
1

Building Context-Aware Healthcare
Applications using a Generative Programming

Framework
Devdatta Kulkarni and Anand Tripathi

Department of Computer Science
University of Minnesota Twin Cities

MN 55455, USA
Email: (dkulk,tripathi)@cs.umn.edu

Abstract—Developing context-aware applications is a te-
dious task which requires interfacing with different kinds of
environmental sensors, new programming models, and ex-
tensive middleware support in the form resource discovery
services, context management services, and context-based
authorization services. We have developed a programming
framework for building context-aware applications from
their high-level design speci£cations. In this paper we show
how this programming framework can be effectively used
to build context-aware applications in the medical domain.

I. INTRODUCTION

Recent trends in a number of application domains
such as assisted living [1], [2], [3], hospital information
systems [4], tour guides [5], [6], smart environments [7],
is towards integrating context information to dynamically
adapt an application’s behaviour to provide enhanced
functionality to users. Typical examples of context in-
formation include user location, co-location of users, co-
location of a user with a device or an object, devices
being used by a user, and so on. Context-aware applica-
tions, which may be single-user or collaborative multi-
user, are immersed in sensor-rich environments. Context
services collect sensor data from different kinds of envi-
ronmental sensors and aggregate it to build high-level
state information about the environment. Applications
are designed to interface with such context services and
dynamically adapt their behaviour, such as discovering
and integrating application components and infrastruc-
ture services, based on the context information that is
obtained through queries or noti£cations from context
services.

We have developed a programming framework to
support rapid construction of context-aware applications
from their high-level speci£cations [8], [9]. The mid-
dleware generates the runtime environment of the appli-

This work was supported by NSF grant 0411961.

cation from the application’s speci£cation. Middleware
provides services for resource registration and discovery,
location-independent naming, and context agents for de-
tecting and aggregating sensor data. The main advantage
of this approach is that the task of developing context-
aware applications is simpli£ed because of the following
reasons. First, the application programming efforts are
limited only to developing the design speci£cation and
the required application components. Modifying an ap-
plication’s design based on new requirements, stemming
from user experience or technology evolution, is easy
because it only involves changing the application’s high-
level design speci£cation. Second, the runtime envi-
ronment for the application is automatically generated
and maintained by the middleware, based on the design
speci£cation.

In this paper we demonstrate how to use this pro-
gramming framework for building medical domain ap-
plications. For this purpose we have emulated a patient
information access application in our testbed laboratory
environment. Context information could be used for
different purposes in hospital information systems [10],
[11], [4] and assisted living applications [1], [3]. These
include, controlling access to information, recon£guring
an application, notifying contextual alerts, coordinating
user activities, and displaying information only relevant
to a task in which a user is engaged. We elaborate on
these requirements below.

• Context-based access control: This refers to using
external world context information or application’s
internal context information for controlling user’s
access to resources/services. For example, we may
require that a doctor may access patient records
only from secure hospital locations [11].

• Context-based recon£guration: This refers to bind-
ing an application to resources/services based on



context information. For example, health-care ap-
plication on the nurse’s mobile device may auto-
matically bind to the records associated with the
patient to whom she is currently attending.

• Context-triggered actions: This refers to automati-
cally executing application tasks based on context
information. For example, a hospital information
system may support noti£cation of alerts to nurses
when they enter a ward.

• Context-based multi-user coordination: This refers
to utilizing context information as part of handling
coordination and collaboration requirements in an
application. For example, under special circum-
stances a nurse may request access to doctor’s
private notes about a patient from the patient’s
doctor. The nurse is able to access the records only
after the doctor grants such an access.

• Context-based information display: This refers to
modulating the information that is displayed to a
user based on context. For elderly people, memory-
loss is a signi£cant issue affecting their daily activ-
ities. Assisted living applications may help in such
situations by providing context-based information
display corresponding to the task that the person is
engaged in [3]. For example, if an elderly person is
engaged in the cooking activity then the application
may display the actions performed by the person
previously as part of this activity [3].

The paper is organized as follows. In Section II we
present a brief overview of our programming framework.
In Section III we present the design of the patient infor-
mation access application. In Section IV we compare our
programming model with other models for context-aware
application development and conclude in Section V.

II. CONCEPTUAL ELEMENTS OF THE PROGRAMMING

MODEL

The environments in which a context-aware applica-
tion is immersed are called “active space” [12]. Such
spaces contain different kinds of sensors, infrastructure
resources, services, and agents. A context-aware appli-
cation may span across multiple such active spaces in
different domains.

