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Abstract—Key-value based data storage systems such as HBase
and Bigtable provide high scalability compared to traditional
relational databases, however, they provide only limited transac-
tional functionality, such as single-row transactions. We address
the problem of building scalable transaction management mech-
anisms for multi-row transactions on key-value storage systems.
We develop scalable techniques for transaction management uti-
lizing the snapshot isolation (SI) model. Because the SI model can
lead to non-serializable transaction executions, we investigate two
conflict detection techniques for ensuring serializability under
SI. To support scalability, we investigate system architectures
and mechanisms in which the transaction management functions
are decoupled from the storage system and integrated with the
application-level processes. We present two system architectures
and demonstrate their scalability under the scale-out model of
Cloud computing platforms. In the first system architecture
all transaction management functions are executed in a fully
decentralized manner by the application processes. The second
architecture is based on a hybrid approach in which the conflict
detection techniques are implemented by a dedicated service.
We perform a comparative evaluation of these architectures for
supporting snapshot isolation and serializability using the TPC-C
benchmark. Through experimental evaluations, we demonstrate
that multi-row transactions can be supported with the guarantees
of ACID properties in a scalable manner using the application-
level transaction management techniques presented in this paper.

I. I NTRODUCTION

The Cloud computing platforms enable building scalable
services through the scale-out model by utilizing the elastic
pool of computing resources. It has been widely recognized
that the traditional database systems based on the relational
model and SQL do not scale well [1], [2]. The NoSQL
databases based on the key-value model such as Bigtable [1]
and HBase [3], have been shown to be scalable in large scale
applications. However, unlike traditional relational databases
these systems typically do not provide general multi-row trans-
actions. For example, HBase and Bigtable provide only single-
row transactions, whereas systems such as Google Megas-
tore [4], G-store [5] provide transactions only over a particular
group of entities. These two classes of systems, relational
and NoSQL based systems, represent two opposite points in
scalability versus functionality space. However, many applica-
tions such as online shopping stores, online auction services,
collaborative editing etc, while requiring high scalability and
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availability, still need certain strong transactional consistency
guarantees. For example, an online shopping service may
require ACID guarantees for performing payment operations.

In this paper, we investigate scalable architectures for
providing multi-row serializable transactions withsnapshot
isolation (SI)[6]. The snapshot isolation model is attractive for
scalability, as identified in the past [6], since the transactions
read from a snapshot, the reads are never blocked due to write
locks, thereby providing more concurrency. In this regard our
investigation is focused on two aspects. First, we investigate
scalable architectures for transaction management on key-
value based Cloud storage systems. Our approach for pro-
viding transaction support is based on decoupling transaction
management from the storage service and integrating it with
the application-level processes. We present and evaluate two
system architectures for transaction management. The first
architecture isfully decentralized, in which all the transaction
management functions, such as concurrency control, conflict
detection and atomically committing the transaction updates
are performed by the application processes themselves. The
general framework of this execution model is shown in Fig-
ure 1. The metadata necessary for transaction coordination
such as read/write sets and lock information are stored in the
underlying Cloud storage. The second architecture is a hybrid
model in which certain functions such as conflict detection
are performed using a dedicated service. We refer to this as
service-based architecture.

The second aspect of our investigation is related to the level
of transaction consistency and tradeoffs in providing stronger
consistency models. Specifically, the snapshot isolation model
does not guaranteeserializability [6], [7]. Various techniques
have been proposed to avoid serialization anomalies in SI [8],
[9], [10]. Some of these techniques [8], [9] arepreventivein
nature as they prevent potentialconflict dependency cyclesby
aborting certain transactions, but they may abort transactions
that may not necessarily lead to serialization anomalies. On the
other hand, the technique presented in [10] detects dependency
cycles and aborts only the transactions necessary to eliminate
a cycle. However this approach requires tracking of conflict
dependencies among all transactions and checking for depen-
dency cycles, and hence it can be expensive. We present here
how these two techniques can be implemented on Cloud-based
key-value databases, and present their comparative evaluation.

