurse may depend on various things
such as the nurse’s preference for a specific printer, context
information such as the nurse’s location, or the physical
security of the printer, or the security level associated with
the material being printed.

2.5 Context-based permission activation
Execution of role operations by role members may need

to be constrained based on context conditions. The access
control model needs to support specification of context-
based constraints that need to be satisfied before a role
member may execute an operation.

Certain operation executions may lead to interactive ses-
sions of arbitrary duration with one or more objects. In some
applications we may need such sessions to remain active
only under certain context conditions. Correspondingly,
the access control model needs to provide mechanisms to
terminate sessions initiated through the operation execution
when the corresponding context conditions fail to hold.
We refer to such changes in required context conditions as
context invalidations.

We see both the above requirements in the patient
information system and in the music player application. In
the patient information system we need to restrict a nurse’s
access to patient reports only if the nurse is co-located with a
doctor in a hospital ward. This requirement can be modeled
as a context-based constraint on operation execution by
nurses. The invocation of the operation by a nurse to access
patient reports may lead to initiation of a session with the

database service. We may require that this session should be
terminated when either the nurse or the doctor leaves the
ward. This is an example of context invalidation.

In the music player application we require that the access
control system should grant access for a room’s audio player
service to a user only if that user and no other person is
present in that room. This can be modeled as a context-
based constraint on permission to play the music by the
application role. The context condition corresponding to
the user being alone in a room is invalidated when some
other person enters the room while the music is being played
on the room’s audio player service. In this case the access
control system needs to revoke the application’s access to
the room’s audio player service. Moreover, this access also
needs to be revoked when the user leaves the room.

We observe that currently such context-based permission
activations and revocations are not supported in the NIST
RBAC model. The following mechanisms are needed for this
purpose. First, we need mechanisms to integrate context
information as part of constraint specification on permission
activation in a RBAC model. Second, we need mechanisms
to continuously monitor context conditions that need to
hold while a permission session is active. Third, we need
revocation mechanisms to terminate such sessions when the
corresponding context conditions fail to hold.

2.6 Context-based resource access
There is a need to distinguish between a service and

a resource for access control purpose. A service may be
managing a number of resources of a specific type. We
may need to control a role member’s access to a subset of
these resources based on context conditions. For example,
in the patient information system the database service
controls access to the database tables and determines who
gets access to them and under what conditions. Such
a database may store information about patients such as
doctor reports, prescriptions, tests performed, last checkup
time, and patient’s ward. In this application we require
that a nurse should be able to access records of only those
patients who are admitted to the ward where the nurse is
currently located. This may be satisfied by requiring that
the database service grants access for a patient’s record to a
Nurse role member only if that nurse is currently present in
the patient’s ward. We call such constraints resource access
constraints. In the literature, similar requirements have been
identified and addressed as part of the role graph model [15].
The parameterized roles in that model are similar to the
resource access constraints in our model.

We observe that the role permission activation mechanism
presented in Section 2.5 is inadequate for specifying such
constraints requiring fine-grained access control of resources
managed by a service. This is because of the following
reasons. First, the specific resource to which access needs to
be granted may not be known a priori. The resource is only
identified at runtime, based on dynamic context information.
Second, using permission activation to enforce such access
control requirement may also lead to information leakage.
A role member would be able to find out information about
a resource’s attributes simply through the failure or the
success of the access attempt without ever requiring to
access the resource.

3. CONTEXT-AWARE RBAC MODEL
In Figure 1 we present the elements of the CA-RBAC

model. We distinguish between the context management
layer and the access control layer.

3.1 Context management layer
Expressiveness of the context-based constraint specifica-

tions as part of the access control layer depends on the
context models that are defined by the application. It is
the responsibility of the application designer to define the
appropriate context models based on the application require-
ments. Design of such models also depends on the available
sensing technologies. For example, a nurse’s location may be
modeled at the granularity of a ward or based on the proxim-
ity of the nurse to a specific patient in a ward. The available
location tracking sensors would determine this granularity.

The purpose of context models is to drive the design of
the context management services for aggregating sensor data
to generate context information required by an application.
In the literature different approaches have been used for
context modeling [31]: These include attribute-value pairs to
represent context elements [29], domain specific ontologies,
such as RDF and OWL [35], and the graphical approach
involving Object-Role Modeling (ORM) framework [18, 19].
Attribute-value pairs are easy to handle but provide limited
functionality. XML schemas support interoperability and
shared understanding of a context model among different
consumers of the context information. Ontologies provide
mechanisms to define relationships between different context
elements and domain concepts. The ORM approach [19]
provides graphical mechanisms that aid in the development
of context models for the domain of interest.