To model the design of a context-aware application
deployed in such active spaces we have de£ned an ab-
straction called activity in the programming framework.
An activity de£nes a shared object space, and a set of
user roles. An activity may be distributed across different
active spaces and it may involve multiple users in some
collaborative tasks. Various resources/services required
by the application are accessed as objects within the
activity.

Roles: An activity contains zero or more roles. Each
role contains one or more operations. An operation
provides privileges for a role member to access objects
de£ned within an activity. An operation contains an
optional precondition and one or more actions. An action
may specify one of the four things: (a) invoking a
method on an object; (b) initiating an interactive session
with an object involving any arbitrary sequence of a
designated set of its methods; (c) binding an object to
a resource/service; (d) signaling an application de£ned
event.

Each event type de£nes an event stream. Filter oper-
ations can be de£ned on an event stream to derive its
sub-stream satisfying certain predicates. The operator #
on an event type returns the count of the events in its
stream.

Context-based access control requirements are pro-
grammed using two mechanisms in our programming
framework. These correspond to the operation precon-
dition and the access constraint. The purpose of a
precondition is to decide whether or not a role member
should get access to a resource through a role operation.
On the other hand, the purpose of an access constraint is
to decide whether a role member should get access to a
speci£c component of a resource. The information about
such a component might be determined only during the
operation’s execution session and may not be known at
the time of precondition evaluation.

Objects: An object serves as a reference within the
activity for accessing a service or a resource. We have
developed an XML schema called Resource Description
De£nition (RDD) to describe objects. An RDD con-
tains speci£cation of attribute-value pairs, interfaces, and
events exported by the resource/service. An RDD is used
as part of discovering a resource/service in an active
space. Certain attributes in an object’s RDD may be
treated as parameterized attributes, meaning that their
values are speci£ed at runtime, which may be based
on the context information. These attributes are useful
for performing context-based discovery and binding of
objects with different resources and services.

Binding mechanisms are provided in the programming
framework that specify when to perform a binding, how
to identify the resource/service to be used in binding,
and what context information, if any, should be used in
the discovery process. There are two ways to identify a
resource to be used in binding. One is to directly specify
the resource/service URL, if it is known. Another is
to discover the appropriate resource/service in the en-
vironment. Binding actions that are triggered by context
events are performed whenever that event is noti£ed to
the corresponding object manager by context agents.

Reactions: A reaction is used to perform event-



triggered actions in our programming model. Reactions
may be used at the activity scope or at the scope of an
object. Activity-level reactions are used for performing
event-triggered actions that are relevant for the entire ap-
plication. These include, notifying messages to different
roles’ members, and interconnecting different objects to
connect their respective services to one another. Object-
level reactions are used to program actions that are
speci£c to an object, such as binding the object to an
appropriate resource/service. There is an implementation
level difference between the activity-level reactions and
the object-level reactions. Each activity-level reaction is
handled as a thread, whereas object-level reactions are
maintained as binding policies with an object manager.

Middleware: The middleware provides three generic
components, an activity manager, a role manager, and
an object manager. The runtime environment of an
activity is constructed by deriving policies from its XML
speci£cation, and integrating them with the generic man-
agers to construct application speci£c managers [13].
The policies that are derived include object binding and
method level access control policies for object managers,
operation execution and event subscription/noti£cation
policies for role managers, and context event subscrip-
tion policies for the activity manager. These managers
are run on a set of trusted servers.

An object manager maintains a reference to the service
to which it is currently bound. It enforces binding
policies and method level access control policies. A
role manager implements interfaces through which role
management tasks such as, joining a role, leaving a role,
or selecting a particular role member may be executed.

Users are admitted to various roles in an activity
subject to the role admission constraints. Users execute
role operations through an interface component called
User Coordination Interface (UCI). A UCI is generated
for each user and it contains the GUI components for
executing role operations corresponding to the roles in
which the user is admitted. The UCI is transported
to each user’s device. Role operation executions are
handled by the corresponding role manager.

III. CASE STUDY: PROGRAMMING PATIENT

INFORMATION ACCESS APPLICATION

Here we consider patient information access applica-
tion in a hospital setting. It supports storage, retrieval,
and access of patient information. Doctors and nurses
may access this information through their mobile per-
sonal devices. We consider the following context-based
requirements for this application.

