Scalable Transaction Management with Snapshot
Isolation on Cloud Data Management Systems

Vinit Padhye and Anand Tripathi
Department of Computer Science
University of Minnesota Minneapolis,
55455, Minnesota, USA.

Abstract—Key-value based data storage systems such as HBasevailability, still need certain strong transactional sistency
and Bigtable provide high scalability compared to traditional guarantees. For example, an online shopping service may
relational databases, however, they provide only limited transac- require ACID guarantees for performing payment operations

tional functionality, such as single-row transactions. We address In thi . tioat labl hitect f
the problem of building scalable transaction management mech- n this paper, we Investigaie scalable architectures for

anisms for multi-row transactions on key-value storage systems. Providing multi-row serializable transactions witnapshot
We develop scalable techniques for transaction management uti- isolation (SI)[6]. The snapshot isolation model is attractive for

lizing the snapshot isolation (SI) model. Because the SI model canscalability, as identified in the past [6], since the tratisas
lead to non-serializable transaction executions, we investigate two read from a snapshot, the reads are never blocked due to write

conflict detection techniques for ensuring serializability under locks. thereb idi In thi d
Sl. To support scalability, we investigate system architectures 0cks, thereby providing more concurrency. In this regand o

and mechanisms in which the transaction management functions investigation is focused on two aspects. First, we invagtig
are decoupled from the storage system and integrated with the scalable architectures for transaction management on key-

application-level processes. We present two system architeces value based Cloud storage systems. Our approach for pro-
and demonstrate their scalability under the scale-out model of viding transaction support is based on decoupling traisact

Cloud computing platforms. In the first system architecture tf the st . d int ting it with
all transaction management functions are executed in a fully management from the storage service and integrating it wi

decentralized manner by the application processes. The secondthe application-level processes. We present and evaluate t
architecture is based on a hybrid approach in which the conflict system architectures for transaction management. The first

detection techniques are implemented by a dedicated service. architecture idully decentralizedin which all the transaction
We perform a comparative evaluation of these architectures for management functions, such as concurrency control, conflic

supporting snapshot isolation and serializability using the TPC-C ; - " .
benchmark. Through experimental evaluations, we demonstrate detection and atomically committing the transaction ugslat

that multi-row transactions can be supported with the guarantes are performed by the application processes themselves. The
of ACID properties in a scalable manner using the application- general framework of this execution model is shown in Fig-

level transaction management techniques presented in this paper yre 1. The metadata necessary for transaction coordination
such as read/write sets and lock information are storeddn th
underlying Cloud storage. The second architecture is aidhybr
I. INTRODUCTION model in which gertain funptions such as conflict detecFion
. - are performed using a dedicated service. We refer to this as
The Cloud computing platforms enable building Scalabgeervice-based architecture
servllcis throug.h the scale-outl TIOdeL by ut|I'|d2|r:g the eigst The second aspect of our investigation is related to the leve
poot o compl_Jtlng resources. It has been widely recogm_z%g transaction consistency and tradeoffs in providing rejey
that the traditional database systems based on the reﬁht'o&nsistency models. Specifically, the snapshot isolatiodeh

model and SQL do not scale well [1], [2]. The NOSQLd S not guarantegerializability [6], [7]. Various techniques

databases based on the key-value model such as Bigtableh e been proposed to avoid serialization anomalies in]SI [8
and HBase [3], have been shown to be scalable in large s

L : o ) ; [10]. Some of these techniques [8], [9] apeeventivein
applications. However, unlike traditional relational alaases nature as they prevent potentznflict dependency cycléy

these systems typically do not provide general multi-ramsr aborting certain transactions, but they may abort trarmat

actions. For gxampleﬁ HBase and Blgtablehprowge onlly s':/'ln'glthat may not necessarily lead to serialization anomaliesh®
row transactions, whereas systems such as Google Megage, hand, the technique presented in [10] detects depepde
tore [4], G-store [5] provide transactions only over a fasr cycles and aborts only the transactions necessary to @iein

gr%uKI OSf eCtt')t'es' dThese two classes of system;, rela.t|o _L:ycle. However this approach requires tracking of conflict
and No. QL base system_s, represent two Oppos'te_po'ntsdgbendencies among all transactions and checking for depen
s_calab|I|ty Versus _functlonal!ty space. How_ever, ma}nyhapp . dency cycles, and hence it can be expensive. We present here
tions such as op“ne shoppmg store-s-, onIme auct|on. EVIChow these two techniques can be implemented on Cloud-based
collaborative editing etc, while requiring high scalatyiland key-value databases, and present their comparative &eaiua
This work was supported by National Science Foundationtgré®34357 In realizing thef tra.nsaCtion management model described
and 0708604 above, the following issues need to be addressed. In central