Ambient context detection requires continuous sensing of
various different kinds of conditions in the environment,
possibly at different locations, and real-time aggregation of
the continuous streams of sensor data to infer the context
conditions of interest. Application specific processing of this
sensor data may be required to derive high-level context
information. Applications may create and install one or
more context agents for this purpose. The context agents
need to authenticate the sensors from which they would
collect sensor information. An application needs to trust the
context agents from which it obtains the required context
information because it is used in making access control
decisions. Similar to our notion of context agents other
researchers have developed different programming abstrac-
tions for accessing context information. These include con-
text widgets [27], situations [19], and sentient objects [14].

In addition to ambient context, an application may also
utilize internal context information in making access control
decisions. Internal context corresponds to role membership
related information and history of operation executions by
role members. The role managers and the object managers
provide interfaces to access this information.

In our model, context conditions are expressed as pred-
icates that are evaluated by role/object managers. Such
predicates are composed of queries supported by context
agents and role managers. These predicates are used by
the role/object managers as part of context-based access
control policy enforcement. Occurrence of certain context
conditions is communicated by the context agents to the
access control layer through the notification of context
events.

OperationsUsers

Context Agents

Context Events
Context Queries

Access control layer

layer
Context management

Role Admission
and validation
constraints

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Resources

Context Guards
constraints and
Permission activation

Roles

Personalized
permissions

Name
Object

Abstract

constraints
Resource access

Permissions

constraints

Context
based binding

Service
Space
Active

Agent
Monitoring

Agent

Space
Monitoring

Physical

Agent

Space
Monitoring

Physical

Agent

Space
Monitoring

Physical
Location

User

Figure 1: Context-Aware RBAC Model (CA-RBAC)

3.2 Access control layer
One major distinction between our CA-RBAC model and

the NIST RBAC model lies in the concept of permissions as
considered in the two models. In the NIST RBAC model
a permission specifies approval to perform specified actions
on a particular object. The effect of a permission execution
by different role members is always the same; it does not
differ for different role members. Also, the objects on which
permissions are specified are statically known in the system.

Our definition of a permission differs from that of the
NIST RBAC model as follows. First, permissions may
be personalized for each role member. A role operation
when executed by different role member may access different
objects based on the context of the individual role members.
Second, permissions are specified on objects that may bind
to different active space services under different context
conditions.

To support personalized permissions, objects in our model
are classified as shared and private. Shared objects are
common to all members of all the roles, whereas private
objects are specific to a role and are managed separately for
different members of that role. The bindings of both shared
and private objects may change based on context conditions.
Personalized permissions are specified as role operations on
the private objects defined in a role. The objects accessed by
a role member through the personalized permissions belong
to that member’s private object space.

A resource access constraint can be associated with a
role operation to enforce context-based access to resources
managed by the service that is being accessed as part
of that role operation. Such a constraint is a context-
based predicate specifying a relation between a resource’s
attributes and the context variables associated with the role
member invoking the operation. Only those resources that
satisfy this predicate are allowed to be accessed through
the role operation. The object manager that binds to the
service evaluates these constraints in its interactions with
that service. As part of evaluating these constraints, it
utilizes the context information associated with the role
member invoking the role operation.

To support context-based permission activation, the model
provides the precondition mechanism. A precondition can be
associated with a role operation. It consists of predicates
involving queries to context agents, and operation event
count based predicates [2]. It is evaluated by the role

manager before the corresponding operation is allowed to
be executed.

For addressing the context invalidation problem, we pro-
vide the context guard mechanism in our model. A context
guard may be associated with each role operation individ-
ually. It consists of a context predicate that is required to
remain valid while a role member’s interactive session with
the service that is being accessed through that role operation
is active. The role manager evaluates the context guard and
terminates the interactive session if the context predicate
fails to hold.

4. PROGRAMMING FRAMEWORK
Based on the CA-RBAC model we have designed and

implemented an XML-based programming framework for
building context-aware pervasive computing applications [33].
In this framework, a context-aware application is pro-
grammed using an abstraction called activity. An activity
may be distributed across different active spaces and it may
involve multiple users in some collaborative tasks.

