
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2007; 37:493–522
Published online 24 October 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.777

Autonomic configuration and
recovery in a mobile agent-based
distributed event monitoring
system

Anand R. Tripathi∗,†, Devdatta Kulkarni, Harsha Talkad,
Muralidhar Koka, Sandeep Karanth, Tanvir Ahmed and
Ivan Osipkov

Department of Computer Science, University of Minnesota, Twin Cities, MN 55455, U.S.A.

SUMMARY

In this paper we present a framework for building policy-based autonomic distributed agent systems.
The autonomic mechanisms of configuration and recovery are supported through a distributed event
processing model and a set of policy enforcement mechanisms embedded in an agent framework.
Policies are event-driven rules derived from the system’s functional and non-functional requirements.
Agents in the network monitor the system state for policy violation conditions, generate appropriate
events, and communicate them to other agents for cooperative filtering, aggregation, and handling.
A set of agents perform policy enforcement actions whenever events signifying any policy violation
conditions occur. Policies are defined using a specification framework based on XML. The policy
enforcement agents interpret the policies given in XML. We illustrate the utility of this framework in the
context of an agent-based distributed network monitoring application. We also present an experimental
evaluation of our approach. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 29 December 2005; Revised 23 June 2006; Accepted 29 June 2006

KEY WORDS: agent-based systems; distributed event processing; autonomic systems; policy-based system
management

1. INTRODUCTION

The management of large-scale software systems to ensure resilient operations is a challenging task.
We present here an approach for the autonomic management [1] of large-scale agent-based distributed

∗Correspondence to: Anand R. Tripathi, Department of Computer Science, University of Minnesota, Twin Cities, MN 55455,
U.S.A.
†E-mail: tripathi@cs.umn.edu

Contract/grant sponsor: US National Science Foundation; contract/grant number: 0087514

Copyright c© 2006 John Wiley & Sons, Ltd.

494 A. R. TRIPATHI ET AL.

systems, based on policy-driven mechanisms for configuration and recovery. The approach is presented
in the form of a framework, called Konark [2,3], which is a multi-agent system for programming
distributed event-based applications. The framework provides essential mechanisms for policy-based
autonomic management of agent-based distributed systems. This policy-centric approach evolved
through our experiences in building and experimenting with an agent-based distributed system for
event monitoring in network computing environments.

Our approach is based on the agent-based integration of components and services in building
distributed systems. Agents are the basic building blocks in our approach as they provide an ideal
foundation for policy-based component integration. An agent is an active object encapsulating other
components [4,5]. It acts as a container for its embedded components and possesses certain security
privileges. Typically, an agent has certain functional role—it may work on behalf of a user requesting
services from other agents, or it may act as a service provider. A service may be implemented by a
group of cooperating agents. Moreover, agents and components may be transportable in the network,
thus providing additional capabilities for their remote installation.

The policy-based mechanisms presented here address the need for autonomic operations in a
wide class of distributed systems that are based on service-oriented architectures. Examples of such
systems include distributed monitoring systems, pervasive computing environments, and Internet-
based infrastructures and services. Such systems operate as a federation of a large number of distributed
components and services. These systems also tend to be dynamic: new components or services are
frequently integrated into the system, or existing components or services are removed due to failures
or administrative policies. Evolutionary growth is an essential feature of such systems, requiring the
frequent installation of new services and components. The mobility of users and their computing
devices is another aspect of the dynamic nature of such systems.

In managing large-scale systems, continuous intervention and supervision by human administrators
is not feasible due to the scale of operations involved with a large number of distributed resources.
Moreover, in a large system, component failures cannot be eliminated. Therefore, suitable mechanisms
are needed for autonomic operations that support configuration management and recovery to deal with
failure conditions.

In our approach, policies for autonomic management are derived from an application’s functional
and non-functional requirements. Policies represent constraints and requirements on the configuration
of agents and the inter-agent interaction. Based on policies, enforcement rules are derived that embody
the policy enforcement actions that are required to be executed when some significant events occur.
Policies act as a glue in creating a dynamic configuration of the system in order to satisfy the functional
and non-functional requirements. Monitoring of policy violations through the detection of policy events
and performing policy actions to ensure that the application-level and system-level requirements are
not violated forms the basic design principle in this approach.

We demonstrate the utility of this approach through the design of a system for monitoring
network computing environments, which we implemented using the Konark framework [3,6].
A network monitoring system for a large computing environment has several requirements. The system
should be dynamically extensible to support the installation of new monitoring functions at a
host or modifications of existing functions. It should be possible to define any desired event
subscription/notification relationships among distributed agents. These relationships may need to
be established dynamically, based on the attributes of events and agents. These requirements are
addressed through the policies for agent composition, agent interactions, agent failure monitoring,
event detection, and subscription/notification of events among agents.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 495

A distributed event monitoring application is programmed in Konark as a collection of cooperating
mobile agents. A mobile agent represents an active object capable of migrating in the network to
perform certain designated tasks at one or more nodes [7]. An agent typically contains a number of
event detector and handler objects. The functionality of an agent can be dynamically altered by adding
or removing its components in a secure manner. An agent provides a convenient mechanism to transport
code to a host to autonomously perform a desired set of monitoring functions. Mobile agents are sent to
continuously monitor nodes in a network, detect and generate events, execute event handlers to process
events, and send event notifications to other agents. The distributed event processing model forms the
basis for implementing the policy-based approach presented here for autonomic management.

There are four main contributions of this paper. First, we present an agent-based model for
programming distributed event processing applications requiring the collection and correlation
of distributed event streams. Second, we present policy-based approach for building autonomic
mechanisms for configuration and recovery in distributed agent systems. The basic concepts of this
approach were developed in [8]. Third, we present here an XML-based specification framework for
expressing policies for a system. We demonstrate the utility of this approach through a network event
monitoring application. Finally, we evaluate performance of these policy-based autonomic mechanisms
and present design guidelines for their scalable implementation.

In Section 2 we present the details of the agent architecture and agent-based event processing
model. They form the basic building blocks of policy-based autonomic management. In Section 3
we give an overview of the Konark-based network event monitoring application. In Section 4 we
present examples of some of the policies used in the network monitoring system and describe the
basic elements of the XML-based policy specification framework. Section 5 presents our approach of
policy-based autonomic management in large-scale distributed agent systems. In Section 6 we evaluate
the policy-based design of a network event monitoring application and perform a detailed scalability
analysis of autonomic mechanisms for configuration and recovery in Konark.

2. AGENT-BASED DISTRIBUTED EVENT PROCESSING MODEL

In this section, we present the agent architecture and the agent-based distributed event processing model
of the Konark framework. This framework also serves as the basis for implementing our policy-driven
approach for autonomic management in agent-based systems.

2.1. Agent architecture

Figure 1 shows the architecture of an agent in the Konark framework. An agent contains three types
of basic components: event detectors, event handlers, and event dispatchers. An agent provides a
framework for dynamic integration of these components supporting an event-based execution model.
It also provides interfaces for remotely installing components on the agent or establishing event
subscription/notification relationship between agents.

The Component Management Interface of an agent allows other agents to remotely add, remove,
or modify the detectors and handlers in the agent. Using the Subscriber Interface, remote agents register
their interest in subscribing to certain types of events. An agent receives events from remote agents
through the Notifier interface.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

496 A. R. TRIPATHI ET AL.

. ...

Handler

Interface
Component Management

 Interface
Subscriber/Notifier

Event N Subscriber List

Subscription Policies

Agent Local State
Handle

Remote DB RMI

Subscription
Manager

Outstanding
Subscription

List

Agent Components

Dispatcher
Event

Detector Handler

Detector

Event 1 Subscriber List
Trigger Dependencies

Remote Event Triggers

Local Events Triggers

..