I I I “ I I demonstrate the scalability of our approach using the TPC-
Setvice Clénts C benchmark [19]. Contrary to conventional understanding,
we demonstrate that multi-row transactions can be supgorte
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Application ™ Appicaton ] Application in a scalable manner, through application-level transacti
Functions .o Eunctions .o Functions H H H .

Tansacton | [ Transacion | Tansacion management te.chnlques presented in this paper. V\(eT find that
Cibrary Management Eibrary the strong consistency guarantee such as serializabdlitybe

supported in key-value based storage systems, with mérgina
overheads in terms of resource requirements and response
times. Using the transaction management techniques and the
models presented here, the utility of key-value based Cloud
data management systems can be extended to applications
requiring strong transactional consistency.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the snapshot isolation model.
Section ll, presents our decentralized design for sujommprt
ized database systems, the commit protocol is executedtlas basic S| based transactions. In section IV, we discuss
an atomic operation, which performs validation and ensureew the basic SI model is extended to provide serializabilit
that all the updates of a transaction are made durable. Saction V discusses the service-based architecture oBe¢ti
our approach, such functions are performed by individuptesents our evaluations of the proposed architectures and
application processes in various steps, and the entireesequ techniques. The conclusions are presented in the lasbeecti
of steps is not performed as a critical section. Not perfagmi
all steps of the commit protocol as one critical sectionasis
a number of issues. Any of these steps may get interrupted
due to process crashes or delayed due to slow execution. T&napshot isolation (SI) based transaction execution model
address this problem, the transaction management protosola multi-version based approach utilizing the optimistic
should support a model afooperative recoveryany process concurrency control concepts [20]. When a transactign
should be able to complete any partially executed sequereaammits, it is assigned a commit timestardijs?, which is
of commit/abort actions on behalf of another process whidarger than the previously assigned timestamp values. The
is suspected to be failed. In such a model, any number @immit timestamps of transactions reflect the logical order
processes may initiate the recovery of a failed transactéind of their commit points. When a transactidi commits, for
such concurrent executions of recovery actions by multipach data item modified by it, a new version is created with
processes should not cause any inconsistencies. the timestamp value equal ©S:. When a transactioff;'s

The problem of providing multi-row transactions on NoSQlexecution starts, it obtains the timestamp of the most técen
Cloud databases has been recently addressed by sevepaimitted transaction. This representsshapshot timestamp
researchers. Systems such as Megastore [4], G-store [BE: of the transaction, and a read operation by the transaction
and DAT [11] provide transactions only over a group ofeturns the most recent committed version up to this snapsho
entities. ElasTraS [12] supports multi-row transactiomsyo timestamp. Thus a transaction reads only the committed data
over a single database partition and provides a restrictéeins and never gets blocked due to any write locks.
mini-transaction semantics [13] over multiple partitions. A transaction7; commits only if none of the items in its
CloudTPS [14] provides a design based on a replicatedite-set have been modified by any committed concurrent
transaction management layer which provides general ACtEansactionT; i.e. T'S! < T'S? < TS!. It is possible that a
transactions over multiple partitions, but with the asstiomp data item in the read-set of a transaction is modified by amoth
that transactions access only a small number of well-ifledti concurrent transaction, and both are able to commitaAti-
data items. The Deuteronomy system [15], [16] preserdgpendency21] between two concurrent transactiofisand
an approach based on decoupling transaction managenignis a read-write (rw) dependengydenoted byT; = Tj,
from the data storage, however their design depends oringlying that some item in the read-set @f is modified
central transaction component. Recently, other resegrchiey 7. Snapshot isolation based transaction execution can
have also proposed decentralized transaction managementl@ad to non-serializable executions as shown in [6], [7]. It
proaches [17], [18], however, they do not ensure serialinab was shown in [21] that a cycle of dependencies, including at
The work presented in [18] does not adequately addresssisslgast one anti-dependency edge, among a set of transactions
related to recovery and robustness when some transaciien f&xecuting under Sl represents a non serializable execution