In realizing the transaction management model described
above, the following issues need to be addressed. In central-
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Fig. 1. Decentralized and Decoupled Transaction ManagementModel

ized database systems, the commit protocol is executed as
an atomic operation, which performs validation and ensures
that all the updates of a transaction are made durable. In
our approach, such functions are performed by individual
application processes in various steps, and the entire sequence
of steps is not performed as a critical section. Not performing
all steps of the commit protocol as one critical section raises
a number of issues. Any of these steps may get interrupted
due to process crashes or delayed due to slow execution. To
address this problem, the transaction management protocol
should support a model ofcooperative recovery; any process
should be able to complete any partially executed sequence
of commit/abort actions on behalf of another process which
is suspected to be failed. In such a model, any number of
processes may initiate the recovery of a failed transaction, and
such concurrent executions of recovery actions by multiple
processes should not cause any inconsistencies.

The problem of providing multi-row transactions on NoSQL
Cloud databases has been recently addressed by several
researchers. Systems such as Megastore [4], G-store [5],
and DAT [11] provide transactions only over a group of
entities. ElasTraS [12] supports multi-row transactions only
over a single database partition and provides a restricted
mini-transaction semantics [13] over multiple partitions.
CloudTPS [14] provides a design based on a replicated
transaction management layer which provides general ACID
transactions over multiple partitions, but with the assumption
that transactions access only a small number of well-identified
data items. The Deuteronomy system [15], [16] presents
an approach based on decoupling transaction management
from the data storage, however their design depends on a
central transaction component. Recently, other researchers
have also proposed decentralized transaction management ap-
proaches [17], [18], however, they do not ensure serializability.
The work presented in [18] does not adequately address issues
related to recovery and robustness when some transaction fails.

The major contributions of our work are the following. We
present and evaluate two system architectures for providing
multi-row transactions using snapshot isolation (SI) on NoSQL
Cloud databases. Furthermore, we extend SI based transac-
tion model to support serializable transactions under the SI
model. For this we develop and evaluate two techniques based
on the prevention and detection of dependency cycles. We

demonstrate the scalability of our approach using the TPC-
C benchmark [19]. Contrary to conventional understanding,
we demonstrate that multi-row transactions can be supported
in a scalable manner, through application-level transaction
management techniques presented in this paper. We find that
the strong consistency guarantee such as serializability can be
supported in key-value based storage systems, with marginal
overheads in terms of resource requirements and response
times. Using the transaction management techniques and the
models presented here, the utility of key-value based Cloud
data management systems can be extended to applications
requiring strong transactional consistency.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the snapshot isolation model.
Section III, presents our decentralized design for supporting
the basic SI based transactions. In section IV, we discuss
how the basic SI model is extended to provide serializability.
Section V discusses the service-based architecture. Section VI
presents our evaluations of the proposed architectures and
techniques. The conclusions are presented in the last section.

II. BACKGROUND: SNAPSHOT ISOLATION MODEL

Snapshot isolation (SI) based transaction execution model
is a multi-version based approach utilizing the optimistic
concurrency control concepts [20]. When a transactionTi

commits, it is assigned a commit timestampTSi
c, which is

larger than the previously assigned timestamp values. The
commit timestamps of transactions reflect the logical order
of their commit points. When a transactionTi commits, for
each data item modified by it, a new version is created with
the timestamp value equal toTSi

c. When a transactionTi’s
execution starts, it obtains the timestamp of the most recently
committed transaction. This represents thesnapshot timestamp
TSi

s of the transaction, and a read operation by the transaction
returns the most recent committed version up to this snapshot
timestamp. Thus a transaction reads only the committed data
items and never gets blocked due to any write locks.

A transactionTi commits only if none of the items in its
write-set have been modified by any committed concurrent
transactionTj i.e. TSi

s < TSj
c < TSi

c. It is possible that a
data item in the read-set of a transaction is modified by another
concurrent transaction, and both are able to commit. Ananti-
dependency[21] between two concurrent transactionsTi and
Tj is a read-write (rw) dependency, denoted byTi

rw
→ Tj ,

implying that some item in the read-set ofTi is modified
by Tj . Snapshot isolation based transaction execution can
lead to non-serializable executions as shown in [6], [7]. It
was shown in [21] that a cycle of dependencies, including at
least one anti-dependency edge, among a set of transactions
executing under SI represents a non serializable execution.
Fekete et al. [7] have shown that a non-serializable execution
must always involve a cycle in which there are two consec-
utive anti-dependencyedges of the formTi

rw
→ Tj

rw
→ Tk.