..

.

..

.

Figure 1. Agent architecture.

Interactions between agents are controlled by the subscription policies of the agents.
The subscription policy of an agent is related to two kinds of requirements. The first specifies the
agents who are allowed to subscribe to the events generated by this agent. The second specifies the
events generated by other agents that this agent should subscribe to. An Outstanding Subscription List
is maintained by each agent, listing other agents with whom it should register event subscriptions.
The agent also contains a thread called Subscription Manager, whose function is to ensure that this
agent’s event subscriptions at other remote agents are properly established during initialization or
recovery.

The agents in the Konark framework are programmed using Ajanta [9], which is a Java-based
mobile agent programming system. The Ajanta system provides facilities to build customizable
servers to host mobile agents, primitives for the creation and management of mobile agents, and
a global naming service. Each agent in Ajanta is identified with a unique Ajanta defined Uniform
Resource Name (URN) [10], which is a location-independent name. Inter-agent communication is
based on RMI. Ajanta provides a Name Registry in which all the agents in the domain are registered.
The Ajanta Name Registry provides APIs for mapping an agent’s URN to the corresponding RMI
URL. This facility is used for establishing event subscription/notification relationships between agents.
Ajanta provides security mechanisms for authenticated inter-agent communication and enforcing
policies for controlling admission of agents at servers [3]. The publish/subscribe model for event
communication between agents builds upon the RMI-based inter-agent communication abstraction
provided by Ajanta. Dynamic extensibility of applications through the installation of new detectors
and handlers on agents is supported through the remote installation mechanisms provided by Ajanta.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 497

Event

Remote

Trigger
Event Event

Event

Event
Handler

Trigger

Depenency

Send Event Notifications
to Subscriber Agents

Trigger execution of
local event detectors

Event

Disptacher

Handler
Detector

Delivery

Figure 2. The event-based execution model.

2.2. Agent-based distributed event model

The event-based execution model for an agent is shown in Figure 2. The functions of the five stages
involved in the processing of events within an agent are detailed below.

2.2.1. Event delivery

Events are delivered to an agent through its subscriber/notifier interface. This interface supports
authenticated communication and it can be used to specify the agents who are authorized to send
events to this agent, and the types of events that can be accepted from a given agent.

2.2.2. Event detectors

An agent is launched with a variety of event detectors for monitoring application-defined conditions.
The detectors encapsulated in each agent have very specific tasks. They observe some system attribute
and generate an event when the specified condition is detected. An event is a Java object, and events
are related in a class hierarchy. A detector is invoked based on the occurrence of some specified types
of events, which are called triggering events of that detector. Each event class definition specifies the
triggering events for its detector object. Such relationships between detectors and event types are called
trigger dependencies. A detector is implemented as a single-threaded object, which continuously waits
for trigger events and executes its event detection function whenever a trigger event is delivered to it.
The detector function is given the triggering event as an argument, thus a detector can perform some
filtering operations on it to detect a subclass of the triggering event. For example, a user login event
may trigger the root login event detector to simply check if the given login event corresponds to the
super-user.

A detector in an agent can be triggered by a local event generated by another co-located detector, or
by a remote event that the agent receives from another agent. The detector execution may result in the
generation of one or more events of a given type.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

498 A. R. TRIPATHI ET AL.

2.2.3. Event handlers

In an agent, a handler object is associated with each event type. Multiple events of a particular type
are handled sequentially by the event handler. When an event is detected or received by an agent,
it is given to the handler. The handler object performs the required processing action, such as storing
events in local or remote databases, sending alerts to system administrators, creating and launching
new agents, and modifying an existing agent by installing or removing detector or handler objects.
After the processing by the handler, the event is given to the Trigger-dependency handler and the
Event Dispatcher.

It is possible for an agent to have only the handler object for an event and not to have any local
detector for that event type. In such a case, the handler is used for processing the events that are
detected and notified by remote agents. It is also possible for different agents to have different kinds of
handlers for a given event type. A handler may also specialize its actions based on the attributes of the
event being processed.

2.2.4. Trigger-dependency handler

After processing of an event by the appropriate handler in the agent, it is given to the trigger-
dependency handler, which is responsible for triggering other local detectors according to the trigger
dependencies. Trigger dependencies identify the triggering relationship between the event detectors.
A detector can be triggered by both local and remote events. Local and remote events that trigger a
detector are separately specified for each detector. The classification of the trigger events as local and
remote is required when one needs to handle a given type of event differently, based on its local or
remote origin. This separation also helps in ensuring that no useless processing of certain kinds of
events is performed when they are local.

2.2.5. Event dispatcher

The event dispatcher sends the event to all the remote subscriber agents registered for that event type.
Multiple events are handled sequentially by the event dispatcher. Each event type may have various
policies associated with it, such as an event should not be sent back to its originator and an event
should be disposed off after a certain number of hops. The event dispatcher evaluates such event
policies before forwarding the events to the remote subscribers. Such event policies are essential to
limit indefinite event circulation in the system and thus maintain system stability. It is also possible for
the event dispatcher to determine at runtime the set of subscribers for an event based on its attributes.

3. DESIGN OF A NETWORK EVENT MONITORING SYSTEM USING KONARK

In this section, we present an overview of the network event monitoring system that we have developed
using the Konark framework. The design of this network event monitoring system evolved through
two design phases. Our initial design mainly concentrated on validating the use of mobile agents for
performing network monitoring. Policy-based configuration and management was not the central goal

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 499

in this initial design. However, our subsequent design approach was completely based on policy-based
configuration to address the shortcomings of our initial design.

In our design, one agent called the System Management Agent (SMA) is used for managing the
system configuration, which includes creating, configuring, and launching agents according to system-
level monitoring goals. A SMA typically runs on secure hosts and remotely controls agents deployed
in the system. System administrators interact with the SMA through a GUI console tool. The SMA
subscribes critical events from other agents and displays them on the GUI console. The high-level
goals of this network event monitoring system are to monitor hosts in a network for various kinds of
events. Examples of events include user logins, program executions on a host, file modifications, and
network traffic patterns related to intrusions.

3.1. Detectors and handlers

Detectors deployed on an agent perform the host monitoring functions such as: processing log files at
each host, verifying checksums of system files for integrity, fingerprinting host configuration including
daemon services and routing table, monitoring processes running with root privileges, runaway
processes or those consuming resources over predefined thresholds, failure of system-level services
such as termination of daemons, and the execution of malicious programs such as packet sniffers and
password crackers. Detectors generate events corresponding to the above activities. Events are related
in a class hierarchy. A class higher in the hierarchy represents a general event type and its subclasses
are events representing specific conditions within that general type. Events higher in the hierarchy are
detected first and then passed to the detectors at the lower levels. This enables selective triggering of
detectors at lower levels in the hierarchy. Figure 3 shows an example event hierarchy. The SyslogEvent
class represents the events generated from the system log files. The ConnectEvent class represents
various kinds of connections to a host. Its subclasses are events corresponding to SSH, FTP, etc.
Thus the LoginEvent detector is triggered only when an event of type ConnectEvent is determined
to have occurred, based on the filtering of SyslogEvent. It is also possible to perform a network-wide
correlation of events to find attacks, such as abnormal root login activity in the domain, user’s switching
to multiple accounts, and logins from black-listed domains.