The major contributions of our work are the following. WeFekete et al. [7] have shown that a non-serializable exatuti
present and evaluate two system architectures for prayidimust always involve a cycle in which there are two consec-
multi-row transactions using snapshot isolation (SI) oil9&  utive anti-dependencyedges of the fornil; ™ 7, ™% T;.
Cloud databases. Furthermore, we extend Sl based transacsuch situations, there exists @vot transaction [7] with
tion model to support serializable transactions under the 8th incoming and outgoingw dependencies. In the above
model. For this we develop and evaluate two techniques bass@mple,T; is the pivot transaction. Several techniques [8],
on the prevention and detection of dependency cycles. @, [10], [22] have been developed utilizing this fact tcsare
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Fig. 1. Decentralized and Decoupled Transaction Manageiedel

II. BACKGROUND: SNAPSHOTISOLATION MODEL



serializable transaction execution, in the con.text ofit'namhl @ a
RDBMS. Based on these approaches, we investigate decen
tralized techniques for implementing serializable tratisas
on Cloud-based NoSQL databases. Specifically, we consider
the following two approaches.
« Cycle Prevention Approach: When two concurrent trang;y »  Transaction Protocol Phases
actions7; andT; have an anti-dependency, abort one of
them. This ensures that there can never Ipévat trans-
action thus guaranteeing serializability. This approach In our model, a transaction goes through a series of phases
can sometimes abort transactions that may not lead @dring its execution as shown in Figure 2. In thtive
serialization anomalies. In the context of RDBMS, thihase, it performs read/write operations on data items. The
approach was investigated in [8]. subsequent phases are part of the commit protocol of the
« Cycle Detection Approach: In this approach a transactidfnsaction. For scalability, our goal is to design the cdmm
is aborted only when a cycle of dependencies is detecte@tocol such that it can be executed in highly concurrent
during the execution of the transaction commit protocéanner by the application processes. We also want to ensure
This approach is conceptually similar to the technigu&at after the commit timestamp is issued to a transactian, t
presented in [10], investigated in the context of RDBMSiMe required for commit be bounded, since a long commit
The conflict dependency checks in the above two approactt@se of the transaction can potentially block the progoéss
are performed in addition to the check farw conflicts other confllctlng transactions with h|gh¢r timestamps. S;hu
required for the basic SI model. We implement and evalus&" 90al is to perform as many commit protocol phases as
the above approaches in both fully decentralized model aR@SSiPle before acquiring the commit timestamp. We discuss
service-based model. below the various issues in realizing these goals and thgrdes
The cycle prevention approach essentially requires chgckichoices we made to address them.
whether an item read by a transaction is modified by any con-Eager Updates vs Lazy UpdateSne of the issues is when
current transaction or not. The cycle detection approacitab Should a transaction write its updates to the global storage
only the transaction that can cause serialization anomalie N the eager model, updates are written during the execution
it requires tracking of all dependencies for every trarisact (i-€. Active) phase of the transaction, whereas in the lazy
and maintaining a dependency graph to check for cyclégodel the updates are flushed to the global storage during the
Moreover, since an active transaction can form dependgnci®mmit protocol. We adopt the eager update model since in the
with a committed transaction, we need to retain informatid@zy model the commit time of a transaction can significantly
about committed transactions in the dependency graph. Sirgrease if the size of the write-set is large. Moreover, the
committed transactions are called zsmbiesin [10]. Also, €ager model also facilitates roll-forward of failed tractians
for efficient execution, the dependency graph should be kepce their updates are already present in the global storag
as small as possible by frequently pruning to remove thoselimestamp Managementhere can be situations where a
committed transaction that can never lead to any cycle in tHa@nsaction has acquired the commit timestamp but it has

future. not yet completed its commit phase. Therefore, we maintain
two timestampsGT'S (global timestamp) which is the latest
[Il. DECENTRALIZED MODEL FORSI BASED commit timestamp assigned to a transaction, &fith (stable
TRANSACTIONS timestamp) ST'S < GT'S, which is the largest timestamp such