• Context-based Access control: Doctors may access
patient information only from secure hospital areas
(requirement R1).

Only those nurses and doctors who are on a pa-
tient’s medical assistance team may access the
patient’s medical records [11], [14] (requirement
R2).

• Context-based Recon£guration: The health-care ap-
plication on the nurse’s mobile device should auto-
matically bind to the patient information resource
corresponding to the patient to whom the nurse is
currently attending (requirement R3).

• Context-triggered Task Execution: Nurses should be
able to leave alerts for other nurses in each hospital
ward. Such alerts should be noti£ed to a nurse when
she enters a ward (requirement R4).

• Context-based Multi-user Coordination: A nurse
should be able to request access to doctor’s private
notes about a patient from the patient’s doctor. The
nurse is able to access the records only after the
doctor grants access to the nurse [11] (requirement
R5).

We have programmed this application in our testbed
environment. The emulated hospital environment con-
sists of the following.

Infrastructure services and resources: We maintain a
patient database to keep patient information. It contains
three tables, PatientTable, NurseTable, DoctorTable. The
PatientTable contains the £elds patientID, teamID, Doc-
torNotes, NurseNotes. The NurseTable contains the £elds
nurseID, teamID. The DoctorTable has similar £elds. We
also maintain a message server in the domain to store
any messages/alerts.

Context agents: Context information is collected by
context agents deployed in the environment, which are
built using an agent-based distributed event monitoring
and aggregation framework [15]. A ward room agent
is associated with every room. It monitors user arrivals
and departures from the room and generates user arrival
events and user departure events. Such a monitoring is
performed by tracking users’ Bluetooth devices. There is
also a location agent that maintains the current location
of every nurse and doctor. One can also con£gure
list of secure locations with this agent. In our testbed
environment RFID tags are associated with every patient
bed. The mobile devices given to nurses and doctors
contains a RFID reader to sense the RFID tags.

Activity Speci£cation: For this application we de£ne
the PatientInformationAccess activity. We show its par-
tial speci£cation in the pseudo-notation below.

Activity PatientInformationAccess
Role Doctor ..
Role Nurse ..
Object LocationAgent

Action Bind LocationAgent Direct (//LocationAgentURL)
Object PatientDBService

Action Bind PatientDBService Direct (//PatientBDServiceURL)



Object MessageServer
Action Bind MessageServer

Direct (//MessageServerURL)
Object NurseUCIObj

We de£ne two roles, Doctor, and Nurse in this activity.
Multiple users may be admitted to each role. We de-
£ne four objects, LocationAgent, PatientDBService, Mes-
sageServer, and NurseUCIObj in this activity. We bind
the £rst three objects at the activity instantiation time to
the corresponding services, whereas the NurseUCIObj is
bound at runtime.

1. Context-based Access Control: Here we present
speci£cation that satis£es requirements R1 and R2.
a) Precondition model: To satisfy requirement R1 we
want to restrict a doctor’s access to patient records to
happen only from secure locations. For this, we need to
check whether the current location from which the Doc-
tor role member is accessing patient records is secure or
not. This can be done by querying the LocationAgent as
part of operation precondition as shown below.

Role Doctor
Operation AccessPatientData

Precondition LocationAgent.isSecureLocation(thisUser)
Action PatientDBService

SessionMethod accessPatientRecords

The operation AccessPatientData is provided for the
Doctor role through which patient information may be
accessed. The access control requirement is programmed
as the precondition of this operation. We query the
LocationAgent to check whether the doctor’s current
location belongs to the list of known secure locations.
As part of this operation we want to allow only the
accessPatientRecords method to be invoked on the Pa-
tientDBService object. Hence in the SessionMethod tag
we specify only this method’s name. In our programming
model thisUser is a special variable which refers to the
role member who is invoking the operation.

b) Access constraint model: To satisfy requirement
R2 we want to restrict a nurse’s access to only those
patients’ records on whose team she is present. For this,
we need to compare the teamIDs of the teams on which
the Nurse role member is present with the teamID of
every patient. This checking can be done only after
an operation’s execution has begun. Precondition model
is not suitable for this purpose because the resource
component to be accessed may not be known at the pre-
condition evaluation time. Instead, the access constraint
is appropriate for this purpose. An access constraint is
evaluated at runtime and is used to specify content-based
access control requirements. We show this speci£cation
below.