Figure 4 shows the trigger dependency for the AbnormalRootLogin detector. The primary function
of this detector is to monitor system-wide abnormal root login activities. In each agent, a periodic timer
event triggers the execution of the SyslogEvent detector. This detector generates events based on new
log entries in the system log files. A SyslogEvent triggers executions of the ConnectEvent detector,
which filters and generates any login related events. This event triggers detectors for specific kinds of
login, such as SSH, Telnet, and rlogin. These detectors are filters that check if a given connection event
belongs to a specific class. These events trigger execution of the local RootLogin event detector, which
checks if a given login event corresponds to the super-user. The RootLogin events, both locally and
remotely generated, trigger the AbnormalRootLogin detector. Typically, just one agent in the system
is required to have this detector to monitor and correlate all RootLogin events in the environment.
The function of this detector/agent is to monitor for any abnormal root login activities, such as a root
login originating from a foreign domain or a large number of root login activities involving multiple
hosts in a short period. In the trigger-dependency graph of Figure 4, this detector is marked to be
triggered by both local and remote login events. A trigger dependency marked only as local implies
that the triggering event detector must be co-located in the same agent with the triggered detector.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

500 A. R. TRIPATHI ET AL.

LoginEvent FtpEvent SshEvent TelnetEventRLoginEvent

SyslogEvent

Event

FileSystemEvent

ConnectEvent XdmEvent FileChangedEvent FileAddedEvent FileDeletedEvent

Figure 3. An example event hierarchy.

Timer

Syslog Event Detector

Connect Event Detector

RootLogin Detector

Local

Local

Local Local Local

Local Local Local

Local or Remote

AbnormalRootLogin
Detector

rlogin DetectorSSH Detector Telnet Detector

Figure 4. Trigger dependency—example 1.

Similarly, a dependency marked only as remote implies that the triggering event must originate from a
remote agent.

Another example illustrating the distinction between the local and remote trigger dependencies is
shown in Figure 5. To detect failures of agents in the environment, each agent periodically generates
AgentAlive heart-beat events. The AgentAlive detector in an agent is triggered by a local TimerEvent.
The agent responsible for detecting the failures of another agent subscribes to these heart-beat events
from that agent. For this purpose it contains the AgentFailure detector. Each failure detector agent

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 501

Timer

AgentAlive Detector

AgentFailure Detector

Local

Remote

Local

Figure 5. Trigger dependency—example 2.

may also itself generate AgentAlive events, to report its own status to some other agent responsible for
detecting its failures. We require that the AgentFailure detector in an agent should only be triggered
by remotely generated AgentAlive events and not by the local events, as doing so is useless. This is
specified in the definition of the AgentFailure detector that it should only be triggered by the local
TimerEvents and remotely generated AgentAlive events. This is shown in Figure 5.

3.2. System management agent

In our original design the SMA’s functionality included the creation and configuration of agents
according to a system-level configuration specified by the administrators. The configuration of
the monitoring system was specified through a set of configuration files. The configuration files
completely specified the detectors/handlers to be installed in each of the agents. Moreover, they also
specified the event subscription/notification relationships for each of the agents. To install a given
configuration, the SMA consulted the configuration files and created agents with the appropriate
detectors/handlers. It then dispatched agents to the appropriate hosts. The system administrator had
to create the configuration files according to the system-wide monitoring goals. The SMA maintained
a configuration database to store the configuration of each agent present in the system. This database
information was used to restart an agent after its failure.

There were three main drawbacks of the design discussed above. First, the SMA became a bottleneck
when large number of agents had to be deployed in the domain. Second, the SMA’s knowledge about
the detectors/handlers deployed in an agent and the agent’s event subscription/notification relationship
were maintained in a set of configuration files. These files had to be changed for performing any
modification to the network monitoring configuration, such as adding new agents in the domain, adding
new detectors/handlers to an agent, or changing the event subscription/notification relationship between
agents. Third, the SMA also had to checkpoint the configuration of each agent for failure recovery.

The policy-based design of the monitoring system overcomes these drawbacks as we show in the
following sections. In the policy-based design, the SMA is no longer required to launch agents.
The agent server on each host creates and starts the monitoring agent on its host. The agent then
informs the SMA about its arrival. Second, the SMA is given the system-level policies in the form of

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

502 A. R. TRIPATHI ET AL.

event/action rules. These policies are triggered when the SMA receives notification of agent arrivals or
failures. The policy handling action of the SMA consists of configuring the agents with appropriate
detectors and handlers as dictated by the policy rules. The SMA also provides each agent with
policies for establishing event subscription/notification relationships with other agents in the domain.
The functionality of the SMA is kept at a minimal level in this policy-based approach. Also, the system
becomes scalable, as agents are no longer launched from the SMA.

4. SYSTEM MANAGEMENT AGENT DESIGN FOR POLICY-BASED AUTONOMIC
MANAGEMENT

An agent-based system’s functional and non-functional requirements identify the high-level goals
that should be fulfilled by the system. These goals are used to define the system level policies of
the agent environment. Policies are represented as rules that specify the execution of certain actions
when the events (called policy events) affecting the policies occur. These policies include functional
requirements, such as which agents or components should be installed for the required functionality,
how many instances of various agents are required, how these agents should interact with each other,
and what type of agent should be installed on a host. These policies also include non-functional
requirements such as failure monitoring and timely recovery of agents in the system.

In order to satisfy the system level policies, components with various functionalities may need
to be installed on agents in the domain. The component integration policies identify the constraints
and requirements for installing a component within an agent. A component when installed within an
agent may require co-location of other components in that agent. Components may depend on events
generated by components located in remote agents. An agent needs to interact with other agents in
order to satisfy the event subscription/notification requirements of its components.

In this approach, it is important to monitor policy violations and perform policy enforcement actions.
As new agents and components are deployed in such an environment, they need to be configured
according to the system-level policies. Similarly, when an agent/component is removed from the
system, due to failures or administrative reasons, appropriate reconfiguration actions are needed to be
executed to preserve the invariants implied by the policies. Therefore, arrivals and departures of agents
need to be monitored. System level services and mechanisms are required to monitor policy events
and execute the appropriate policy enforcement actions, which may involve execution of configuration
control functions.

In the policy-based design of the network monitoring system, the SMA performs the enforcement
of system level policies. The system level policies determine an agent’s functionality and interaction
relationships with the existing agents. High-level network monitoring goals are translated into policies
and given to the SMA in the form of event handlers for various kinds of policy events. The SMA
is responsible for evaluating policies and enforcing them when critical changes occur in the system
state. Policy enforcement actions may require the SMA to install/remove components on agents in the
system. The SMA maintains a configuration database for obtaining information about agents. Various
agent-related queries can be performed on this database. Examples of such queries are, finding all
agents in the system having a particular attribute, or finding an agent having certain specific set of
attributes.

Agent servers report the creation or arrival of new agents to the SMA. The policy enforcement
action corresponding to the AgentArrival events consists of deploying appropriate detectors and

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 503

handlers according to these policies. Each agent is also deployed with the appropriate event
subscription/notification policies for establishing event relationships with other agents in the system.
The policy enforcement action may also require the SMA to inform some of the existing agents about
the arrival of a new agent, thus facilitating event subscription from the newly deployed agent.

Another type of policy event in the system corresponds to the failure of an agent or its components.
The mechanisms for failure detection are discussed in the next section. To restart a failed agent, the
SMA creates, configures, and relaunches the agent to an appropriate host, according to the system level
policies. The autonomic mechanisms for restoring a restarted agent’s event subscription/notification
relationships are detailed in the following section. In our approach, an important design principle is
to require each restarted agent to perform its own state recovery, so that the SMA is only minimally
involved in maintaining any information about an agent’s state. Similarly, components within an agent
should be designed to reconstruct their execution state, through checkpoints or other mechanisms such
as soft-state [11,12].