We first present our decentralized model for supporting btpat all transactions with commit timestamp up to this value
sic Sl based transactions. Implementing S| based transactihave completed execution of their commit protocol. When a
requires mechanisms for performing following actions: (I)ew transaction is started, it uses the current STS value as
reading from a consistent committed snapshot; (2) allngatiits snapshot timestanipS;. In the absence of such a counter,
commit timestamps using a global sequencer for ordering e burden of finding the correct committed snapshot would be
transactions; (3) detecting write-write conflicts amongaa- on each transaction process during its read operations.sé/e u
rent transactions; and (4) committing the updates atoigicah dedicatedTimestamp Service® issue commit timestamps.
and making them durable. This service also maintains th&€7'S counter and allocates

We first identify the essential features of the key-valugansaction-ids to transactions.
storage service (referred to as tilebal storagein the rest of  Validation: The SI model requires a validation phase i.e.
the paper) required for realizing our design. It should fev checking ww conflicts among concurrent transactions. For
support for tables and multiple columns per data items (yowslecentralized conflict detection, we use a form of two-phase
and primitives for managing multiple versions of data itemsommit protocol using locking. A transaction in its Validat
with application-defined timestamps. It should provide@sty phase acquires locks on items in its write-set. We use the
consistency for updates, i.e. when a data item is updatéidst-updater-wins (FUW]7] rule to resolve conflicts, i.e. the
any subsequent reads should see the updated value. Mqredv@nsaction that acquires the lock first wins. Using the FUW
we need mechanisms for performing row level transactiorrsile, validation can be performed before acquiring the cédmm
Our implementation is based on HBase, which provides them®estamp. In contrast, thérst-committer-wins (FCW)ule
features. requires acquiring commit timestamps to perform validatio



Data Management ModelWe maintain the following infor- Algorithm 1 Execution Phase for transactidi
mation for each transaction in the system: transactionsif),( Start Phase:
snapshot timestam@’S;), commit timestampd'S,, write-set 1. tid; < get a unique tid from TimestampService
information, and current status. This information is maiméd  2: 7'S? — get currentST'S value from TimestampService
in a table namedrxnTablein HBase. In this tabletid is  3: inserttid, T'S¢ information in TanTable.
the row-key of the table and other items are maintained asactive Phase:
columns. For each application data table, hereby refersed aRead item: /* item is a rowkey and list of column-ids */
22%':3?/2;5\:\50?:;?&22 g‘ézrw?:;orogilsggrz)ggll?a;%m' 1: tidp «+ read value of the latest version of “committed

L . i

may have various application specific columns which contairki Yg;'?{;;%gfg V&E;h\?erriir(‘)g;d[éfss]) from StorageTable
the application data. Since we adopt the eager update model, .
uncommitted versions of data items need to be maintained % a.ddm%em to the read-set of
the global storage. For these versions we can not use the tran W/Ne itemn:
action’s commit timestamp as the version timestamp sinise it 1: Write item to StorageTablevith version timestamp- tid;
not known during the transaction execution phase. Thezefor 2: @dditemn to the write-set off;
a transaction writes a new version of a data item withrits
as the version timestamp. These version timestamps theh nee
to be mapped to the transaction commit timestafith when
transaction commits. This mapping is stored by writitg in
a column nameccommitted-versiorwith version timestamp then it aborts immediately. If some transactiphas already
asT'S.. A column namedulock is used to acquire exclusive acquired a write lock on the item, théh aborts iftid; < tid;,
write locks. We use the atomic conditional update operatiog|se it waits for commit off;. This Wait/Die scheme is used
provided by the HBase to atomically acquire a lock. to avoid deadlocks and livelocks. ; successfully acquires
locks on all items in its write-set, it proceeds to the exiut
of the CommitIncomplete phase.