In such situations, there exists apivot transaction [7] with
both incoming and outgoingrw dependencies. In the above
example,Tj is the pivot transaction. Several techniques [8],
[9], [10], [22] have been developed utilizing this fact to ensure
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serializable transaction execution, in the context of traditional
RDBMS. Based on these approaches, we investigate decen-
tralized techniques for implementing serializable transactions
on Cloud-based NoSQL databases. Specifically, we consider
the following two approaches.

• Cycle Prevention Approach: When two concurrent trans-
actionsTi andTj have an anti-dependency, abort one of
them. This ensures that there can never be apivot trans-
action, thus guaranteeing serializability. This approach
can sometimes abort transactions that may not lead to
serialization anomalies. In the context of RDBMS, this
approach was investigated in [8].

• Cycle Detection Approach: In this approach a transaction
is aborted only when a cycle of dependencies is detected
during the execution of the transaction commit protocol
This approach is conceptually similar to the technique
presented in [10], investigated in the context of RDBMS.

The conflict dependency checks in the above two approaches
are performed in addition to the check forww conflicts
required for the basic SI model. We implement and evaluate
the above approaches in both fully decentralized model and
service-based model.

The cycle prevention approach essentially requires checking
whether an item read by a transaction is modified by any con-
current transaction or not. The cycle detection approach aborts
only the transaction that can cause serialization anomalies but
it requires tracking of all dependencies for every transaction
and maintaining a dependency graph to check for cycles.
Moreover, since an active transaction can form dependencies
with a committed transaction, we need to retain information
about committed transactions in the dependency graph. Such
committed transactions are called aszombiesin [10]. Also,
for efficient execution, the dependency graph should be kept
as small as possible by frequently pruning to remove those
committed transaction that can never lead to any cycle in the
future.

III. D ECENTRALIZED MODEL FORSI BASED

TRANSACTIONS

We first present our decentralized model for supporting ba-
sic SI based transactions. Implementing SI based transactions
requires mechanisms for performing following actions: (1)
reading from a consistent committed snapshot; (2) allocating
commit timestamps using a global sequencer for ordering of
transactions; (3) detecting write-write conflicts among concur-
rent transactions; and (4) committing the updates atomically
and making them durable.

We first identify the essential features of the key-value
storage service (referred to as theglobal storagein the rest of
the paper) required for realizing our design. It should provide
support for tables and multiple columns per data items (rows),
and primitives for managing multiple versions of data items
with application-defined timestamps. It should provide strong
consistency for updates, i.e. when a data item is updated,
any subsequent reads should see the updated value. Moreover,
we need mechanisms for performing row level transactions.
Our implementation is based on HBase, which provides these
features.

Complete
Commit

Active Validation

Abort

Incomplete
Commit

Abort
Cleaned

Fig. 2. Transaction Protocol Phases

In our model, a transaction goes through a series of phases
during its execution as shown in Figure 2. In theActive

phase, it performs read/write operations on data items. The
subsequent phases are part of the commit protocol of the
transaction. For scalability, our goal is to design the commit
protocol such that it can be executed in highly concurrent
manner by the application processes. We also want to ensure
that after the commit timestamp is issued to a transaction, the
time required for commit be bounded, since a long commit
phase of the transaction can potentially block the progressof
other conflicting transactions with higher timestamps. Thus,
our goal is to perform as many commit protocol phases as
possible before acquiring the commit timestamp. We discuss
below the various issues in realizing these goals and the design
choices we made to address them.

Eager Updates vs Lazy Updates:One of the issues is when
should a transaction write its updates to the global storage.
In the eager model, updates are written during the execution
(i.e. Active) phase of the transaction, whereas in the lazy
model the updates are flushed to the global storage during the
commit protocol. We adopt the eager update model since in the
lazy model the commit time of a transaction can significantly
increase if the size of the write-set is large. Moreover, the
eager model also facilitates roll-forward of failed transactions
since their updates are already present in the global storage.

Timestamp Management:There can be situations where a
transaction has acquired the commit timestamp but it has
not yet completed its commit phase. Therefore, we maintain
two timestamps:GTS (global timestamp) which is the latest
commit timestamp assigned to a transaction, andSTS (stable
timestamp),STS ≤ GTS, which is the largest timestamp such
that all transactions with commit timestamp up to this value
have completed execution of their commit protocol. When a
new transaction is started, it uses the current STS value as
its snapshot timestampTSs. In the absence of such a counter,
the burden of finding the correct committed snapshot would be
on each transaction process during its read operations. We use
a dedicatedTimestamp Serviceto issue commit timestamps.
This service also maintains theSTS counter and allocates
transaction-ids to transactions.