In the following sections we present examples of some of the policies used in the network monitoring
system that are derived from the high-level monitoring goals. In general, the policies derived from a
given set of high-level requirements reflect a specific design approach to achieve those requirements.

4.1. Requirement 1

One of the robustness requirements of the network monitoring system is that all the agents in the
system should be monitored for failures. Each agent should contain a heart-beat monitor component
and should send AgentAlive events to an agent containing the AgentFailure detector. The following
policies are derived from the above requirement. These policies reflect a specific design approach in
which a set of agents is responsible for detecting the failures of all other agents. Some other design
approach would result in a different set of policies.

1. All agents should be deployed with the AgentAlive detector.
2. There should be at least two agents deployed with the AgentFailure detector. These agents will

act as failure detector agents for all other agents in the system and also for one another.
3. All agents should send locally generated AgentAlive events to the failure detector agents.

The SMA enforces the above policies by performing the following actions. On receiving an agent-
arrival notification, the SMA installs the AgentAlive detector on the agent. The first two agents arriving
in the system are designated as the failure detector agents (FDAs) for all other agents. FDAs establish
event subscriptions with all other agents for AgentAlive events. If one of the FDA fails, the SMA
designates another agent for performing the failure detection function. The new FDA subscribes
AgentAlive events from all the agents present in the system.

4.2. Requirement 2

One of the network monitoring goals is to detect abnormally high numbers of root-login activities
(successful/unsuccessful attempts) in the entire domain in a specified interval of time. This goal is
translated into the following policies.

1. All agents in the system should contain the Login detector.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

504 A. R. TRIPATHI ET AL.

2. All the components required to detect the RootLogin event should be installed on the agent
monitoring a host. These components correspond to the detectors presented in Figure 4.

3. At least one agent should be deployed with the AbnormalRootLogin detector in the system.
This is the root login correlator agent.

4. All the agents should send locally detected root login events to the root login correlator agent.

The SMA enforces the above policies by performing the following actions. On receiving an agent-
arrival notification, the SMA installs on the agent all the necessary detectors for root login detection.
It also designates the first arriving agent as the root login correlator agent. This root login correlator
agent subscribes RootLogin events from each subsequently arriving agent. If the root login correlator
agent fails, the SMA designates another existing agent as the root login correlator agent. The new root
login correlator agent then subscribes to RootLogin events from all the agents in the system.

4.3. Requirement 3

One of the goals of the network monitoring system is to continuously monitor the local network traffic
involving the protocols and the ports listed in the alerts posted in the known attack vectors on the CERT
Web site [13]. The following policies are derived from this requirement.

1. There should be a monitoring agent in the system that continuously monitors the CERT Web site
to find new alerts listed on the site. This agent generates CERTalert events corresponding to any
new (protocol, port) appearing in any new alerts listed on the CERT Web site.

2. There should be at least one agent monitoring the network traffic involving vulnerable port
numbers appearing in the alerts posted on the CERT Web site. This agent should subscribe to
the CERTalert events generated by the agent monitoring the CERT Web site. On receiving such
an event, it should appropriately update its rules for monitoring the network traffic. On detecting
such traffic, it should generate an appropriate alarm for the system administrators.

The SMA enforces the first policy by installing on any one of the agents in the system a detector that
periodically monitors the CERT Web site. If this agent fails then one of the other agents is deployed
with this detector.

The second policy is enforced by creating and launching an agent that uses the Snort [14] utility to
monitor the network traffic with rules that check for traffic using any of the vulnerable (protocol, port)
pairs listed on the CERT Web site. There is an administrative constraint in our domain, which requires
that any agent dealing with network traffic should run only on the host that also runs Snort [14],
a packet filtering application. This constraint dictates the failure handling policy for this agent—it can
be restarted only on the hosts that run Snort.

4.4. XML-based policy specification framework

We have developed and implemented an XML-based policy specification framework for describing
system level policies that are enforced by the SMA. The design of this XML policy specification
framework has been driven by the requirements for performing policy-based autonomic management,
and is based on the Event–Condition–Action (ECA) model [15]. It closely resembles policy languages
such as Ponder [16] and PDL [17].

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 505

1. <POLICY>
2. <ONEVENT>
3. <EVENT NAME=“Event1”/>
4. <EVENT NAME=“Event2”/>
5. <POLICY-ACTION>
6. <DEFINITION OBJECT=“Object-Name”> ...
7. </DEFINITION>
8. <RULE>
9. <CONDITION> . . .
10 </CONDITION>

11. <ACTION OBJECT=“Object-Name”>
12. <OPERATION NAME=“Operation-Name” . . . />
13. </ACTION>
14. </RULE>
15. </POLICY-ACTION>
16. </ONEVENT>
17.</POLICY>

Figure 6. Policy example template.

The most important functional requirement of a policy-based system is to be able to monitor policy
violations, and perform policy enforcement actions if any policies are violated. A set of policy-events
need to be identified, the occurrence of which may signify policy violations. Policy enforcement actions
consist of performing certain actions on a set of components satisfying particular criteria.

4.4.1. Policy specification

The policy definition construct is based on the ECA model. It defines a set of events that would trigger
the evaluation of the condition that determines if a set of policy enforcement actions are needed to be
performed. The condition–action part is called the rule of the policy. As shown in Figure 6, a policy
definition is enclosed within the POLICY tags. A set of such policy definitions may be specified for a
system. Within the ONEVENT tags, one or more trigger events are defined with the EVENT tag and
the RULE part of the policy is defined within the POLICY–ACTION tag. The POLICY–ACTION may
also contain definitions of sets of agents selected from the configuration database, satisfying certain
properties. A set of agents is defined and selected using the constructs supported by the DEFINITION
and SELECT tags. The condition and action part of the rule can perform operations on such a set
of agents. The RULE part of a policy contains the CONDITION and ACTION tags defining the
condition–action pair, as detailed below. In the configuration database, a table named AGENT-SET
holds information about all the agents present in the domain at any given time.

4.4.2. Condition specification

A boolean condition can be defined for the state of an agent or a set of agents through the CONDITION
tag. With the condition construct one can test the attribute of an object or the properties of a set,

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

506 A. R. TRIPATHI ET AL.

1. <DEFINITION SET=“FDA-SET”>
2. <SELECT FROM=“AGENT-SET” QUALIFIER=“ALL” OBJECT=“X”>
3. <CONDITION>
4. <EQUAL>
5. <ATTRIBUTE OBJECT=“X” NAME=“ROLE”/>
6. <STRING VALUE=“FDA”/>
7. </EQUAL>
8. </CONDITION>
9. </SELECT>
10. </DEFINITION>

Figure 7. FDA set definition.

such as set cardinality and set membership or subset relationships. A condition definition is used as
a part of the RULE construct to specify the condition for an action execution, and in the SELECT
construct for selecting a set of agents from the configuration database satisfying the given condition.
An example of the condition construct with SELECT is shown in Figure 7 (lines 3–8). This condition
evaluates to true if the attribute ROLE of the object X has the value equal to FDA.

4.4.3. Object definition

An object can be defined to represent a set of components selected from the configuration database,
satisfying certain criteria. A unique name can be defined to refer to such an object through the
DEFINITION tag. A SELECT tag can be used to perform selection operations on the configuration
database. A SELECT tag has three attributes: (1) attribute FROM to specify the set from which
selection should be made; (2) attribute QUALIFIER to specify the number of components that should be
selected; and (3) attribute OBJECT to refer to each individual component of the configuration database.
A SELECT tag may optionally enclose a CONDITION tag specifying the condition that needs to be
satisfied for the component to be selected. For example, in Figure 7 a set FDA-SET is defined to refer
to a set created by selecting all the agents from the set AGENT-SET that have the ROLE attribute value
equal to FDA.