Role Nurse
Operation AccessPatientRecords

Action PatientDBService SessionMethod
viewPatientRecords addNurseNotes
AccessConstraint (teamID =

PatientDBService.getNurseTeamID(thisUser))

The operation AccessPatientRecords is provided for
the Nurse role to access patient records. The access
control requirement is programmed as the AccessCon-
straint speci£cation for this operation. It ensures that
only those patients’ records whose teamID matches any
of the teamIDs of the Nurse role member are accessible
through the session methods.

2. Context-based resource binding: As part of re-
quirement R3 we want that when a nurse is attending to
a patient, the application on the Nurse’s mobile device
should bind to that particular patient’s records. This
is useful to ensure that a nurse does not mistakenly
access records of a wrong patient. Below we show this
speci£cation.

Role Nurse
Object PatientRecord RDD PatientInfo.xml

Reaction When Event thisDevice.RFIDEvent
Action Bind PatientRecord Discover

(patientID=RFIDEvent.getID())
Operation AccessRecord

Action PatientRecord SessionMethod displayInformation

We de£ne the PatientRecord object for this purpose.
We specify the PatientInfo.xml as the RDD speci£cation
for this object. It contains attribute-value pairs related to
a patient, such as patientID, date-of-entry, and so on.
We specify that the binding of this object should be
triggered by the RFIDEvent. This event is generated by
the RFID detector service running on nurse’s mobile de-
vice. We specify discovery based binding for this object.
The patientID £eld in the RDD is £lled in at runtime
by querying the RFIDEvent. This is a parameterized
attribute in this RDD. The completed RDD is used to
query the PatientDBService and the object is bound to
the returned reference.

3. Context-triggered actions: As part of requirement
R4 we want that the Nurse role member be able to post
alerts speci£c to a ward. Other nurses are noti£ed of
such alerts when they enter the ward. Below we show
this speci£cation.

Role Nurse
Operation PostWardAlerts

Action MessageServer SessionMethod writeAlert
AccessConstraint

(location=LocationAgent.getLocation(thisUser))
Reaction NotifyAlerts

When LocationAgent.NurseArrivalEvent
Condition MessageServer.isMessageOutStanding(

NurseArrivalEvent.getLocation())
Action Bind NurseUCIObj With

getUCIObject(NurseArrivalEvent.getUser())
Action NurseUCIObj.notifyAlert(MessageServer.getMessages(



NurseArrivalEvent.getLocation()))

We de£ne the PostWardAlerts operation through which
a nurse may write alerts by invoking the writeAlert
method as part of the session on the MessageServer.
Alerts are stored as records indexed by location on
the message server. We use access constraint to select
only those records for which the location attribute value
matches the nurse’s current location and only these
records are updated.

We also de£ne the NotifyAlerts reaction in the activity.
This reaction is triggered by the NurseArrivalEvent that
is generated whenever any nurse enters any ward. As part
of the reaction’s condition evaluation we check whether
any message is outstanding corresponding to the current
location. If so, then we notify all such messages to
the nurse’s UCI. This is achieved by £rst binding the
NurseUCIObj to the UCI of the Nurse role member
corresponding to whom the event is generated and then
notifying the messages to that UCI. The method getU-
CIObject is provided in the programming framework
which provides the reference to a role member’s UCI.

4. Context-based multi-user coordination: As part
of requirement R5 we need the following. A Nurse role
member should be able to request access to a particular
patient’s records from a speci£c doctor. The doctor from
whom the access is requested should be able to grant
access to the records of the requested patient and also
to only the nurse who has requested the access.

We achieve this using application de£ned events to
coordinate the Doctor and Nurse role members. We
de£ne the RequestAccessEvent to indicate the Nurse role
member’s request to access a particular patient’s records.
The following attributes are set in this event, NurseID,
DoctorID, and PatientID indicating the access request.
This event is noti£ed from the Nurse role to the Doctor
role. We also de£ne the AccessApprovalEvent to indicate
the Doctor role member’s approval given to a particular
Nurse role member corresponding to a speci£c patient.
This event is noti£ed from the Doctor role to the Nurse
role. Below we show this speci£cation.

