
Generative Programming Approach for Building Pervasive Computing
Applications

Devdatta Kulkarni and Anand Tripathi�
Department of Computer Science

University of Minnesota Twin Cities
MN 55455, USA

Email: (dkulk,tripathi)@cs.umn.edu

Abstract

In this paper we present a generative programming ap-
proach for building context-aware applications. In this
approach, a context-aware application is programmed us-
ing high-level specification constructs provided in our pro-
gramming framework. The runtime environment of the ap-
plication is generated from this specification by a middle-
ware. We demonstrate the utility of this approach by pre-
senting an example case-study.

1 Introduction

Developing context-aware applications is a challenging
task because of several reasons. Such applications require
dynamic integration of application components, resources,
and services based on the context. Applications may span
across multiple physical spaces. Application requirements
may evolve over time. Modifying an application’s behavior
may require re-programming the entire application.

To address above challenges we have developed a pro-
gramming framework to support rapid construction of
context-aware applications from their high-level specifica-
tions. Our approach for building context-aware applications
follows the generative programming paradigm [3]. The cen-
tral idea in our approach is to construct the runtime envi-
ronment of a context-aware application from its high-level
design specification. The runtime environment of the appli-
cation is generated by dynamically integrating policies that
are derived from the application’s specification with a set of
middleware components and environmental services.

There are several advantages of this approach. First, the
task of developing context-aware applications is simplified.
Development efforts are limited to developing the applica-
tion components and developing the specification of various�This work was supported by NSF grant 0411961.

context-aware requirements for the application. Developers
need not worry about integrating the application with en-
vironmental services, such as context services and resource
discovery services. The middleware automatically performs
these tasks as part of generating the application’s runtime
environment from its specification. Second, this approach
allows rapid construction of a context-aware application in
which the design requirements including any context-based
requirements can be modified easily. Third, it is possible
to perform various kinds of static analyses [1] of the appli-
cation’s specification to ensure that the application require-
ments are consistent and do not violate any security require-
ments.

2 Programming Framework Overview

Generative programming paradigm corresponds to au-
tomated generation of a family of applications belonging
to a particular domain from high-level specification of the
application’s requirements [3]. Our approach for building
context-aware applications follows this generative program-
ming paradigm as shown in Figure 1. The conceptual foun-
dations of our programming framework for context-aware
applications has its roots in the specification based pro-
gramming model for distributed collaborative applications
that we had developed earlier [6]. In this programming
model, anactivity abstraction defines a shared application
workspace containingshared objectsfor a group of collab-
orating role membersto perform application related tasks.
An activity defines a namespace of such objects which is ac-
cessible to all the roles. Additionally, each role may also de-
fine a namespace of objects, which is maintained separately
for each member of that role. An object in a namespace
may be bound to different resources under different con-
text conditions. Mechanisms are provided to specify con-
ditions under which such bindings should change. These
mechanisms support integration of context information in

1



performing resource discovery functions. Furthermore, at
the time of binding a name to a resource, certain specified
initialization actions may be performed on the resource.

Roles are provided withrole operationsthrough which
role members may perform application tasks by invoking
methods on objects in the activity’s or a role’s namespace.
User’s privileges to execute role operations are based on
application’s internal context conditions such as task exe-
cution histories within the activity, user’s membership in
roles, and also on external context conditions, such as user’s
presence in a particular place or co-location of a user with
other users. Such dynamic access control policies for role
operation executions are specified throughpreconditionsas-
sociated with the role operations.

A middleware provides generic manager components for
managing activities, roles, and objects. As part of the ap-
plication generation process, policies are derived from the
application’s specification and integrated with the generic
managers [6]. These policies include access control policies
for object managers, event subscription/notification policies
for role managers and object managers, role management
policies, such as role admission policies and role activa-
tion policies, for role managers, and binding policies for the
activity manager and role managers. Application specific
managers for activity, roles, and objects are derived from the
corresponding generic managers by integrating these poli-
cies. Every role member is provided aUser Coordination
Interface(UCI) component through which he/she can exe-
cute application tasks.