An activity provides the role abstraction. Objects that are
defined in the activity are shared by all the members of all
the roles, whereas objects that are defined within each role
are private to that role. An object can be specified to bind
to some service in the active space or to some context agent.
Within an activity we do not distinguish between objects
that refer to context agents and those referring to other
services. This allows us to treat all the objects in a uniform
way. However, there are two consequences of this decision.
First, within an activity we need to specify an order for
binding the objects. It is crucial to bind the objects referring
to context agents before binding other objects in the activity
for an application’s correct behavior. In the programming
framework we provide a construct for this purpose. Second,
based on a given specification, the underlying middleware
needs to grant permissions to the various role managers
for accessing the context agents as part of role operation
precondition evaluations.

The middleware provides three generic components, an
activity manager, a role manager, and an object manager.
The runtime environment of an application is constructed
by specializing these managers based on the application’s
specification. All the managers are executed on a set
of trusted servers in the active space. For each user,
an interface component called User Coordination Interface

(UCI) is dynamically created and transported to that user’s
device. Through the UCI a user contacts a role manager for
executing a role operation.

A separate object manager is created for each object
defined in the activity. Similarly, for objects defined within
a role, separate object managers are created corresponding
to each user admitted to the role. An object manager
maintains a reference to the service to which it is currently
bound. It enforces context-based binding policies. It also
enforces the resource access constraints that are supplied to
it by the role manager as part of role operation invocation.

A separate role manager is created for each role defined
in the activity. It enforces role admission and validation
constraints, operation preconditions, and context guards.
Role validation constraints and operation preconditions are
evaluated every time a user invokes a role operation. An
operation’s actions are performed only if the operation
precondition and the role validation constraints are satisfied.

As part of an operation execution, the role manager
contacts the object manager corresponding to the object
on which the operation is specified to be executed. The
object manager invokes on the currently bound service the
methods that are specified as part of the role operation. For
monitoring and gathering external context information we
use an agent-based distributed event monitoring system [34].

We now illustrate our programming framework by pre-
senting how access control requirements for the two appli-
cations presented in Section 2 can be programmed in our
framework. For both the applications we used the following
experimental setup. We defined room agents corresponding
to various rooms in our department building. Each such
agent maintained status information about its room, such
as the list and the number of users in the room. Users’
Bluetooth enabled devices, such as laptops, and PDAs, are
used to detect user presence in a room. The agent generated
the StatusChangeEvent when a person arrived or left the
room. A user location monitoring agent was defined in the
testbed environment to maintain location information for
each user. In the activity we defined a LocationServiceAgent
object to refer to this agent. This agent subscribed to the
StatusChangeEvent from each room agent in the system. It
generated LocationChangeEvents corresponding to each user
as he/she moved from one room to another.

4.1 Role admission and validation
The programming framework supports two constructs for

programming role admission and validation constraints that
are specified with each role. The specified constraints are
evaluated by the corresponding role manager. Validation
constraints are evaluated every time a role member attempts
to execute a role operation. Below we illustrate the usage of
these constructs as part of the patient information activity.

We consider the following two requirements related to a
user’s memberships in a nurse-on-duty role associated with a
ward. First, we require that a user should be admitted to the
nurse-on-duty role corresponding to a ward only if he/she is
also a member of the Nurse role. Second, we require that
the user’s membership in the nurse-on-duty role of a ward
should be revoked if the user goes out of that ward, or after
his/her time of duty is over, or if the user’s membership in
the Nurse role is revoked.

Below we present the partial specification of the Pa-
tientInformationSystem activity, enforcing these two re-

quirements. We use a pseudo notation for presenting the
specification examples. In this notation the boldface
terms represent XML tags in our programming framework.
We define the NurseOnDutyEmergencyWard role and the
EmergencyWardAgent object in this activity. We bind the
object to a specific ward’s context agent at the activity
instantiation time.