Validation: The SI model requires a validation phase i.e.
checking ww conflicts among concurrent transactions. For
decentralized conflict detection, we use a form of two-phase
commit protocol using locking. A transaction in its Validation
phase acquires locks on items in its write-set. We use the
first-updater-wins (FUW)[7] rule to resolve conflicts, i.e. the
transaction that acquires the lock first wins. Using the FUW
rule, validation can be performed before acquiring the commit
timestamp. In contrast, thefirst-committer-wins (FCW)rule
requires acquiring commit timestamps to perform validation.
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Data Management Model:We maintain the following infor-
mation for each transaction in the system: transaction-id (tid),
snapshot timestamp (TSs), commit timestampsTSc, write-set
information, and current status. This information is maintained
in a table namedTxnTable in HBase. In this table,tid is
the row-key of the table and other items are maintained as
columns. For each application data table, hereby referred as
StorageTable, we maintain the information related to the com-
mitted versions of data items and write locks. AStorageTable
may have various application specific columns which contain
the application data. Since we adopt the eager update model,
uncommitted versions of data items need to be maintained in
the global storage. For these versions we can not use the trans-
action’s commit timestamp as the version timestamp since itis
not known during the transaction execution phase. Therefore,
a transaction writes a new version of a data item with itstid

as the version timestamp. These version timestamps then need
to be mapped to the transaction commit timestampTSc when
transaction commits. This mapping is stored by writingtid in
a column namedcommitted-versionwith version timestamp
asTSc. A column namedwlock is used to acquire exclusive
write locks. We use the atomic conditional update operations
provided by the HBase to atomically acquire a lock.

A. Implementation of the Basic SI Model

We now describe the transaction management protocol for
implementing the basic SI model. A transactionTi begins
with the execution of theStart phase protocol shown in
Algorithm 1. It obtains itstid and TSs from TimestampSer-
vice. It then inserts in theTxnTablean entry: <tid, TSs,
status = Active> and proceeds to the Active phase. For
a write operation, following the eager update model, the
transaction creates a new version in theStorageTableusing
tid as the version timestamp. The transaction also maintains its
own writes in a local buffer to supportread-your-own-writes
consistency. A read operation for the data items not contained
in the write-set is performed by first obtaining, for the given
data item, the latest version of thecommitted-versioncolumn
in the range[0, TSs] in the correspondingStorageTable. This
gives thetid of the transaction that wrote the latest version
of the data item according to the snapshot. The transaction
then reads data specific columns using thistid as the version
timestamp.

When Ti finishes executing theActive phase, it proceeds
to its V alidation phase to begin the commit protocol, as
shown in Algorithm 2. At the start of each phase in the
commit protocol it updates its status in theTxnTable to indi-
cate its progress. All status change operations are performed
atomically and conditionally, i.e. permitting only the state
transitions shown in Figure 2. The transaction first updatesits
status toV alidation in TxnTable and records its write-set
information, i.e. only the item-identifiers (row keys) for items
in its write-set. This information is recorded for facilitating the
roll-forward of a failed transaction during its recovery bysome
other transaction. The transaction performs conflict checking
by attempting to acquire write locks on items in its write-set. If
a committed newer version of the data item is already present,

Algorithm 1 Execution Phase for transactionTi

Start Phase:
1: tidi ← get a unique tid from TimestampService
2: TSi

s ← get currentSTS value from TimestampService
3: insert tid, TSi

s information inTxnTable.

Active Phase:
Read item: /* item is a rowkey and list of column-ids */

1: tidR ← read value of the latest version of “committed
version” foritem in the range [0,TSi

s]) from StorageTable
2: read item data with versiontidR

3: add item to the read-set ofTi

Write item:

1: write item to StorageTablewith version timestamp= tidi

2: add item to the write-set ofTi

then it aborts immediately. If some transactionTj has already
acquired a write lock on the item, thenTi aborts iftidj < tidi,
else it waits for commit ofTj . This Wait/Die scheme is used
to avoid deadlocks and livelocks. IfTi successfully acquires
locks on all items in its write-set, it proceeds to the execution
of the CommitIncomplete phase.