3 Case Study: Developing a Context-Aware
Application

We illustrate here programming of a context-aware ap-
plication using this framework. We consider a music player
application for a mobile user. A mobile user plays music
on his/her personal computing device. The user may like to
listen the music either on his/her personal headphones or on
the public speakers in the room. We consider the following
context-aware requirement for this application. When the
user enters a room the application automatically discovers
and binds to the room’s public speakers. We consider im-
plementation of two alternate designs for this application.
Design 1: Automatically start streaming the music to the
room’s public speakers if no one else is present in the room.
Design 2: User should explicitly initiate streaming of music
to the public speakers. This action should be allowed only
if no one else is present in the room.

In order to program these requirements, the application’s
design needs to contain the following: First, objects need
to be defined to represent user’s headphones and the pub-
lic speakers in the room. The binding of the headphone
will be permanent while the binding of the public speak-

Manager

Specific
Application

Object

Role 
Generic

Manager

Generic

Manager

Manager
Activity 
Specific

Manager

Application
Activity 
Generic

Policies
Subscription

Event
Context

Application

Policies
Management
Object

Policies
Management
Role 

Policies
Management
Activity

Context Services

Environment
Application Runtime

Context Events

Resource Discovery Service

Specification
Application

Trusted Server

Middleware Components

Object

Role 

Manager

Specific

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

UCI

���
���
���
���

���
���
���
���

UCI

UCI

Figure 1. Context-Aware Application Genera-
tion Process

ers will change as the user moves from one room to an-
other room. This binding action will have todiscoverthe
appropriate public speakers in the room in which the user
is present. Second, the application needs to be notified of
context events, such as arrival of a user in a room. Simi-
larly, the application should be able to query the state of the
environment, such as whether a particular user is present
in the room, and the number of users present in the room.
Correspondingly, objects need to be defined to represent the
environmental context agents, for example location service
agent that monitors user location, and agents representing
physical space abstractions such as the rooms. The bind-
ing of location service will be permanent while the bind-
ing of the agent representing the user’s current location will
change as the user enters or leaves a room. Finally, the
application needs to provide operations through which a
user may initiate music streaming on headphones and pub-
lic speakers.

Below we show the specification of such a music player
application modeled as an activity1.

1.Activity MusicPlayer
2. Object UserLocationService
3. Import Event UserArrivalEvent
4. Bind UserLocationServiceDirect (//UserLocationAgentURN)
5. Role User
6. Object CurrentRoomRDD (//RoomRDD.xml)
7. Bind CurrentRoomWhen UserArrivalEvent
8. Discover (LOCATION=
9. UserArrivalEvent.getLocation(thisUser))
10. Operation CreateAudioPlayer
11. Action AudioPlayer =New (//codeBase/AudioPlayer)
12. Operation InitializeAudioPlayer
13. Action AudioPlayer.setMediaLocation(//MediaURL)



14. Object HeadPhone
15. Bind HeadPhoneDirect (//LocalAudioReceiverURL)
16. Object PublicSpeakerRDD (//SpeakerRDD.xml)
17. Bind PublicSpeakerWhen UserArrivalEvent
18. Discover (LOCATION=
19. UserArrivalEvent.getLocation(thisUser))
20. Init Action
21. Precondition CurrentRoom.isPresent(thisUser)
22. && CurrentRoom.presentUserCount() == 1
23. Action
24. PublicSpeaker.setSender(AudioPlayer.getAddress())
25. AudioPlayer.addTarget(PublicSpeaker.getAddress())
26. Operation PlayMusicOnHeadPhones
27. Action HeadPhone.setSender(AudioPlayer.getAddress())
28. AudioPlayer.addTarget(HeadPhone.getAddress())

Environmental Context Agents: In the activity specifica-
tion, an objectUserLocationServiceis defined in the activ-
ity’s namespace (line 2). TheUserArrivalEventis speci-
fied to be imported from this object (line 3). This object
is bound permanently with the user location tracking agent
(UserLocationAgent) (line 4). In our programming frame-
work, such agents are programmed using an agent based
distributed event monitoring framework that we have de-
veloped [7]. The agents representing physical spaces are
registered with the discovery service to allow them to be
discovered by applications.