Activity PatientInformationSystem {
Role NurseOnDutyEmergencyWard {

AdmissionConstraint { member(thisUser, Nurse) }
ValidationConstraint {

EmergencyWardAgent.isPresent(thisUser) &&
current time <= DATE (Mar, 21, 2008, 10:00) &&
member(thisUser, Nurse)

}
} // end of role
Object EmergencyWardAgent {

Bind Direct (//WardAgentURL)
} // end of object

}

The first requirement is specified through the Admission-
Constraint construct. As part of this constraint we check
for the user’s membership in the Nurse role. The function
member(thisUser, RoleName) is provided in the program-
ming framework to check the invoking users membership
in the role RoleName. The variable thisUser is a special
variable in the programming framework which translates to
the identifier of the role member who is requesting admission
to the role.

The second requirement is specified through the Valida-
tionConstraint construct. As part of this constraint the role
manager queries the EmergencyWardAgent object to check
whether this role member is present in the ward. If the
role member is not present in the ward, or if the current
time is past the specified time, or if the user is no longer a
member of the Nurse role then the user’s membership in the
NurseOnDutyEmergencyWard role is revoked.

4.2 Context-based object bindings
A context-based permission is programmed as a role

operation on an object which may bind to different active
space services under different context conditions. For
programming an object’s context-based binding policies,
the Reaction construct is provided in the programming
framework. One or more reactions may be specified with
an object definition. All such reactions are handled by
the corresponding object manager. A reaction follows the
Event-Condition-Action (ECA) model of evaluation. It is
triggered by one or more context events. The condition
specification consists of queries to context agents. The
action consists of the binding specification for the object.

In order to illustrate the context-based object binding
and the use of the Reaction construct, we consider the
context-based requirements of the music player application.
In this application we require that when a user enters a
room, the application is able to access the audio player
service in that room only if no other user is present in the
room. In Figure 2 we present a partial specification of this
activity that only addresses the above requirement. Other
requirements presented in Section 2 for this application are
not considered here.

We define two objects, CurrentRoom and AudioPlayer,
within the User role. Both these are private objects of this
role. Through the BindingOrder construct we specify that

Role User {
BindingOrder { CurrentRoom AudioPlayer }
Object CurrentRoom RDD (//RoomRDD.xml) {

Reaction {
When Event LocationChangeEvent(thisUser)

Bind Discover
(LOCATION=LocationServiceAgent.getLocation

(thisUser))
} // end of binding reaction

} // end of object definition
Object AudioPlayer RDD (//AudioPlayerRDD.xml) {

Reaction {
When Event LocationChangeEvent(thisUser)
Precondition CurrentRoom.isPresent(thisUser) &&

CurrentRoom.presentUserCount() == 1
Bind Discover
(LOCATION=LocationServiceAgent.getLocation

(thisUser))
} // end of reaction

} // end of object definition
Operation PlayMusic {

Precondition AudioPlayer.isBound()
Action AudioPlayer.play()

} // end of operation
} // end of User Role

Figure 2: Context-based object binding example

the CurrentRoom object should be bound before binding the
AudioPlayer object. This is crucial for the correct execution
of this activity because the CurrentRoom object is accessed
as part of the condition evaluation of the AudioPlayer
object’s binding reaction.

The binding reaction of the CurrentRoom object is trig-
gered by the LocationChangeEvent corresponding to the
user. The object is bound by discovering the room agent
based on the role member’s location. Such a discovery is
performed as follows. Associated with each object is a XML
description called RDD (Resource Description Definition),
which specifies the attributes and interfaces of the service
to which that object may be bound. We use RDD for
service discovery in our system. Some of the attributes’
values in a RDD can be based on the context information at
the discovery time. In the above example, the LOCATION
attribute value in the RoomRDD is filled in at runtime
by querying the location of the role member from the
LocationServiceAgent.

For the AudioPlayer object we specify a reaction that
binds the object to the audio player service in the room
where the user is present. This reaction is triggered by the
LocationChangeEvent corresponding to the user. As part
of the reaction’s condition, the AudioPlayer object manager
queries the room agent to which the CurrentRoom object is
bound. The condition checks whether this role member is
the only person present in the room. The binding action is
performed if this condition is true. The discovery procedure
is same as the binding of the CurrentRoom object. The
user may initiate playing of music through the PlayMusic
operation.

4.3 Personalized role permissions
A personalized role permission is programmed as a role

operation on a private object defined in a role. We
illustrate this through the following example. In the patient
information system we want that every member of the Nurse

role should be able to access the printer service in the ward
where that member is located. In Figure 3 we show how
this requirement is programmed in our framework. In the
Nurse role we define the Print operation through which the
private MyPrinter object may be accessed.