4.4.4. Policy enforcement action specification

Policy enforcement is specified through the RULE tag in the specification framework. A RULE
specifies two things: (1) a CONDITION tag specifying the system state denoting a policy violation
condition; and (2) a set of policy enforcement actions specified through a list of ACTION tags.
These actions are performed only when the condition is true. A condition can be empty in which
case it is considered as being true.

An ACTION tag may specify the name of an OBJECT on which one or more operations are
performed. Each operation is specified through the OPERATION tag. Multiple such operations may be
enclosed in a single ACTION tag. Parameters for each operation may be different and such parameters
are specified through the attributes of the OPERATION tag. If the object specified in the ACTION tag

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 507

represents a set of agents or components, the operations of the action are performed on each member
of the set. If no object is specified, the operation name represents a system-defined function.

We will now show three examples of actions to demonstrate different aspects of the ACTION
construct.

• An action consisting of the installation of an AgentAliveEvent detector and handler on an object
named NEW-AGENT can be written as follows:

<ACTION OBJECT=“NEW-AGENT”>
<OPERATION NAME=“INSTALL” DETECTOR=“AgentAliveEventDetector”

HANDLER=“AgentAliveEventHandler”/>
</ACTION>

• An action consisting of setting up event subscription between the objects of the set named
FDA-SET and an agent named NEW-AGENT is shown below. The set of operation attributes
specified for this example are different to those used in the first example:

<ACTION OBJECT =“FDA-SET”>
<OPERATION NAME=“SUBSCRIBE” EVENT=“AgentAliveEvent”

FROM=“NEW-AGENT”/>
</ACTION>

• An action that does not specify any object is shown below. This action consists of a system-
defined operation for generating an event of a particular type, in this case FDAFailureEvent:

<ACTION>

<OPERATION NAME=“GENERATE-EVENT” EVENT=“FDAFailureEvent” />
</ACTION>

4.4.5. Example policy specification

In Figures 7–10 we present the policy specification for Requirement 1, as stated in Section 4.1. Figure 7
presents the definition of the set FDA-SET. This set is formed by selecting all the agents in the domain
for which the ROLE attribute value is equal to FDA. This set is referenced by all the three policies in
Figures 8–10. Hence the definition of the set is specified as a global definition. It is evaluated in the
context of the policy in which it is included.

Figure 8 denotes a policy that is triggered by NewAgentArrivalEvent corresponding to the arrival
of a new agent in the domain. The purpose of this policy is to configure the arriving agent correctly
according to the high level requirements. An object with the name NEW-AGENT is defined to refer
to the arriving agent (line 6). The value of the attribute URN for the NewAgentArrivalEvent is
assigned to this object (lines 7–9). The policy enforcement corresponding to this event consists of
two actions specified through the RULE construct (lines 11–20). The first action consists of installing
an AgentAliveEvent detector and handler on the newly arrived agent (lines 13–15). The second action

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

508 A. R. TRIPATHI ET AL.

1. <POLICY>
2. <ONEVENT>
3. <EVENT NAME=“NewAgentArrivalEvent”/>
4. <INCLUDE-DEFINITION NAME=“FDA-SET” />
5. <POLICY-ACTION>
6. <DEFINITION OBJECT=“NEW-AGENT”>
7. <ACTION OBJECT=“NewAgentArrivalEvent” >
8. <OPERATION NAME=”GET-ATTRIBUTE” ATTRIBUTE=“URN”/>
9. </ACTION>
10. </DEFINITION>

11. <RULE>
12. <CONDITION/>
13. <ACTION OBJECT=“NEW-AGENT”>
14. <OPERATION NAME=“INSTALL” DETECTOR=“AgentAliveEventDetector”

HANDLER=“AgentAliveEventHandler”/>
15. </ACTION>
16. <ACTION SET =“FDA-SET”
17. <OPERATION NAME=“SUBSCRIBE” EVENT=“AgentAliveEvent”
18. FROM=“NEW-AGENT”/>
19. </ACTION>
20. </RULE>
21. </POLICY-ACTION>
22. </ONEVENT>
23.</POLICY>

Figure 8. Agent arrival policy.

consists of setting up event subscription/notification for AgentAliveEvent between this agent and the
agents in the FDA-SET (lines 16–19).

Figure 9 denotes a policy that is triggered by AgentFailureEvent. The purpose of this policy is to filter
the AgentFailureEvent to determine if it corresponds to the failure of a FDA agent. Correspondingly,
the object FAILED-AGENT is defined that refers to the URN of the failed agent (lines 5–9). The policy
evaluation rule specifies the condition (lines 11–13), which evaluates to true if the FAILED-AGENT
is a member of the set FDA-SET. The action specified for this policy consists of generating the
FDAFailureEvent (line 15).

The purpose of the policy specified in Figure 10 is to configure the failure detector agents in the
domain. It is triggered by two events: NewAgentArrivalEvent (line 3) and FDAFailureEvent (line 4).
The DEFINITION construct (lines 6–15) creates an object with the name SOME-AGENT that refers
to any agent from the agent database for which the ROLE attribute value is not equal to FDA.
The RULE construct (lines 16–28) specifies the policy violation condition (lines 17–22) and the policy
enforcement actions (lines 23–27). The boolean condition checks if the cardinality of the (FDA-SET)
is less than two.

Three operations are specified to be performed on the agent identified with SOME-AGENT. The first
operation consists of installing FailureEventDetector and FailureEventHandler on this agent (line 24).
The second operation consists of setting the value of the attribute ROLE to FDA for this agent (line 25).

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 509

1. <POLICY>
2. <ONEVENT>
3. <EVENT NAME=“AgentFailureEvent”/>
4. <POLICY-ACTION>
5. <DEFINITION OBJECT=“FAILED-AGENT”>
6. <ACTION OBJECT=“AgentFailureEvent” >
7. <OPERATION NAME=“GET-ATTRIBUTE” ATTRIBUTE=“URN”/>
8. </ACTION>
9. </DEFINITION>
10. <RULE>

11. <CONDITION>
12. <ISMEMBER SOURCE=“FAILED-AGENT” TARGET=“FDA-SET”/>
13. </CONDITION>
14. <ACTION>
15. <OPERATION NAME=“GENERATE-EVENT” EVENT=“FDAFailureEvent” />
16. </ACTION>
17. </RULE>
18. </POLICY-ACTION>
19. </ONEVENT>
20. </POLICY>

Figure 9. FDA failure event generation policy.

The third operation consists of setting the subscription for AgentAliveEvent between this agent and all
the other agents present in the system (line 26).

For the first two agents arriving in the domain, the condition specified in lines 17–22 is satisfied.
This will trigger the set of operations specified in lines 23–27. This will cause the newly arrived agent,
identified by SOME-AGENT, to become the FDA. For all the subsequent agents this condition will not
be satisfied as there will be two FDAs already present in the domain.

This policy is also triggered by the FDAFailureEvent that is generated when one of the FDAs fails.
This will cause the condition specified in lines 17–22 to become true. Some other agent will be selected
to become the FDA. The policy enforcement action in line 26 will ensure that this new FDA will get
AgentAlive events from all the agents in the domain, including the other FDA. Multiple policies that
are triggered by the same event are processed in the order in which they are deployed in the domain.
In the network monitoring system the policy in Figure 8 is deployed before the policy in Figure 10.
This causes policy in Figure 8 to be evaluated first on the receipt of NewAgentArrivalEvent.