In the CommitIncomplete phase,Ti atomically changes
its status toCommitIncomplete from V alidation. OnceTi

updates its status toCommitIncomplete, any failure after
that point would result in its roll-forward. The transaction
now inserts thets → tid mappings in thecommitted-version
column in theStorageTable for the items in its write-set
and changes its status toCommitComplete. At this point the
transaction is committed. It then notifies its completion to
TimestampServiceand provides its commit timestampTSi

c

to advances theSTS counter. TheSTS counter is advanced
to TSi

c provided there are no gaps, i.e. all the older trans-
actions have completed execution of their commit protocol.
The updates made byTi become visible to any subsequent
transaction, once theSTS counter is advanced toTSi

c. If the
transaction is aborted, then it releases all the acquired locks
and deletes the versions it has created.

Cooperative Recovery: When a transactionTi is waiting
for the resolution of the commit status of some other trans-
action Tj , it periodically checksTj ’s progress. If the status
of Tj is not changed within a specific timeout value,Ti

suspectsTj has failed. IfTj has reachedCommitIncomplete

phase, thenTi performs roll-forward ofTj by completing
the CommitIncomplete phase of Tj using the write-set
information recorded byTj . Otherwise,Ti marksTj as aborted
and proceeds further with its next step of the commit protocol.
In this case, the rollback ofTj is performed lazily as it does
not cause any interference. These cooperative recovery actions
are also triggered, when theSTS counter can not be advanced
because of a gap created due to a failed transaction. In this
case, the recovery is triggered if the gap betweenSTS and
GTS exceeds beyond some limit.



5

Algorithm 2 Commit protocol executed by transactionTi for
Basic SI model

Validation phase:
1: update status toV alidation in TxnTable provided

status = Active

2: insert write-set information inTxnTable

3: for all item∈ write-set ofTi do
4: [ begin row level transaction:
5: if any committed newer version foritem is created then

abort
6: if item is lockedthen
7: if lock-holder’s tid < tidi, thenabort else wait
8: else
9: acquire lock onitem by writing tidi in lock column

10: end if
11: :end row level transaction ]
12: end for

CommitIncomplete phase:
1: update status toCommitIncomplete in the TxnTable

providedstatus = V alidation

2: TSi
c ← get commit timestamp from TimestampService

3: for all item∈ write-set ofTi do
4: insert TSi

c → tidi mapping in theStorageTableand
release lock onitem

5: end for
6: update status toCommitComplete in the TxnTable
7: notify completion and provideTSi

c to TimestampService
to advanceSTS

Abort phase:
1: for all item∈ write-set ofTi do
2: if Ti has acquired lock onitem, then release the lock.
3: delete the temporary version created foritem by Ti

4: end for

IV. D ECENTRALIZED MODEL FORSERIALIZABLE SI
TRANSACTIONS

In this section, we discuss how the decentralized model for
the basic snapshot isolation is extended to support serializable
transaction execution using thecycle preventionand cycle
detectionapproaches discussed in Section II

A. Implementation of the Cycle Prevention Approach

As discussed in Section II, the cycle prevention approach
is to abort a transaction when anrw dependency among two
concurrent transactions is observed. This prevents any anti-
dependency to form and thus no transaction can become a
pivot. A straightforward way of doing this is to record for
each item version thetids of the transactions that read that
version and track therw dependencies. However, this can be
expensive as we need to maintain a list oftids per item and
detect rw dependencies for all such transactions. To avoid
this, we detect the read-write conflicts using a simple locking
approach. During theV alidation phase, a transaction acquires
a read lockfor each item in its read-set. A read lock is acquired
in a shared mode, i.e. the presence of read lock doesn’t block
other readers, but only the writers. A transaction acquiresa

read lock by incrementing the value in a column namedrlock
in the StorageTable. An acquired read lock is released by
decrementing the ‘rlock’ column value.