A. Implementation of the Basic SI Model

We now describe the transaction management protocol fonn the CommitIncomplete phase,T; atomically changes
implementing the basic SI model. A transacti@h begins its status toCommitIncomplete from Validation. OnceT;
with the execution of theStart phase protocol shown inypdates its status t6ommitIncomplete, any failure after
Algorithm 1. It obtains itstid and T'S, from TimestampSer- that point would result in its roll-forward. The transactio
vice It then inserts in theTxnTablean entry: <tid, T'S;, now inserts thes — tid mappings in thecommitted-version
status = Active> and proceeds to the Active phase. Fogolumn in the StorageTable for the items in its write-set
a write operation, following the eager update model, thgnd changes its status @ommitCompleteAt this point the
transaction creates a new version in tB®rageTableusing transaction is committed. It then notifies its completion to
tid as the version timestamp. The transaction also maint@nsfimestampServiceand provides its commit timestanips’
own writes in a local buffer to supporead-your-own-writes to advances th&T'S counter. TheST'S counter is advanced
consistency. A read operation for the data items not coathirg TS(Z’ provided there are no gaps, i.e. all the older trans-
in the write-set is performed by first obtaining, for the give actions have completed execution of their commit protocol.
data item, the latest version of tikemmitted-versiomolumn The updates made by, become visible to any subsequent
in the range(0, 7'S;] in the correspondingtorageTableThis  transaction, once the7'S counter is advanced t6.5:. If the
gives thetid of the transaction that wrote the latest versiofransaction is aborted, then it releases all the acquirekislo
of the data item according to the snapshot. The transactignd deletes the versions it has created.
then reads data specific columns using thisas the version
timestamp. Cooperative RecoveryWhen a transactiorf; is waiting

When T; finishes executing thelctive phase, it proceeds for the resolution of the commit status of some other trans-
to its Validation phase to begin the commit protocol, asctionTj, it periodically checksI;’s progress. If the status
shown in Algorithm 2. At the start of each phase in thef T, is not changed within a specific timeout valug,
commit protocol it updates its status in thenT'able to indi- suspectd; has failed. IfT; has reached ommitIncomplete
cate its progress. All status change operations are pegfbrnphase, therl; performs roll-forward of7; by completing
atomically and conditionally, i.e. permitting only the t&ta the Commitincomplete phase ofT; using the write-set
transitions shown in Figure 2. The transaction first updasges information recorded b¥’;. OtherwiseI; marksT}; as aborted
status toValidation in TaxnTable and records its write-set and proceeds further with its next step of the commit prdtoco
information, i.e. only the item-identifiers (row keys) faems In this case, the rollback df; is performed lazily as it does
in its write-set. This information is recorded for facititeg the not cause any interference. These cooperative recovapnact
roll-forward of a failed transaction during its recovery$gme are also triggered, when ti&'S counter can not be advanced
other transaction. The transaction performs conflict cimeck because of a gap created due to a failed transaction. In this
by attempting to acquire write locks on items in its writé-¢e case, the recovery is triggered if the gap betw&&nS and
a committed newer version of the data item is already prese@fl'S exceeds beyond some limit.



Algorithm 2 Commit protocol executed by transactipfor read lock by incrementing the value in a column namledk

Basic SI model in the StorageTable. An acquired read lock is released by
Validation phase: decrementing the ‘rlock’ column value.
1: update status toValidation in TxnTable provided A writer transaction checks for the presence of a read lock
status = Active (i.e. ‘rlock’ column value greater than 0) to detect conflicts
2: insert write-set information i znTable for an item in its write-set, and aborts if the item is alreaelyd
3: for all item € write-set of T; do locked. Note that we need to deteat conflicts only among
4: [ begin row level transaction: concurrent transactions. Therefore, a transaction retetise
5. if any committed newer version fotem is created then acquired read locks when it commits/aborts. However, this
abort raises an issue that a concurrent writer may miss detecting
6: if item is lockedthen anrw conflict if it attempts to acquire a write lock after the
7 if lock-holder’s tid < tid;, thenabort else wait conflicting reader transaction has released the read lazk. T
8 else avoid this problem, a reader transaction records its commit
9 acquire lock onitem by writing tid; in lock column timestamp, in a column named ‘read-ts’ in tB&orageT able,
10:  end if while releasing a read lock acquired on an item. A writer
11:  :end row level transaction | checks if the timestamp value written in the ‘read-ts’ cofuis
12: end for greater than its snapshot timestamp or not, which indidhts
Commitlncomplete phase: the writer is concurrent with a transaction that has readl tha
1: update status t@ommitIncomplete in the TxnTable particular item. A reader transaction checks for the presen
provided status = Validation of a write lock or a newer committed yersion.for an item.in its
2. T'Si — get commit timestamp from TimestampService read-set to deteot.w conflicts. Otherwise, it tries to acquire a
3: for all item e write-set of7; do read lock on the item. _ . ,
4 insertTS! — tid; mapping in theStorageTableand The commit pha;e execution based.on this approach is
release lock oritem presented in Algorithm 3. Thevw conflict check is per-
5 end for formed as done in basic SI model (Algorithm 2). During
6. update status t6ommitComplete in the TxnTable the C’ommz’t]ncompl_ete phase;E- releases the.acquired read
7: notify completion and providd'S: to TimestampService 10Cks and records its commit timestamps in the ‘read-ts’
to advanceSTsS column for the items in its read-set. If some transaction