1.Role Nurse
2. Operation RequestAccess
3. Action NotityEvent RequestAccessEvent
4. (NurseID=thisUser, DoctorID=Doctor.selectMember(),
5. PatientID=PatientDBService.selectPatient())
6. Operation AccessPatientData
7. Precondition
8. #AccessApprovalEvent(nurseID=thisUser) > 0
9. Action PatientDBService
10. SessionMethod displayPatientInformation
11. AccessConstraint
12. (patientID=AccessApprovalEvent(nurseID=thisUser).
13. getAttribute(patientID))
14.Role Doctor
15. Operation ApprovePatientDataAccess

16. Precondition
17. #RequestAccessEvent(DoctorID=thisUser) > 0
18. Action NotifyEvent AccessApprovalEvent
19. (nurseID=RequestAccessEvent.getAttribute(NurseID),
20. patientID=RequestAccessEvent.getAttribute(PatientID))

In the Nurse role we de£ne the RequestAccess op-
eration (lines 2-5) through which a Nurse role member
may request access. In the Doctor role we de£ne the Ap-
provePatientDataAccess operation (lines 15-20) through
which a Doctor role member may grant approval to the
requesting Nurse role member. A Doctor role member
is able to execute this operation only if the count of
RequestAccessEvent corresponding to that Doctor role
member is non-zero. This is speci£ed through the opera-
tion’s precondition. The construct (DoctorID=thisUser)
is a £lter predicate that selects only those events that
correspond to the Doctor role member who is invok-
ing the operation. As part of this operation’s action
an instance of AccessApprovalEvent is signaled. The
attributes nurseID and patientID in this event are set by
querying the values of attributes NurseID and PatientID
respectively from the RequestAccessEvent.

In the Nurse role we de£ne the AccessPatientData op-
eration (lines 6-13) through which a Nurse role member
may access patient information. The precondition of this
operation ensures that only the Nurse role member to
whom the Doctor role member granted permission is
able to invoke this operation. Furthermore, the access
constraint speci£cation ensures that the PatientDBSer-
vice object manager grants access to only those patient
records for whom the Doctor role member gave access
through the AccessApprovalEvent.

IV. RELATED WORK

Several other research groups have developed
programming frameworks for context-aware applica-
tions [16], [17], [18], [19], each focusing on different
levels of system abstractions. Gaia [16] seeks to pro-
vide operating system level support for active space
applications. RCSM [17] concentrates on interface def-
inition language level support, Chisel [18] focuses on
reusable policies for context-aware applications, whereas
PCOM [19] focuses on supporting component integra-
tion based on inter-component contracts. In comparison
to other high-level programming models, our focus is
on generating complete runtime environment of context-
aware applications from their high-level speci£cations.
The distinguishing aspect of our work is that the entire
operational con£guration of a context-aware application,
under different context conditions, is laid out in the form
of its design speci£cation.

Access control requirements and models in health-care
applications have been studied by others [14], [10], [11].



In [14] a team abstraction is used to perform access
control decisions related to a patient’s medical informa-
tion. In the OASIS RBAC model [10], parameterized
role membership certi£cates are used to enforce active
security requirements for the Electronic Health Records
(EHR) access system.

Our context-based access control mechanisms differ
from these in the following two ways. First, the notion
of events and their integration with authorization mech-
anisms is a salient feature of our RBAC model. Event-
based predicates are used to explicitly specify dynamic
constraints in our framework. This model has evolved
from our experiences in building CSCW applications
using it [20]. Second, through the access constraint
mechanism we are able to enforce access control re-
quirements using resource’s attributes and role member’s
context for this purpose. Attribute-based access control
falls under the requirement of content-based access
control. Content-based access control ideas can be traced
back to early work on access control based on data types
in programming languages [21].

V. CONCLUSIONS

In the coming years there will be considerable interest
in developing context-aware medical domain applica-
tions given the cheap availability of different kinds of
sensors and also HIPAA’s stipulation [22] of “physical
safeguards” for health information systems as part of
its security rules. Building context-aware applications
requires new programming models which support in-
tegration of context information for driving context-
based application adaptations in terms of resource usage,
access control, automated task executions, and multi-user
coordination. Our high-level programming framework
for context-aware applications supports mechanisms for
programming such adaptive capabilities in context-aware
applications. In this paper we demonstrated that this
framework can be used to design and implement medical
domain applications having unique context-based char-
acteristics.

REFERENCES

[1] S. Consolvo, P. Roessler, B. E. Shelton, A. LaMarca, B. Schilit,
and S. Bly, “Technology for care networks of elders,” IEEE
Pervasive Computing, vol. 3, no. 2, pp. 22–29, 2004.