A writer transaction checks for the presence of a read lock
(i.e. ‘rlock’ column value greater than 0) to detectrw conflicts
for an item in its write-set, and aborts if the item is alreadyread
locked. Note that we need to detectrw conflicts only among
concurrent transactions. Therefore, a transaction releases the
acquired read locks when it commits/aborts. However, this
raises an issue that a concurrent writer may miss detecting
an rw conflict if it attempts to acquire a write lock after the
conflicting reader transaction has released the read lock. To
avoid this problem, a reader transaction records its commit
timestamp, in a column named ‘read-ts’ in theStorageTable,
while releasing a read lock acquired on an item. A writer
checks if the timestamp value written in the ‘read-ts’ column is
greater than its snapshot timestamp or not, which indicatesthat
the writer is concurrent with a transaction that has read that
particular item. A reader transaction checks for the presence
of a write lock or a newer committed version for an item in its
read-set to detectrw conflicts. Otherwise, it tries to acquire a
read lock on the item.

The commit phase execution based on this approach is
presented in Algorithm 3. Theww conflict check is per-
formed as done in basic SI model (Algorithm 2). During
theCommitIncomplete phase,Ti releases the acquired read
locks and records its commit timestamps in the ‘read-ts’
column for the items in its read-set. If some transaction
has already recorded a timestamp value, thenTi updates the
recorded value only if it is less thanTSi

c. Thus, for transaction
T1..Tn that have read a particular data item, the ‘read-ts’
column value for that item would contain the commit times-
tamp of transactionTk (k ≤ n), such that commit timestamp
of Tk is largest amongT1...Tn. An uncommitted transaction
that is concurrent with any transaction fromT1...Tn must
also be concurrent withTk, sinceTk has the largest commit
timestamp. Thus, if such a transaction attempts to write the
data item, it would detect therw conflict and abort.

B. Implementation of the Cycle Detection Approach

The cycle detection approach requires tracking all depen-
dencies among transactions, i.e.rw (incoming and outgoing),
wr, and ww (with non-concurrent committed transactions)
dependencies, and checking for dependency cycles. We main-
tain thedependency serialization graph (DSG)[7], in which
transactions are represented as nodes and edges represent de-
pendencies between transactions. The dependency information
and theDSG itself is maintained in the global storage. For
detecting dependencies, we record inStorageTable (in a
column named ‘readers’), for each item version, a list of
transaction-ids that have read that item version.

We include an additional phase calledDSGupdate, which
is performed before theV alidation phase. In theDSGupdate

phase, along with the basicww conflict check, a transaction
also detects dependencies and records the dependency infor-
mation inDSG. In V alidation phase, the transaction checks
for dependency cycle(s) involving itself, by traversing the
outgoing edges starting from itself. If a cycle is detected,then
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Algorithm 3 Commit protocol for cycle prevention approach
1: for all item∈ write-set ofTi do
2: [ begin row-level transaction:
3: read the ‘committed version’, ‘wlock’, ’rlock’, and

‘read-ts’ columns foritem
4: if any committed newer version is present, thenabort
5: else if item is already locked in read or write mode,

thenabort
6: else if ‘read-ts’ value is greater thanTSi

s, thenabort.
7: elseacquire write lock onitem
8: :end row-level transaction ]
9: end for

10: for all item∈ read-set ofTi do
11: [ begin row-level transaction:
12: read the ‘committed version’ and ‘wlock’ columns for

item

13: if any committed newer version is created, thenabort
14: if item is already locked in write mode, thenabort.
15: elseacquire read lock by incrementing ‘rlock’ column

for item.
16: :end row-level transaction ]
17: end for
18: performCommitIncomplete as in Algorithm 2
19: for all item∈ read-set ofTi do
20: [ begin row-level transaction:
21: release read lock onitem by decrementing ‘rlock’

column
22: recordTSi

c in ‘read-ts’ provided current value of ‘read-
ts’ is less thanTSi

c

23: :end row-level transaction ]
24: end for
25: update status toCommitComplete in the TxnTable
26: notify completion and provideTSi

c to TimestampService
to advanceSTS

the transaction aborts itself to break the cycle. To avoid the
aborts of two concurrent uncommitted transactions involved in
the same cycle, we use commit timestamps to break the ties, i.e
a transaction aborts only if it detects a cycle with transactions
having smaller commit timestamps. Further implementation
details are provided in [23].