has already recorded a timestamp value, thempdates the
recorded value only if it is less thahs?. Thus, for transaction
T:..T,, that have read a particular data item, the ‘read-ts’
column value for that item would contain the commit times-
tamp of transactio}, (k¥ < n), such that commit timestamp
of Ty, is largest amond’...T,,. An uncommitted transaction
that is concurrent with any transaction frofi...7,, must
also be concurrent witlly, sinceT} has the largest commit
timestamp. Thus, if such a transaction attempts to write the
data item, it would detect thew conflict and abort.

In this section, we discuss how the decentralized model for
the basic snapshot isolation is extended to support seaiaé B- Implementation of the Cycle Detection Approach
transaction execution using theycle preventionand cycle The cycle detection approach requires tracking all depen-

Abort phase:

. for all item € write-set ofT; do

if T; has acquired lock ottemn, then release the lock.
delete the temporary version created form by T;

. end for

IV. DECENTRALIZED MODEL FORSERIALIZABLE Sl
TRANSACTIONS

detectionapproaches discussed in Section Il dencies among transactions, ire: (incoming and outgoing),
) . wr, and ww (with non-concurrent committed transactions)
A. Implementation of the Cycle Prevention Approach dependencies, and checking for dependency cycles. We main-

As discussed in Section II, the cycle prevention approathin the dependency serialization graph (DS{Z), in which
is to abort a transaction when aw dependency among twotransactions are represented as nodes and edges represent d
concurrent transactions is observed. This prevents ary apendencies between transactions. The dependency informat
dependency to form and thus no transaction can becomearal the DSG itself is maintained in the global storage. For
pivot. A straightforward way of doing this is to record fordetecting dependencies, we record SorageT able (in a
each item version theids of the transactions that read thatolumn named ‘readers’), for each item version, a list of
version and track thew dependencies. However, this can b&ansaction-ids that have read that item version.
expensive as we need to maintain a listtofs per item and ~ We include an additional phase callédSGupdate, which
detectrw dependencies for all such transactions. To avoid performed before th&alidation phase. In théD SGupdate
this, we detect the read-write conflicts using a simple llogki phase, along with the basicw conflict check, a transaction
approach. During th& alidation phase, a transaction acquireslso detects dependencies and records the dependency infor
aread lockfor each item in its read-set. A read lock is acquirethation in DSG. In Validation phase, the transaction checks
in a shared mode, i.e. the presence of read lock doesn’t bldok dependency cycle(s) involving itself, by traversinge th
other readers, but only the writers. A transaction acquiresoutgoing edges starting from itself. If a cycle is detectbdn



Algorithm 3 Commit protocol for cycle prevention approachcommit phase sends its read and write sets information and

1: for all item € write-set of7; do snapshot timestamp value to the conflict detection serVike.