Role Nurse {
Object MyPrinter RDD (//PrinterRDD.xml) {

Reaction { ... }
} // end of MyPrinter object definition
Operation Print {

Action MyPrinter SessionMethod print
} // end of operation

} // end of Nurse Role

Figure 3: Personalized role permissions

The MyPrinter object refers to separate printer service
instances for each role member. Therefore, the binding
of this object is maintained separately and independently
for each Nurse role member. The binding action for this
object is similar to the binding of the CurrentRoom object
presented in Figure 2.

In the programming framework the SessionMethod con-
struct is provided to specify the list of methods that are
allowed to be invoked as part of an interactive session. We
observe that such an interactive session is used only for a
role member’s interaction with a service. It should not be
confused with the concept of a session in the NIST RBAC
model.

4.4 Permission activation and context guard
The context-based permission activation constraints are

programmed as a precondition of a role operation. A role
manager evaluates an operation’s precondition before the
operation’s actions can be executed.

Role Nurse {
Object CurrentWard { ... }
Operation AccessCriticalReports {

Precondition
CurrentWard.isPresent(thisUser) &&
CurrentWard.isPresent(members(Doctor))

Action PatientDB
SessionMethod accessDoctorReport

ContextGuard {
When StatusChangeEvent
GuardCondition

CurrentWard.isPresent(thisUser) &&
CurrentWard.isPresent(members(Doctor))

} // end of Context Guard
} // end of role operation

} // end of Nurse role

Figure 4: Operation precondition and context guard
example

In the patient information system we require that a Nurse
role member may access doctor’s patient reports only if
a Doctor role member is also present in the ward. This
requirement is programmed using the precondition construct
as shown in Figure 4. We define the private object named
CurrentWard in the Nurse role. For each nurse it is bound
to the room agent corresponding to the room where that
nurse is present. The object’s binding changes based on the

current location of a nurse. In this regard it is similar to the
binding of the CurrentRoom object presented in Figure 2.

We define the AccessCriticalReports operation through
which a Nurse role member may access doctor reports. As
part of the operation precondition the Nurse role manager
checks if the Nurse role member who is invoking the opera-
tion and some member of the Doctor role are present in the
CurrentWard. The role manager executes the operation’s
actions only if the precondition is true. Execution of this
operation leads to the initiation of an interactive session with
the database service. As part of this session the role member
may invoke accessDoctorReport method on the PatientDB
object. We want that this session be terminated when either
the nurse leaves the ward or when no member of the Doctor
role remains in the ward.

In our programming framework we provide the Context-
Guard construct for addressing the above kind of context
invalidation problem. Such a construct identifies two
things - what context predicate to evaluate, and when
to evaluate it. In our framework, we use context events
to trigger the evaluation of a context guard. A context
guard becomes effective when the corresponding operation
is executed. Once effective, the role manager evaluates
the context condition specified through the GuardCondition
construct every time the guard’s evaluation is triggered by
the notification of the specified context events. The role
manager terminates the interactive session if the context
condition fails to hold.

We specify a context guard for the AccessCriticalRe-
ports operation. Its evaluation is triggered by the Sta-
tusChangeEvent that is notified to the Nurse role manager
by the ward agent to which the CurrentWard object is
bound. The Nurse role manager terminates the interactive
session if either the nurse has left the ward or if no member
of the Doctor role is present in the ward.

4.5 Resource access constraint
A resource access constraint may be specified separately

for every object invocation within a role operation. We
define the AccessConstraint construct for this purpose in the
programming framework.

Role Nurse {
Operation AccessWardPatientInfo {

Action PatientDB
SessionMethod accessPatientInformation
AccessConstraint

(WardID =
LocationServiceAgent.getLocation(thisUser))

}
} // end of Nurse role

Figure 5: Resource access constraint example

In the patient information system we require that a Nurse
role member may access the records of only those patients
who are admitted to the ward where the nurse is currently
present. This requirement is programmed as shown in
Figure 5. In the Nurse role we define the AccessWardPati-
entInfo operation through which a role member may access
patient records. Through the AccessConstraint construct
we specify the required resource access constraint. It is
enforced by the PatientDB object manager. The constraint
specification consists of the WardID attribute of patient

records. The PatientDB object manager grants access to
only those database records for which the WardID attribute
has the value equal to the location of the Nurse role member
who is invoking the operation. For this, it queries the
LocationServiceAgent to obtain the location of the nurse.