V. SERVICE-BASED MODEL

In the decentralized scheme discussed above, the conflict
detection is performed by the application processes themselves
using the metadata, such as lock information, stored in the
global storage. This induces performance overhead due to
the additional read and write requests for the metadata in
the global storage. These overheads can increase transaction
completion time and reduce transaction throughput. Therefore,
for better performance in terms of transaction latency and
throughput, we evaluated an alternative approach of using a
dedicated conflict detection service.

In the service-based approach, the conflict detection service
maintains the read and write sets information (only the row
keys for items) of committed transactions. A transaction inits

commit phase sends its read and write sets information and
snapshot timestamp value to the conflict detection service.We
implemented basic SI validation as well as prevention and
detection based approaches for serializability in the conflict
detection service. Based on the particular conflict detection
approach, the service checks if the requesting transaction
conflicts with any previously committed transaction or not.
If no conflict is found, it sends ‘commit’ response to the
transaction, otherwise it sends ‘abort’. Before sending the
response, the service logs the transaction’s commit statusin
the global storage. This write-ahead logging is performed for
recovery purpose.

Note that this dedicated service is only for the purpose
of conflict detection and not for the entire transaction man-
agement, as done in [14], [16]. The other transaction man-
agement functions, such as getting the appropriate snapshot,
maintaining uncommitted versions, and ensuring the atomicity
and durability of updates when a transaction commits are
performed by the application level processes.

The scalability and reliability of this service are important
aspects to consider. The service maintains the information
required for conflict detection, such as read and write sets in-
formation, in memory for better performance. This information
is soft-stateand can be recovered upon failure from the write-
set information logged in the global storage. For scalability
and availability, the service can be replicated. However, based
on our experiments, we observe that the scaling requirementof
this service are significantly moderate compared to the scaling
requirement of the storage service as the workload and request
processing requirements of this service are significantly lower
compared to the transactional workload. The service receives
only one request per transaction and it needs to access only
the in-memory data structures for conflict detection.

VI. EVALUATIONS

In this section, we present the evaluations of the proposed
approaches. In these evaluations, we are interested in the
following aspects: (1) the scalability of different approaches
under scale-out model, (2) comparison of the service-based
model and the decentralized model in terms of transaction
throughput and scalability, (3) comparison of the basic SI
and the transaction serializability approaches based on the
prevention and cycle detection techniques, (4) transaction
response times for various approaches, and (5) execution times
of different protocol phases.

A. Experiment Setup

We used TPC-C benchmark [19] to perform evaluations
under a realistic workload. However, our implementation of
TPC-C specifications differs in the following ways. Since
our primary purpose is to measure the transaction throughput
we did not emulate terminal I/O. HBase does not provide
relational database features such as foreign keys and secondary
indexes. For secondary indexes, we created another index
table, and for composite primary keys we created the row-
keys by concatenating the specified primary keys. Predicate
reads were implemented using scan and filtering operations
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provided by HBase. Moreover, since the transactions specified
in TPC-C benchmark do not create serialization anomalies
under SI, as observed in [7], we implemented the modifications
suggested in [9], which basically add one more transaction
type ‘CreditCheck’ to create serialization anomalies.

We performed these evaluations in our test cluster of
40 nodes. Following the scale-out model, we increased the
number of nodes in the system and measured the maximum
transaction throughput (measured in terms of committed trans-
actions per minute (tpmC)) and response times under various
system footprint sizes. We measured the maximum throughput
by gradually increasing the transaction load and measured
the throughput achieved before the transaction response time
started increasing exponentially. In all the experiments,we
used one timestamp server. In the evaluation of the service-
based model, we used one conflict detection server.

B. Evaluation Results

Figure 3 shows the maximum throughput achieved under
various system resource footprint sizes for different transaction
management approaches. Since there is significant node het-
erogeneity in our test cluster, we measure the system footprint
size in terms of number of cores instead of number of nodes.

Scalability of different approaches:We can observe from
Figure 3 that, scalability of throughput through scale-out
model is achieved in both the service-based as well as the
decentralized model. For example, in case of the decentralized
model with the basic SI, the largest configuration (96 cores)
achieves roughly 11 fold increase compared to smallest con-
figuration (6 cores). We measure thescale-out factoras the in-
crease in the throughput (tpmC) achieved per resource unit (i.e.
per core) as the system resources are increased. In other words,
the scale-out factor is the slope of the throughput graphs shown
in Figure 3. The value of this factor is 582.2 for service-based
(cycle detection) approach, 486.6 for decentralized basicSI
approach, 415.5 for decentralized cycle prevention approach,
and 311.4 for decentralized cycle detection approach. This
indicates that all these approaches are scalable, althoughthe
throughput gain per resource unit achieved through scaling
varies for different approaches. The service-based model has
the highest throughput gain per resource unit among all these
approaches.