2: [ begin row-level transaction: implemented basic Sl validation as well as prevention and

3: read the ‘committed version’, ‘wlock’, rlock’, and detection based approaches for serializability in the @nfl
‘read-ts’ columns foritem detection service. Based on the particular conflict dedacti

4:  if any committed newer version is present, tldrort  approach, the service checks if the requesting transaction
5. else ifitem is already locked in read or write mode,conflicts with any previously committed transaction or not.

thenabort If no conflict is found, it sends ‘commit’ response to the
6. else if read-ts’ value is greater thafiS?, thenabort.  transaction, otherwise it sends ‘abort’. Before sending th
7:  elseacquire write lock onitem response, the service logs the transaction’s commit status
8: :end row-level transaction | the global storage. This write-ahead logging is performed f
9: end for recovery purpose.
10: for all item € read-set ofl; do Note that this dedicated service is only for the purpose
11: [ begin row-level transaction: of conflict detection and not for the entire transaction man-
12:  read the ‘committed version’ and ‘wlock’ columns foragement, as done in [14], [16]. The other transaction man-
item agement functions, such as getting the appropriate sngpsho
13:  if any committed newer version is created, tldmort  maintaining uncommitted versions, and ensuring the atitynic
14:  if item is already locked in write mode, theabort.  and durability of updates when a transaction commits are
15:  elseacquire read lock by incrementing ‘rlock’ columnperformed by the application level processes.
for item. The scalability and reliability of this service are imparta
16:  :end row-level transaction ] aspects to consider. The service maintains the information
17: end for required for conflict detection, such as read and write $ets i
18: perform CommitIncomplete as in Algorithm 2 formation, in memory for better performance. This inforioat
19: for all item € read-set ofl; do is soft-stateand can be recovered upon failure from the write-
20: [ begin row-level transaction: set information logged in the global storage. For scalgbili
21: release read lock oritem by decrementing ‘rlock’ and availability, the service can be replicated. Howevasehl
column on our experiments, we observe that the scaling requireofent
22:  recordT'S! in ‘read-ts’ provided current value of ‘read-this service are significantly moderate compared to thérggal
ts’ is less tharl's: requirement of the storage service as the workload and séque
23:  :end row-level transaction | processing requirements of this service are significanthelt
24: end for compared to the transactional workload. The service reseiv
25: update status t@’'ommitComplete in the TxnTable only one request per transaction and it needs to access only

26: notify completion and providd'S: to TimestampService the in-memory data structures for conflict detection.
to advanceST'S

V1. EVALUATIONS

) ) . In this section, we present the evaluations of the proposed
the transaction aborts itself to break the cycle. To avol th,nroaches. In these evaluations, we are interested in the
aborts of two concurrent uncommitted transactions inwbive following aspects: (1) the scalability of different appcbas

the same cycle, we use commit timestamps to break the Bes,jnqer scale-out model, (2) comparison of the service-based
a transaction aborts only if it detects a cycle with ransast o4e| and the decentralized model in terms of transaction
having smaller commit timestamps. Further |mplementat|q|:]roughput and scalability, (3) comparison of the basic Sl

details are provided in [23]. and the transaction serializability approaches based en th
prevention and cycle detection techniques, (4) transactio
V. SERVICE-BASED MODEL response times for various approaches, and (5) execut@sti

. . f different protocol phases.
In the decentralized scheme discussed above, the conf?lct P P

detection is performed by the application processes thigetse ]
using the metadata, such as lock information, stored in tAe Experiment Setup
global storage. This induces performance overhead due toVe used TPC-C benchmark [19] to perform evaluations
the additional read and write requests for the metadata tinder a realistic workload. However, our implementation of
the global storage. These overheads can increase tramsacliPC-C specifications differs in the following ways. Since
completion time and reduce transaction throughput. Tbheeef our primary purpose is to measure the transaction throughpu
for better performance in terms of transaction latency amge did not emulate terminal 1/0. HBase does not provide
throughput, we evaluated an alternative approach of usingetational database features such as foreign keys anddagon
dedicated conflict detection service. indexes. For secondary indexes, we created another index
In the service-based approach, the conflict detection@®rvitable, and for composite primary keys we created the row-
maintains the read and write sets information (only the rolkeys by concatenating the specified primary keys. Predicate
keys for items) of committed transactions. A transactioitsn reads were implemented using scan and filtering operations



provided by HBase. Moreover, since the transactions spdcifi 80000 Service-based (cycle detection)>—
Q 70000 - Decentralized (basic-Sl)

Decentralized (cycle prevention)-&--

Decentralized (cycle detection) @

in TPC-C benchmark do not create serialization anomalie‘g
under Sl, as observed in [7], we implemented the modificationé 60000 -
suggested in [9], which basically add one more transactiof soooo}
type ‘CreditCheck’ to create serialization anomalies. i:i 40000 |