5. AUTONOMIC CONFIGURATION AND RECOVERY OF AGENTS

We describe here the autonomic mechanisms for configuration and recovery of agents. Our design was
driven with the goal of performing autonomic recovery and repair of failed agents within a short time-
span, typically in the range of a few minutes. The primary objective is to perform the recovery and

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

510 A. R. TRIPATHI ET AL.

1. <POLICY>
2. <ONEVENT>
3. <EVENT NAME=“NewAgentArrivalEvent”/>
4. <EVENT NAME=“FDAFailureEvent”/>
5. <INCLUDE-DEFINITION NAME=“FDA-SET”/>
6. <DEFINITION OBJECT=“SOME-AGENT”>
7. <SELECT FROM=“AGENT-SET” QUALIFIER=“ANY” OBJECT=“X”>
8. <CONDITION >
9. <NOTEQUAL>
10. <ATTRIBUTE OBJECT=“X” NAME=“ROLE”/>
11. <STRING VALUE=“FDA”/>
12. </NOTEQUAL>
13. </CONDITION>
14. </SELECT>
15. </DEFINITION>
16. <RULE>
17. <CONDITION>
18. <LESS-THAN>
19. <ATTRIBUTE OBJECT=“FDA-SET” NAME=“SIZE”/>
20. <INTEGER VALUE=“2”/>
21. </LESS-THAN>
22. </CONDITION>
23. <ACTION OBJECT=“SOME-AGENT”>
24. <OPERATION NAME=“INSTALL” DETECTOR=“FailureEventDetector”

HANDLER=“FailureEventHandler”/>
25. <OPERATION NAME=“SET-ATTRIBUTE” ATTRIBUTE=“ROLE”

VALUE=“FDA”/>
26. <OPERATION NAME=“SUBSCRIBE” EVENT=“AgentAliveEvent”

FROM=“AGENT-SET”/>
27. </ACTION>
28. </RULE>
29. </POLICY-ACTION>
30. </ONEVENT>
31. </POLICY>

Figure 10. FDA regeneration policy.

repair of failed agents rather than diagnose the failures. This is to ensure continued monitoring of the
infrastructure resources by minimizing human intervention in repairing failures.

Our monitoring system achieves robustness by incorporating mechanisms for self-monitoring and
self-configuration at different levels of the system architecture. The event detection, correlation, and
notification mechanisms presented in the previous sections are used as the basic building blocks for
failure detection. The publish–subscribe model is used for notifying failure conditions to other agents
that need to participate in recovery and reconfiguration. Our design relies on the periodic monitoring
of an agent for failure conditions and the continuous generation of the failure events until either the

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 511

failed agent is repaired or the system administrator performs explicit configuration changes to bypass
the failure.

5.1. Failure modes and recovery requirements

The various failure modes in our system include host failures, agent server failures, agent failures, and
detector failures within an agent. Agent servers or hosts may crash bringing down the entire set of
monitoring mechanisms at that host.

The agents themselves could fail in many different ways, and in many cases the causes of the failures
would be unpredictable. An agent may completely fail and stop communicating with other agents.
An agent may also incur partial failures. Each detector, which runs as a separate thread within an
agent, could fail and stop performing its monitoring functions. In our system, a failed detector in an
agent can be remotely un-installed and replaced with a new detector by an agent performing recovery
actions. It is also possible to remotely terminate a failed agent and create a new one in its place.

The state of an agent consists of various detectors and its event communication relationships
with other agents in the system. With the policy-based approach, the SMA does not maintain any
checkpointed configuration state of any agent for recovery. The goal of the policy-based techniques is
to appropriately configure an agent on its restart. Moreover, an agent is responsible for checkpointing its
state that needs to be preserved across a failure and restart. In the network monitoring system, most of
the detectors are either state-less or they maintain soft state [11,12], which can be reconstructed through
interactions with other agents during recovery. Information about any new subscriptions registered by
an agent during its execution is not checkpointed. This also forms the soft state, which is recreated on
restart, as detailed below. The motivation for this is to keep the checkpointing overhead low for the
agents.

Many of the detectors in our system generate events by periodically monitoring the system log-files
for new events recorded in them by the host operating system. The soft state of a detector monitoring
a log-file consists of the position offset in the log-file for the last processed event. To restore this state
on restart, the detector needs to determine the most recent event that it processed from the log-file.
One approach to determine this information is by querying the event subscribers. The other approach
is that the detector explicitly stores its current position offset in a local checkpoint file.

5.2. Agent-level self-configuration

The self-configuration mechanism of an agent involves integration of detectors/handlers within an
agent, and registering event subscriptions at remote agents.

5.2.1. Agent level self-monitoring

Agent-level self-monitoring is required to ensure that various components deployed on the agent are
functioning properly. Each agent is equipped with an AgentAlive detector, which periodically checks
the internal state of the agent and generates appropriate heart-beat AgentAlive events to indicate the
health of the agent. An AgentAlive event contains three items: (1) a list of detectors that are considered
to be correctly functioning in the agent; (2) the list of its current subscriber agents and the events that
they are subscribing to; and (3) a current configuration number. Whenever an agent’s configuration

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

512 A. R. TRIPATHI ET AL.

is changed with the addition/deletion of a detector or a subscriber, this number is incremented.
This number is also incremented when an agent is re-launched on recovery. The purpose of the
configuration number is two-fold: first, it makes sure that the subscribers of an AgentAlive message
become aware of any configuration changes, and the failure detector agents are able to ignore any
AgentAlive events related to old configurations.

5.2.2. Detector self-configuration

Detector configuration policies identify how the detectors co-located within an agent should be
configured. Detectors are required to be designed to be self-configurable within an agent, and each
agent provides a generic framework for self-configuration of its components when created or restarted.
Each detector’s code specifies the names of its default-triggering events. When a new event detector
is installed in an agent, the configuration dependencies of that detector are resolved by the agent by
establishing event subscription relationships with other agents in the system.

5.2.3. Self-configuration of event subscriptions

When an agent is restarted at a host, it does not have any information about its subscriber agents.
The subscribers are required to register themselves with the event publishers to get the events of
interest. Therefore, when an agent failure is detected, it is required that all of its subscribers are notified
of this failure event. To facilitate this, each AgentAlive event from an agent also contains the list of its
current subscribers. On detecting an agent failure, the FDA sends the AgentFailure event to all the
subscribers of the failed agent. On receiving this AgentFailure event, a subscriber agent puts the failed
agent’s name and the list of subscribed events from that agent in the Outstanding Subscription List.
Its Subscription Manager thread then periodically attempts to re-register these event subscriptions with
the failed agent, until successful.

5.3. Peer-to-peer cooperative failure detection and recovery by agents

Any agent in the system can perform the function of detecting the failure of another agent if it has
an AgentFailure detector object. It only needs to subscribe to the AgentAlive events from the agents it
wants to monitor. Similarly, any agent can be entrusted with the task of performing the recovery of a
failed agent if it has the appropriate handler object for the corresponding AgentFailure event.

The function of the AgentFailure detector is to detect an agent failure condition and generate an
AgentFailure event. This event indicates either a crash-failure of an agent (e.g. due to a host crash)
or a partial failure, indicating failures of a subset of the components within an agent. The execution
of the failure detector is triggered either by a local timer or by a remote AgentAlive event, as shown
in Figure 5. An agent containing the AgentAlive detector periodically generates the AgentAlive events.
These are sent to one or more agents responsible for detecting this agent’s failure.