We believe that the scalability of the decentralized model
would also extend beyond the largest configuration used in
our experiments, provided that the underlying storage service
is also scalable. This is because the entire transaction man-
agement functions are performed in concurrent manner using
the metadata which is itself stored in the underlying storage
service. In case of the service-based approach, the scalability
of the system could be limited if the conflict detection service
becomes the bottleneck. However, we believe that a single
conflict detection server should be able to handle large request
rates. Our prototype implementation of this service, running
on a machine with 2GHz CPU with 4 cores and 4GB memory,
can handle roughly 10K requests per second.

Comparative evaluation of different approaches:We first
compare the throughput achieved under various approaches.
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From Figure 3 we see that the service-based approach gives
higher transaction throughput than the decentralized approach.
As expected, the basic SI model achieves higher throughput
compared to approaches for ensuring serializability. The cycle
prevention approach provides higher throughput than the cycle
detection approach. The cycle prevention approach may abort
more number of transactions compared to the cycle detection
approach. However, in the decentralized model the overheadof
the cycle detection approach is significant, especially dueto
the overhead of maintaining dependency information in the
global storage. Therefore, the total number of transactions
committed per unit time is smaller in case of the cycle
detection approach compared to the cycle prevention approach.
We also compared the basic SI approach, and the cycle
prevention and the cycle detection approaches in the context
of the service-based model. However, in our experiments we
did not observe any significant difference in the transaction
throughput mainly due to the fact that the conflict detection
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service never became the bottleneck.
Figure 4 shows the average transaction response times

under scale-out for various approaches. As expected, the
service-based approach gives smaller response times than
other approaches. The cycle detection approach has significant
overhead. In the largest configuration, the average response
time for cycle detection approach is more than double of the
same for cycle prevention approach. Also, the cycle detection
approach does not scale well in terms of response times
under large configurations. Therefore, we conclude that if
serializability is required, it is better to use cycle prevention
approach than the cycle detection approach, in the context
of decentralized model. We also compare the time taken
to execute various phases of the transaction protocol for
different approaches. Figure 5 shows the average execution
times for different phases. This data is shown for the ex-
periment conducted with the largest (96 cores) configura-
tion. For decentralized model with basic SI, theV alidation

and CommitIncomplete takes roughly the same time. The
V alidation phase for cycle prevention approach takes more
time than theV alidation phase for basic SI approach due
to the additionalrw conflict checking. We can see that the
the overhead of cycle detection approach is mainly due to
the DSGupdate phase which detects and stores dependency
information in the global storage. TheActive phase also takes
more time due to additional overhead of recording the read-set
information in the global storage.

VII. C ONCLUSION AND DISCUSSION

This paper presents system architectures for scalable trans-
action management and techniques for supporting different
consistency levels for NoSQL key-value based databases. The
key principle of our approach is to decouple transaction man-
agement functions from the storage service and integrate them
with the application level processes. Through the experimental
evaluations, we demonstrate that multi-row transactions can
be supported in a scalable manner with the guarantees of
ACID properties. The presented techniques and architectural
approaches can be helpful to application developers for build-
ing Cloud-based applications which require such a strong
transaction consistency, which is not provided by the current
NoSQL Cloud databases.

Our evaluations over a 40 node cluster show that, both the
decentralized and service-based architectures achieve through-
put scalability under the scale-out model. In principle, since
there is no bottleneck component, the scalability of decentral-
ized model is not limited under the scale-out model, provided
that the underlying storage service is scalable. The scalability
of the service-based model could be limited by the saturation
throughput of the conflict detection service, however it canbe
increased by eitherscaling upor replicating the service.

Our transaction model is based on snapshot isolation (SI).
To ensure serializability of transaction executing under SI
model, we present two conflict detection approaches. In our
experiments, we observe that the cycle detection approach
has significant overhead compared to the cycle prevention
approach. Comparing the transaction throughput and response

time performance of both these approaches, we conclude that
if serializability of transaction is required then using the cycle
prevention approach is better.
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