A User role is defined to represent the application user
(line 5). This role defines an objectCurrentRoomin its
namespace to represent the agent of the room in which the
user is currently present (line 6). We define two role opera-
tions,CreateAudioPlayer(lines 10-11) andInitializeAudio-
Player(lines 12-13), through which the user may create the
audio player and initialize it with the required music file.
Context-based Resource Binding: Two objects, Head-
Phoneand PublicSpeaker, are defined in theUser role’s
namespace. TheHeadPhoneobject isdirectly bound with
the audio receiver on the user’s device (line 15). ThePublic-
Speakerobject represents the public speakers in the room.
The binding of this object is shown in lines 17-19. The bind-
ing action is triggered by aUserArrivalEventthat is gener-
ated whenever the user enters a room. Binding is performed
by discoveringthe audio receiver in the room in which the
user has just entered.

Discovering a resource in the environment involves the
following. The object that would be bound through discov-
ery needs to be associated with a description which would
be used in searching for the required resource. For the
PublicSpeakerobject, such a description is given through
SpeakerRDD.xml (line 16). The description specifies the

1We have developed an XML schema for activity specifications.Here
we use a pseudo notation for writing activity specifications. In this no-
tation, terms inboldface represent XML tags. Complete specification is
available at http://www.cs.umn.edu/Ajanta/MusicPlayer/MusicPlayer.txt

attributes and the interfaces of the audio receiver that would
be bound with this object. In this description some of the at-
tributes may be filled based on the context information. For
thePublicSpeakerobject, the attribute LOCATION is filled
based on the user’s current location. The current location
of the user is extracted from theUserArrivalEventby in-
vokinggetLocationmethod on the event. A special variable
thisUserdefined in the programming framework is passed
as a parameter to this method. This variable represents the
role member for whom the binding is triggered. This loca-
tion context information is plugged in the SpeakerRDD.xml
and is used by the discovery service to find a matching re-
source. PublicSpeakerobject is bound to the discovered
resource if the discovery is successful. Binding of theCur-
rentRoomobject is similar (lines 7-9). Role member names-
pace is maintained separately for each role member. Hence
this same specification can be used by multiple users.
Requirement 1: Automatic music streaming: For this re-
quirement we want that once thePublicSpeakerobject has
been bound and if there is no one else present in the room,
the application should start streaming the music to the pub-
lic speakers. This is programmed as part of the initialization
action of thePublicSpeakerobject (lines 20-25). The ini-
tialization action has two parts: a precondition specification
and a list of action specification. The precondition checks
whether the user is present in theCurrentRoomand whether
the number of users present in theCurrentRoomis equal to
one. This is achieved by executing the query methods (isP-
resentandpresentUserCount) on theCurrentRoomobject.
The actions are performed only if the precondition is true.
As part of actions, first thePublicSpeakeris initialized with
the audio player’s session address (line 24) and then it is
added as a target of theAudioPlayer(line 25).

When the user moves from one room to another room,
we want to stop streaming the music to public speakers
of the previous room. This is programmed as part of the
PublicSpeaker’s setSenderinterface. This interface will in-
voke theAudioPlayer’s removeTargetmethod by passing to
it the previous address associated with thePublicSpeaker.
This is not required for theHeadPhoneobject.
Requirement 2: User initiated music streaming: For this
requirement we want the user to initiate streaming of the
music on thePublicSpeaker. This can be programmed by
providing aPlayMusicOnPublicSpeakersoperation to the
User role. The precondition and action parts of this op-
eration will be exactly similar to the corresponding parts of
theInit Actionin the binding specification ofPublicSpeaker
object. We do not show that specification here. The opera-
tion PlayMusicOnHeadPhonesallows streaming the music
to the user’sHeadPhone.

We observe that there is a potential race condition be-
tween the binding ofCurrentRoom(lines 7-9) andPublic-
Speaker(lines 17-19) objects. Both the bindings are trig-



gered by theUserArrivalEvent. It may happen that the
PublicSpeakerbinding is triggeredbefore the binding of
CurrentRoom. In that case the precondition (lines 21-22)
evaluation in the binding fails becauseCurrentRoomis un-
bound. It is possible to program the application such that
the set of rooms in which the user may move are pre-bound
as acollectionobject in the activity. The precondition eval-
uation would then be modified to first select from the col-
lection the room in which the user is present and then query
the state information from the selected room. Due to space
limitations we do not show that specification here.