An AgentFailure detector receives these periodic AgentAlive events. It also has configuration
information for each agent, and its function is to process the AgentAlive events and generate failure
events. The absence of a certain number of consecutive AgentAlive events from an agent indicates a
crash-failure. On the other hand, failure of a detector within an agent is deduced by comparing the
list of currently present detectors reported in an AgentAlive event with the reference configuration for

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 513

AgentAlive
Detector Detector

AgentFailure EventsEvents Handler for

(Recovery Action)
AgentFailure

AgentAlive AgentFailureAgent A Agent B Agent C

Restart/reisntall the agent or its failed components

Failure Detector Agent (FDA) Recovery Agent (RA)Agent of Interest (AOI)

Figure 11. Model for peer-based cooperative recovery.

that agent, which is created whenever the configuration number in the AgentAlive event from an agent
increases. Based on any mismatch detection, a partial-failure event is generated containing a list of the
failed components.

An example pattern using the basic model for peer-to-peer failure detection and recovery is shown
in Figure 11. Here agent A is our agent-of-interest (AOI), which is to be made resilient. Subject to
the security constraints and other policies, either the configuration service or agent A itself assigns
the task of detecting A’s failure to agent B and the recovery task to agent C. Here B serves as the
FDA and C functions as the recovery agent (RA) for agent A. For implementing these interactions,
an AgentAlive detector is installed in A, an AgentFailure detector is installed in B, and a handler for
AgentFailure events is installed in C. Agent B generates AgentFailure events if it stops receiving any
AgentAlive events from A, or if the reported set of functioning detectors in the AgentAlive events
deviates from the agent’s reference configuration. The AgentFailure events are continuously generated
at some fixed interval until an AgentAlive event from A is once again received by the failure detector
in B. These failure events are being received by agent C, in which a handler for these types of events
is installed. This handler performs recovery of A by either restarting the agent or re-installing any of
its failed detectors. Here it should be noted that the failure detectors are persistent in continuously
reporting failure events until recovery is completed. This implies that the handler performing the
recovery action needs to be designed to perform the recovery action only once, even when it continues
to receive the failure events during the execution of the recovery action. It should also be noted that
this peer-based cooperative recovery is programmed using the basic event-handling model presented
in Section 2.2. No new or additional mechanisms are required.

There can be multiple agents performing the failure detection and recovery functions for an agent.
The above example can be further enriched to make the failure detector and recovery functions resilient
by implementing them using a group of agents, as shown in Figure 12. In such a configuration, no
coordination is needed among the FDAs. All of them independently detect and report any failure event.
However, the recovery agents need to coordinate their actions if an AgentFailure event is reported. If the
recovery actions are not idempotent, then only one of the recovery agents should perform these actions.
For example, the agents in a group may follow the protocol that the agent with the smallest (or the
largest) id executes the recovery actions. The agents in a group can maintain the current list of group
members using the Konark event model and using AgentAlive events. Different patterns of interactions
between agents and their failure detectors can be specified as system wide policies. The handling of
other forms of failures, such as host failures and agent server failures, requires manual intervention.
Agent servers can be remotely started on a host if the SSH daemon is running on it.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

514 A. R. TRIPATHI ET AL.

RA1

RA2

FDA1

FDA2

Group of
Failure Detector Agents Recovery Agents

Group of

AgentFailure
Events

AgentAlive
Events

Recovery
CoordinationAOI

Figure 12. Cooperative agent groups for failure detection and recovery.

Heart beat events
Agent Failure events

Agent failureLEGEND

F D A

(3) SMA Failure event

(2) SMA Failure

Checkpoint File

Check Pointing

SMAAgentAlive event

S R A

relaunch
(4) A

gent

(1) Subscribed

SMA

Database

Figure 13. Failure recovery of the SMA.

5.4. Recovery of system management agent

The robustness of the SMA can be achieved by either replicating it, or periodically checkpointing the
SMA and using another agent to recover the failed SMA. In our design we used the second approach
as the state of the SMA gets modified infrequently. Moreover, we wanted to use the same mechanisms
to recover the SMA as used for the failure recovery of the other agents in the system. Figure 13 shows
the recovery of the SMA. One of the agents is assigned the function of recovering a failed SMA.
This agent is called the SMA Recovery Agent (SRA). Both the SMA and the SRA subscribe to each
other’s AgentFailure events from the FDAs. These two agents execute on different hosts. Any agent
can perform the task of the SRA by appropriately installing the required handler to perform SMA
recovery when it receives an AgentFailure event for the SMA. This handler creates the SMA using its

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 515

most recent checkpoint file and launches it to another host for execution. To recover the failed SRA,
the SMA restarts it exactly as in case of any other agent.

6. EXPERIMENTAL EVALUATION OF POLICY-BASED MECHANISMS FOR
AUTONOMIC CONFIGURATION AND RECOVERY

In this section we evaluate the policy-based mechanisms of Konark framework along two dimensions.
First, we evaluate the policy-based design of the network event monitoring application. Second, we
evaluate the performance of Konark’s mechanisms for autonomic configuration and failure recovery.

In all our experiments we use Intel i686 machines running Linux 2.4.27-5-686-smp for deploying
SMAs and FDAs. Monitoring agents are run on 10 SUN sparc machines (sun4u sparc SUNW,
Sun-Blade-100/Sun-Blade-1500) running SunOS 5.8. Every experiment, corresponding to any given
agent configuration, was run up to 10 times to ensure that the 90% confidence interval was within 10%
of the reported average values.

6.1. Evaluation of policy-based network monitoring system

The goal of this evaluation was two fold: first, we wanted to evaluate the practicality of the policy-
based design for agent-based network monitoring in a real world environment. Second, we wanted to
evaluate the performance of the policy-based approach in comparison to our non-policy-based original
approach. Specifically, the policy-based system could become a practical design option only if it
performed at least as good as the non-policy-based design. With these objectives, we performed the
experiment of deploying the complete configuration in our testbed environment using both policy-
based and non-policy-based approach.

The network event monitoring system is used for monitoring 20 hosts in our Department’s Graduate
Lab environment. These machines are monitored for the following critical events: runaway processes,
processes running with root privileges, abnormal root logins from outside the domains, multiple root
logins within a specified interval on any host, multiple root logins within a specified time on more
than one host, and correctly running daemon services. Detectors and handlers corresponding to these
monitoring requirements are deployed on agents running on each host.

In our initial design, the SMA was provided with this information through a set of configuration
files. It created, configured, and launched agents to all the hosts. For the robustness requirement, each
agent was also deployed with an AgentAlive detector. One agent was deployed with the AgentFailure
detector and was also configured to receive AgentAlive events from other agents. This agent sent the
AgentFailure events to the SMA, who in turn launched the agents to the appropriate hosts. Observed
times for configuring the entire system, consisting of 20 agents each deployed with 10 detectors, were
in the range of two to three minutes.

In the policy-based design, the high-level network monitoring goals remain the same. The policy-
based design differs from the earlier design in the way agents are configured and launched in the
environment. In this design, agent servers on each host start the agents and notify their arrival to the
SMA. These agent arrival notifications are the policy events in the system. The SMA handles the policy
events by deploying detectors and handlers corresponding to the previously mentioned monitoring
requirements. Thus in the policy-based design, the participation of the SMA is kept to a minimal level.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

516 A. R. TRIPATHI ET AL.

The average time for configuring the entire system, consisting of 20 agents each deployed
with 10 detectors, in the policy-based approach was 29.38 seconds (standard deviation 0.99).
This improvement in the system configuration time for the policy-based design occurs because
the SMA is no longer required to configure and launch agents in the environment. Extending the
configuration of the system is also straightforward in the policy-based approach. Any new agent that
needs to be deployed in the system needs to know only the URN of the SMA. Once the agent contacts
the SMA, it is configured correctly according to the system-wide policies. Thus no modifications
are required in any of the configuration files making the task of adding a new agent extremely
straightforward.

6.2. Performance evaluation of autonomic mechanisms for configuration and recovery

We evaluate the performance and scalability of the mechanisms for autonomic configuration and failure
recovery by seeking answers to the following questions related to Konark’s performance.