5. RELATED WORK
Other researchers have also developed RBAC models

specifically for context-aware pervasive computing appli-
cations [28, 9, 24]. Gaia [28] defines three different role
categories, corresponding to system-wide roles, active space
roles, and application roles, and a mapping between them.
In GRBAC model [9] context information is considered
as the environmental role, which an application needs to
posses in order to perform context-dependent tasks. Such a
definition leads to large number of roles in an access control
system, as there might be potentially many environmental
states that are relevant for an application. In [24], context-
based constraints are associated with activation of role
permissions. They also provide engineering guidelines for
building context-based RBAC systems.

The context-based access control mechanisms in our
programming framework differ from the above systems in
the following four ways. First, we provide role validation
constraints to support revocations of role membership if
context conditions fail to hold. Second, we support personal-
ized role permissions that are executed on different objects
for different role members. Third, we provide the context
guard mechanism to revoke interactive sessions when context
conditions fail to hold. Fourth, through the resource access
constraint mechanism we enforce access control requirements
that depend on the relationship of a resource’s attributes
with the context information, such as the identity and
the location of the role member who is accessing the
resource. Similar requirements have been discussed and
addressed previously in [17, 15]. The mechanisms of
parameterized privileges [17] and parameterized roles [15]
essentially perform access control based on an object’s
contents. Content-based access control ideas can be traced
back to the work on access control based on data types in
programming languages [20].

Constraints specification as part of RBAC models have
been extensively studied by researchers [3, 10]. We focus on
context-based constraint specification as part of designing
context-aware applications. This requires close interaction
between the access control system and the context manage-
ment layer. In our model, application specific context agents
are deployed in the system to collect context information
and generate context events. The context predicates are
evaluated by the application specific role/object managers.
A generic framework for context evaluation has been de-
veloped as part the Antigone system [22]. It provides
mechanisms to enforce security of the context information
used as part of authorization policies. In contrast, our
work considers integration of context-based constraints in
a RBAC model for pervasive computing applications. This
leads to a number of requirements, discussed in this paper,
which are not addressed by the Antigone framework.

Context-based constraints that limit a role’s visibility
to specific geographic areas are presented as part of the
GEO-RBAC model [6]. Similarly, the GTRBAC model [21]
provides mechanisms for enabling and disabling of roles
based on temporal constraints. In our model context-based

constraints including temporal and spatial constraints, are
specified as part of role admission/validation and role
operation preconditions. We argue that this approach
supports fine-grained access control requirements, as one
can selectively revoke a user’s membership from a role,
or activate/deactivate specific role permissions, instead of
enabling/disabling a role. Moreover, we also support fine-
grained access control through resource access constraints
that are specified as part of a role operation. Additionally,
we also provide the context guard mechanism to revoke role
operation sessions when specified context conditions fail to
hold.

The UCON model [26] provides an extensive framework to
model a broad range of usage control policies. In contrast,
we focus on access control for context-aware applications.
There are conceptual similarities between some of the
mechanisms in our programming framework and some of
the UCON modeling abstractions. For instance, the context
guard mechanism in our framework is similar to the UCON’s
decision predicates that are evaluated during a request
execution (ongoing-authorizations). Moreover, the UCON’s
attribute-based access control mechanisms can be used to
specify the requirements that are addressed by the resource
access constraints in our framework. Support for attribute-
based access control is also provided by the XACML stan-
dard for distributed authorization management [23].

The resource access constraint mechanism in our program-
ming framework is similar to the parameterized roles of the
role graph model [15] and parameterized privileges of [17].
Additionally, we also provide the mechanism of personalized
role permissions in our model. The personalized role permis-
sions and the resource access constraint mechanism serve
different purposes. Personalized role permissions (private
object space for a role member) provide a mechanism to
control a role member’s access to a service based on his/her
context information. Resource access constraints on the
other hand provide a mechanism to control a role member’s
access to a subset of resources managed by a service.
A resource access constraint provides a finer granularity
of access control as compared to the personalized role
permissions.

Distinction between an object type and its instance for
access control has also been considered in the TMAC
model [32]. In contrast to that model, the abstract objects
in our model may be dynamically bound to different services
under different context conditions. This requires object
managers to verify the authenticity of such services before
binding. Such a requirement does not arise in the TMAC
model, making its implementation possibly simpler than our
model.