4 Related Work

Other research groups that have followed a similar
approach include Gaia [5], and RCSM [8]. In Gaia,
active spaces are programmed using the Olympus pro-
gramming environment which is implemented as a Gaia
middleware service. The RCSM system [8] provides a
context-aware interface definition language for program-
ming context-awareness in applications’ components. Gaia
shields context-awareness behind its high-level operators
whereas RCSM restricts context usage only to compo-
nent interface definitions. In our programming framework,
context-usage is much more explicit. Constructs for re-
source binding and task execution explicitly support inte-
gration of context information. This allows us to provide
finer control over context-aware requirements of the appli-
cation. Several adaptive middlewares for context-aware ap-
plications [2, 4] have been developed by other researchers.
The goal of both PCOM [2] and Chisel [4] is to automat-
ically support adaptation of a context-aware application at
runtime. PCOM performs such adaptations through discov-
ery and integration of components satisfying a particular
contract at runtime. Application adaptations are guided by
component contracts. Our approach is similar to this but
differs in the way intra-component requirements are speci-
fied. In our approach, policiesderivedfrom an application’s
specification capture the intra-component requirements. In
a sense, policies are latent in the application’s specification.
Such policies are integrated with application components
to generate a particular runtime environment. These poli-
cies are similar to the PCOM’s intra-component contracts.
Chisel focuses on adaptation of the non-functional require-
ments of an application, specified as an application’s meta-
types, driven by a high-level policy language. For certain
applications, it may not be possible to satisfy the adap-
tation requirements by performing such a functional/non-
functional separation. For example, in the music player ap-
plication, the context-triggered binding of an application’s
namespace is a functional requirement but would have to be
considered as non-functional in order to implement the ap-
plication in the Chisel framework. Our approach does not

make such a distinction. On the contrary it helps in model-
ing the complete design of a context-aware application un-
der different context conditions.

5 Discussion

In our approach, the entire operational configuration of a
context-aware application, under different contextual condi-
tions, is laid out in the form of its specification. The gener-
ated runtime environment supports dynamic integration of
environmental resources and context-dependent task execu-
tions. One limitation of this approach is that the user inter-
actions are highly structured and cannot be extended in an
ad-hoc manner at runtime. The advantage is that it provides
a concise representation of the application’s context-aware
behavior. Such a high-level specification is also amenable
to static analyses [1] for ensuring properties of consistency,
correctness, and secure information flow for the application.

References

[1] T. Ahmed and A. R. Tripathi. Static Verification of Security
Requirements in Role Based CSCW Systems. InProceedings
of 8th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2003), pages 196–203, New York, June
2003. ACM.

[2] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM -
A Component System for Pervasive Computing. InProc. Sec-
ond IEEE International Conference on Pervasive Computing
and Communications, pages 67–76, March 14-17 2004.

[3] K. Czarnecki and U. W. Eisenecker.Generative Program-
ming Methods, Tools, and Applications. Addison-Wesley,
2000.

[4] J. Keeney and V. Cahill. Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework. InPOLICY ’03:
Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, pages 3–14,
Washington, DC, USA, 2003. IEEE Computer Society.

[5] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell,
and M. D. Mickunas. Olympus: A high-level programming
model for pervasive computing environments. InPerCom,
pages 7–16, 2005.

[6] A. Tripathi, T. Ahmed, and R. Kumar. Specification of Secure
Distributed Collaboration Systems. InIEEE International
Symposium on Autonomous Distributed Systems (ISADS),
pages 149–156, April 2003.

[7] A. R. Tripathi, D. Kulkarni, H. Talkad, M. Koka, S. Karanth,
T. Ahmed, and I. Osipkov. Autonomic Configuration and Re-
covery in a Mobile Agent Based Distributed Event Monitor-
ing System.Software Practice and Experience, Accepted in
July 2006 for publication. Available at URLhttp://www.
cs.umn.edu/Ajanta/publications.html.

[8] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta.
Reconfigurable Context-Sensitive Middleware for Pervasive
Computing.IEEE Pervasive Computing, 1(3):33–40, 2002.