[2] S. Helal, B. Winkler, C. Lee, Y. Kaddoura, L. Ran, C. Giraldo,
S. Kuchibhotla, and W. Mann, “Enabling location-aware perva-
sive computing applications for the edlerly,” in IEEE PERCOM.
Washington, DC, USA: IEEE Computer Society, 2003, p. 531.

[3] E. D. Mynatt, A.-S. Melenhorst, A. D. Fisk, and W. A. Rogers,
“Aware technologies for aging in place: Understanding user needs
and attitudes,” IEEE Pervasive Computing, vol. 03, no. 2, pp. 36–
41, 2004.

[4] J. E. Bardram, T. R. Hansen, M. Mogensen, and M. Søgaard,
“Experiences from real-world deployment of context-aware tech-
nologies in a hospital environment,” in Ubicomp, 2006, pp. 369–
386.

[5] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat, “Using and
determining location in a context-sensitive tour guide,” IEEE
Computer, vol. 34, no. 8, pp. 35–41, August 2001.

[6] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton, “Cyberguide: a Mobile Context-aware Tour
Guide,” Wirel. Netw., vol. 3, no. 5, pp. 421–433, 1997.

[7] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and F. Liu,
“The smart classroom: Merging technologies for seamless tele-
education,” IEEE Pervasive Computing, vol. 02, no. 2, pp. 47–55,
2003.

[8] A. Tripathi, D. Kulkarni, and T. Ahmed, “A Speci£cation Model
for Context-Based Collaborative Applications,” Elsevier Journal
on Pervasive and Mobile Computing, vol. 1, no. 1, pp. 21 – 42,
May-June 2005.

[9] D. Kulkarni and A. Tripathi, “Generative programming approach
for building pervasive computing applications,” in SEPCASE
’07: Proceedings of the 1st International Workshop on Software
Engineering for Pervasive Computing Applications, Systems, and
Environments. Washington, DC, USA: IEEE Computer Society,
2007, p. 3.

[10] J. Bacon, K. Moody, and W. Yao, “A model of oasis role-based
access control and its support for active security.” ACM Trans.
Inf. Syst. Secur., vol. 5, no. 4, pp. 492–540, 2002.

[11] M. Evered and S. Bögeholz, “A case study in access control
requirements for a health information system,” in ACSW Fron-
tiers ’04: Proceedings of the second workshop on Australasian
information security, Data Mining and Web Intelligence, and
Software Internationalisation. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2004, pp. 53–61.

[12] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt, “Gaia: a middleware platform for
active spaces.” Mobile Computing and Communications Review,
vol. 6, no. 4, pp. 65–67, 2002.

[13] A. Tripathi, T. Ahmed, and R. Kumar, “Speci£cation of Secure
Distributed Collaboration Systems,” in IEEE International Sym-
posium on Autonomous Distributed Systems (ISADS), April 2003,
pp. 149–156.

[14] R. K. Thomas, “Team-based Access Control (TMAC): A Prim-
itive for Applying Role-based Access Controls in Collaborative
Environments,” in ACM Workshop on Role-based Access Control,
1997, pp. 13 – 19.

[15] A. R. Tripathi, D. Kulkarni, H. Talkad, M. Koka, S. Karanth,
T. Ahmed, and I. Osipkov, “Autonomic Con£guration and Re-
covery in a Mobile Agent-based Distributed Event Monitoring
System ,” Softw. Pract. Exper., vol. 37, no. 5, pp. 493–522, 2007.

[16] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and
M. D. Mickunas, “Olympus: A High-Level Programming Model
for Pervasive Computing Environments,” in PerCom, 2005, pp.
7–16.

[17] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Re-
con£gurable Context-Sensitive Middleware for Pervasive Com-
puting,” IEEE Pervasive Computing, vol. 1, no. 3, pp. 33–40,
2002.

[18] J. Keeney and V. Cahill, “Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework,” in POLICY ’03: Pro-
ceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 3–14.

[19] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM
- A Component System for Pervasive Computing,” in IEEE
PERCOM, March 14-17 2004, pp. 67–76.

[20] T. Ahmed and A. R. Tripathi, “Speci£cation and veri£cation of
security requirements in a programming model for decentralized
cscw systems,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 2, p. 7,
2007.

[21] A. K. Jones and B. H. Liskov, “A language extension for
expressing constraints on data access,” Commun. ACM, vol. 21,
no. 5, pp. 358–367, 1978.

[22] “HIPAA Security Series,” Available at URL
http://www.cms.hhs.gov/EducationMaterials/.