We performed these evaluations in our test cluster af ;500!
40 nodes. Following the scale-out model, we increased the
number of nodes in the system and measured the maximum
transaction throughput (measured in terms of committatstra e
actions per minute (tpmC)) and response times under various 10 20 30 Nﬁ?nbefoof Cfi:resm 80 90 100
system footprint sizes. We measured the maximum throughput
by gradually increasing the transaction load and measunmggl 3. Transaction throughput under the scale-out model
the throughput achieved before the transaction respomse ti
started increasing exponentially. In all the experimemts, Service-based (cycle detectiomy>—

3 . . 700 | Decentralized (basic-Sl) 1

used one timestamp server. In the evalugtlon of the service-< I D e P oo i |
based model, we used one conflict detection server. 600 e
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Figure 3 shows the maximum throughput achieved under
various system resource footprint sizes for differentseanion
management approaches. Since there is significant node he
erogeneity in our test cluster, we measure the system footpr
size in terms of number of cores instead of number of nodes.

Scalability of different approaches: We can observe from Fig. 4. Average transaction response times under the scalmaodel
Figure 3 that, scalability of throughput through scale-out

model is.achieved in both the ser_vice—based as well as,tlbr%m Figure 3 we see that the service-based approach gives
decentralized model. For example, in case of the decezghli o transaction throughput than the decentralizedcambr
model with the basic Sl, 'Fhe largest configuration (96 coreg), expected, the basic SI model achieves higher throughput
achieves roughly 11 fold increase compared to smallest cQiinared to approaches for ensuring serializability. Treec
figuration (6 cores). We measure theale-out factoms the in- oo ention approach provides higher throughput than takecy
crease in the throughput (tomC) ach|e\{ed per resourceiunit (detection approach. The cycle prevention approach may abor
per core) as the system resources are increased. In oth#S,WQr e n\ymber of transactions compared to the cycle detection
the scale-out factor is the slope of the throughput grapb@sh 5,40k However, in the decentralized model the overbiad

in Figure 3. The value of this factor is 582.2 for servicedushs the cycle detection approach is significant, especially tue

(cycle detection) approach, 486.6 for decentralized b&8$IC 1o oyerhead of maintaining dependency information in the
approach, 415.5 for decentralized cycle prevention ambroa

; : lobal storage. Therefore, the total number of transastion
and 311.4 for decentralized cycle detection approach. T'%émmitted per unit time is smaller in case of the cycle

indicates that gll these approachgs are scalable, althtb“fgh,detection approach compared to the cycle prevention approa

thrqughput gain per resource unit achleyed through scali also compared the basic SI approach, and the cycle
vanes for different approa_ches. The serwce_—based moake] rf.'Jrevention and the cycle detection approaches in the contex
the highest throughput gain per resource unit among alethes; he service-based model. However, in our experiments we

approaches. did not observe any significant difference in the transactio

We believe that the scalability of the decentralized modgl,q,ghput mainly due to the fact that the conflict detection
would also extend beyond the largest configuration used in

our experiments, provided that the underlying storageicerv
is also scalable. This is because the entire transactionr 700 .
agement functions are performed in concurrent manner L 600 & oommiincomplete
the metadata which is itself stored in the underlying stei ngﬁzpda'e
service. In case of the service-based approach, the ditgle

of the system could be limited if the conflict detection seg\
becomes the bottleneck. However, we believe that a si
conflict detection server should be able to handle largeast
rates. Our prototype implementation of this service, rogt
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on a machine with 2GHz CPU with 4 cores and 4GB mem 0
can handle roughly 10K requests per second. ggg;g_e(byc,e Pt ?Cey%?;‘"f"“zed Ecefc‘“,‘e”_”a“zed
Comparative evaluation of different approaches:We first Detection) Prevention) Detection)

compare the throughput achieved under various approach%i.s. Execution time for different protocol phases



service never became the bottleneck. time performance of both these approaches, we conclude that
Figure 4 shows the average transaction response tinifeserializability of transaction is required then using ttycle

under scale-out for various approaches. As expected, threvention approach is better.

service-based approach gives smaller response times than
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