6. CONCLUSIONS
In this paper we have demonstrated the need for extending

the NIST RBAC model for addressing context-based access
control requirements of pervasive computing applications.
We presented our context-aware RBAC model that supports
several such extensions. In this model we distinguish
between the context management layer and the access
control layer. The model supports personalized permissions
for role members, and context-based constraint specification
as part of - dynamic binding of objects with active space
services, user admission to roles, permission executions by
role members, and granting access to a subset of a service’s

resources based on a role member’s context information.
The model also supports revocation of a user’s membership
in a role when context conditions fail to hold. We have
also identified the context invalidation problem in this paper.
To address this problem we provide the context guard
mechanism in our CA-RBAC model. Based on this model
we have developed a role-based framework for programming
secure context-aware pervasive computing applications. In
this paper we demonstrated the key elements of this frame-
work through a set of application examples that we have
implemented as part of our testbed suite.

7. ACKNOWLEDGMENTS
We are thankful to Prof. Sylvia Osborn and all the

reviewers for providing valuable feedback that resulted in
improving the paper’s presentation.

8. REFERENCES
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,

M. Smith, and P. Steggles. Towards a Better
Understanding of Context and Context-Awareness. In
HUC ’99: Proceedings of the 1st International
Symposium on Handheld and Ubiquitous Computing,
pages 304–307. Springer-Verlag, 1999.

[2] T. Ahmed and A. R. Tripathi. Specification and
Verification of Security Requirements in a
Programming Model for Decentralized CSCW
Systems. ACM Transactions on Information and
System Security (TISSEC), 10(2):7, 2007.

[3] G.-J. Ahn and R. Sandhu. Role-based Authorization
Constraints Specification. ACM Transactions on
Information and System Security (TISSEC), 3(4):207
– 226, November 2000.

[4] J. Bacon, K. Moody, and W. Yao. A Model of OASIS
Role-based Access Control and its support for Active
Security. ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, 2002.

[5] J. E. Bardram, T. R. Hansen, M. Mogensen, and
M. Søgaard. Experiences from Real-World Deployment
of Context-Aware Technologies in a Hospital
Environment. In Ubicomp, pages 369–386, 2006.

[6] E. Bertino, B. Catania, M. L. Damiani, and
P. Perlasca. GEO-RBAC: A Spatially Aware RBAC.
In SACMAT ’05: Proceedings of the Tenth ACM
Symposium on Access control Models and
Technologies, pages 29–37, 2005.

[7] R. Campbell, J. Al-Muhtadi, P. Naldurg,
G. Sampemane, and M. D. Mickunas. Towards
Security and Privacy for Pervasive Computing. In
Lecture Notes in Computer Science Software Security
- Theories and Systems, volume 2609, pages 77–82.
Springer, 2003.

[8] S. Consolvo, P. Roessler, B. E. Shelton, A. LaMarca,
B. Schilit, and S. Bly. Technology for Care Networks of
Elders. IEEE Pervasive Computing, 3(2):22–29, 2004.

[9] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey,
M. Ahamad, and G. D. Abowd. Securing
Context-Aware Applications Using Environment
Roles. In SACMAT ’01: Proceedings of the Sixth ACM
Symposium on Access control Models and
Technologies, pages 10–20, 2001.

[10] J. Crampton. Specifying and Enforcing Constraints in
Role-based Access Control. In SACMAT ’03:
Proceedings of the Eighth ACM Symposium on Access
control Models and Technologies, pages 43–50, 2003.

[11] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat.
Using and Determining Location in a
Context-sensitive Tour Guide. IEEE Computer,
34(8):35–41, August 2001.

[12] M. Evered and S. Bögeholz. A Case Study in Access
Control Requirements for a Health Information
System. In ACSW Frontiers ’04: Proceedings of the
Second Workshop on Australasian Information
Security, Data Mining and Web Intelligence, and
Software Internationalisation, pages 53–61, 2004.

[13] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
Role-based Access Control. ACM Transactions on
Information and System Security (TISSEC),
4(3):224–274, 2001.

[14] A. Fitzpatrick, G. Biegel, S. Clarke, and V. Cahill.
Towards a Sentient Object Model. In Workshop on
Engineering Context-Aware Object-Oriented Systems
and Environments (ECOOSE), November 2002.

[15] M. Ge and S. L. Osborn. A Design for Parameterized
Roles. In DBSec, pages 251–264, 2004.

[16] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K.
Thomas. Flexible Team-based Access Control using
Contexts. In SACMAT ’01: Proceedings of the Sixth
ACM Symposium on Access control Models and
Technologies, pages 21–27, 2001.

[17] L. Giuri and P. Iglio. Role Templates for
Content-based Access Control. In RBAC ’97:
Proceedings of the Second ACM Workshop on Role
Based Access Control, pages 153–159, 1997.

[18] T. Halpin. Information Modeling and Relational
Databases: From Conceptual Analysis to Logical
Design. Morgan Kaufmann Publishers Inc., 2001.

[19] K. Henricksen and J. Indulska. A Software Engineering
Framework for Context-Aware Pervasive Computing.
In PERCOM ’04: Proceedings of the Second IEEE
International Conference on Pervasive Computing and
Communications (PerCom’04), page 77, 2004.

[20] A. K. Jones and B. H. Liskov. A Language Extension
for Expressing Constraints on Data Access. Commun.
ACM, 21(5):358–367, 1978.

[21] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor.
A Generalized Temporal Role-Based Access Control
Model. IEEE Transactions on Knowledge and Data
Engineering (IEEE TKDE), 17(1):4–23, 2005.

[22] P. McDaniel. On Context in Authorization Policy. In
SACMAT ’03: Proceedings of the Eighth ACM
Symposium on Access control Models and
Technologies, pages 80–89, 2003.

[23] T. Moses. OASIS eXtensible Access Control Markup
Language (XACML) Version 2.0, OASIS Standard.
pages 1–141, 1 February 2005.

[24] G. Neumann and M. Strembeck. An Approach to
Engineer and Enforce Context Constraints in an
RBAC Environment. In SACMAT ’03: Proceedings of
the Eighth ACM Symposium on Access control Models
and Technologies, pages 65–79, 2003.

[25] U. Nitsche, R. Holbein, O. Morger, and S. Teufel.
Realization of a Context-Dependent Access Control
Mechanism on a Commercial Platform. In Proceedings
of IFIP/SEC 1998. Chapman & Hall.

[26] J. Park and R. Sandhu. The UCONABC Usage
Control Model. ACM Transactions on Information
and System Security (TISSEC), 7(1):128–174, 2004.

[27] D. Salber, A. K. Dey, and G. D. Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled
Applications. In Proceedings of the 1999 Conference
on Human Factors in Computing Systems (CHI ’99),
pages 434–441, May 1999.

[28] G. Sampemane, P. Naldurg, and R. H. Campbell.
Access control for Active Spaces. In Annual Computer
Security Applications Conference (ACSAC2002), 2002.

[29] B. Schilit, N. Adams, and R. Want. Context-Aware
Computing Applications. In IEEE Workshop on
Mobile Computing Systems and Applications, pages
85–90, Santa Cruz, CA, US, 1994.

[30] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and
F. Liu. The Smart Classroom: Merging Technologies
for Seamless Tele-Education. IEEE Pervasive
Computing, 02(2):47–55, 2003.

[31] T. Strang and C. Linnhoff-Popien. A Context
Modeling Survey. In Workshop on Advanced Context
Modelling, Reasoning and Management as part of
UbiComp 2004 - The Sixth International Conference
on Ubiquitous Computing, September 2004.

[32] R. K. Thomas. Team-based Access Control (TMAC):
A Primitive for Applying Role-based Access Controls
in Collaborative Environments. In RBAC ’97:
Proceedings of the Second ACM Workshop on
Role-based Access Control, pages 13–19, 1997.

[33] A. Tripathi, D. Kulkarni, and T. Ahmed. A
Specification Model for Context-Based Collaborative
Applications. Elsevier Journal on Pervasive and
Mobile Computing, 1(1):21 – 42, May-June 2005.

[34] A. R. Tripathi, D. Kulkarni, H. Talkad, M. Koka,
S. Karanth, T. Ahmed, and I. Osipkov. Autonomic
Configuration and Recovery in a Mobile Agent-based
Distributed Event Monitoring System. Software -
Practice & Experience, 37(5):493–522, 2007.

[35] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung.
Ontology Based Context Modeling and Reasoning
Using OWL. In PERCOMW ’04: Proceedings of the
Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, 2004.