1. What is the cost of configuring large number of agents? The configuration cost is a key piece
of information that is useful in making configuration design decisions for large agent systems.
With this information, a system administrator can design different clustering strategies to satisfy
the configuration constraints corresponding to the system monitoring goals. We consider the case
of flash-arrival of agents in the experiments. This corresponds to large number of agents arriving
within a short period.

2. What is the performance of autonomic mechanisms for failure detection and recovery? Failure of
an agent/component can lead to a potential policy violation. Failure detection and recovery cost
provides an indication of the delay in taking corrective actions corresponding to the potential
policy violations due to the failure. We consider the case of flash-crash of agents in the
experiments. This corresponds to a large number of agents failing together.

6.3. Autonomic configuration

We ran a single SMA in the domain and varied the arriving agent population from 200 to 1000 agents
by varying the number of agents started on each machine between 20 and 100 for each successive
experiment. Two FDAs were run at a known location in the system. Each injected agent was provided
with the location information of the SMA. Each agent reported its arrival to the SMA. On receiving
arrival notification from an agent, the SMA deployed an AgentAlive detector and handler on that
agent. Each agent was configured to generate AgentAlive events at a period of 10 seconds and send
these events to the FDAs. Each unique AgentAlive event received by the FDAs was time-stamped for
performance measurements. The system configuration time for an agent population of a given size was
measured as the difference between the receipt of first agent arrival notification by the SMA to the
receipt of the last unique AgentAlive event at the FDAs.

Each arriving agent has to look-up the Ajanta Name Registry to translate URNs of the SMA and the
FDAs to their respective URLs. Similarly, the SMA has to translate the URN of the incoming agent
to its URL in order to deploy components on the agent. The system configuration time is measured
as the time from the first agent arrival until the reception by the FDA of the first AgentAlive event
from the last agent created in the system. This includes the time spent by the arriving agent and the

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 517

 300

 250

 200

 150

 100

 50

 1000 800 600 400 200

T
im

e
(s

ec
on

ds
)

Number of Agents

Effect of Clustering on Agent Configuration

Two clusters
Single cluster

Figure 14. Agent population configuration time.

SMA in the translation process within the Name Registry. Our initial experiments indicated that the
Ajanta Name Registry was the performance bottleneck due to the costs imposed by the authenticated
communication.

The goal of this experiment was to measure the autonomic configuration performance and aid system
administrators in developing suitable clustering strategies for deploying large-scale agent systems.
Correspondingly, we compared performance of the system deployed with one and two clusters. All the
agents belonging to a single Ajanta namespace are part of one cluster. Two clusters were created by
creating two separate Ajanta namespaces managed by two different Ajanta Name Registries. Figure 14
shows the variation of agent population configuration time for different agent populations for the one
and two cluster systems.

This agent configuration behavior can be used as a guideline for satisfying the high-level
performance goals related to the configuration of large agent systems. For example, consider a system
that consists of 600 agents and has a high-level goal that the system configuration time should not
exceed 50 seconds. From Figure 14 we see that this constraint can be satisfied by creating two clusters.
On the other hand, a single cluster is able to handle only 300 agents within the specified performance
constraint.

6.4. Autonomic failure recovery

In the second set of experiments, we evaluated failure recovery characteristics. Each agent was
configured to report AgentAlive events to the FDAs after every 10 seconds. FDAs generated the first
AgentFailure event on missing three consecutive AgentAlive events from an agent. This AgentFailure
event was sent to the SMA, which then created and relaunched the agent to the appropriate agent server.
After the agent is relaunched it contacted the SMA to indicates its arrival in the domain. The SMA then
configured it with the AgentAlive detector and handler.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

518 A. R. TRIPATHI ET AL.

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 1000 800 600 400 200

 35000

 30000

 25000

 20000

 15000

 10000

 5000

T
im

e
(s

ec
on

ds
)

N
um

be
r

of
 F

ai
lu

re
 M

es
sa

ge
s

Number of Agents

Effect of Clustering on Agent Failure and Recovery

Two clusters
Single cluster

Failure Message Count

Figure 15. Failure recovery: total time and number of AgentFailure events generated.

Failure detection and recovery time is measured as the difference of time between the reception
of the first failure event and the first AgentAlive event from the last restarted agent after the first
failure event has occurred. The period of AgentAlive event generation and the threshold number of
missed AgentAlive events leading to AgentFailure event generation, can affect the failure detection time.
Hence we measure recovery time after receiving the first AgentFailure event so that it is independent
of these factors.

A driver program was used for remotely terminating agents running on an agent server without
terminating the agent server itself. This driver program used the remote agent termination API
provided by the Ajanta system. Figure 15 plots the failure recovery time for different agent populations
configured as one and two cluster systems.

The effect of clustering on the failure recovery performance is clearly seen from these experiments.
The Ajanta Name Registry is involved in the following steps of failure recovery process. First, the
driver program has to obtain the agent references for killing the agents. Second, the SMA has to obtain
the references of the agent server on which the failed agents need to be relaunched. Third, each restarted
agent needs to contact the SMA and FDAs according to the agent arrival protocol. When the system
was deployed as a single cluster system, the system was able to handle failure recovery of only 600
agents within the specified time limit of 10 minutes. On the other hand, with two clusters the system is
able to handle failure recovery of 1000 agents in 7 minutes and 18 seconds.

This agent failure recovery behavior can be used as a guideline for satisfying the high-level
performance goals related to the failure recovery of large agent systems. For example, consider a
system that consists of 600 agents and has a high-level goal that the failure recovery time should not
exceed three minutes. From Figure 15 we see that this constraint can be satisfied only by configuring the
system as two cluster system. With two clusters, the system is able to recover 600 agents in 165 seconds.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 519

On the other hand, a single cluster can handle failure recovery of only 200 agents within the specified
performance constraint.

Comparing Figures 14 and 15 we see that the failure recovery time for a given agent population is
greater than the corresponding agent population configuration time. In our design, the failure recovery
time contains two components: the time required for creating and launching the agent by the SMA
after receiving failure notification, and the time required for remotely configuring the agent once the
agent has been deployed in the system. The agent configuration time is same in both the cases: initial
configuration and configuration after failure recovery. Additional time incurred by the failure recovery
process corresponds to the time taken by the SMA to remotely launch failed agents.

Each FDA keeps on generating the AgentFailure events until it receives an AgentAlive event from the
restarted agent. Such persistent generation of AgentFailure events can lead to lot of processing overhead
at the SMA. There is a tradeoff between the continuous generation of AgentFailure events and the
timely restarting of the failed agent. At one extreme only a single AgentFailure event can be generated
by the FDA. However, if this event gets lost in communication then the agent will not be restarted at all.
Such a tradeoff is a matter of robustness policy within the domain. In our experiments, we implemented
the policy of exponentially delaying the generation of successive AgentFailure events. Figure 15 plots
the number of AgentFailure events generated during the failure recovery in the two cluster system. The
average number of AgentFailure events generated during failure recovery of 1000 agents was 36 668.
During the failure recovery process, agents that are launched early start sending AgentAlive events to
the FDA. For the 1000 agent configuration, the average number of such AgentAlive events generated
during the failure recovery period was 3525. Thus a total of 40 193 events were generated during the
failure recovery of 1000 agents. On the other hand, the average number of AgentAlive events generated
in the same amount of time for 1000 agent configuration with no agent failures was 29 002. Thus there
was a 38% increase in the total number of events generated during the failure recovery process.

7. RELATED WORK

Agent-based systems have been proposed as a suitable software engineering paradigm for building
large-scale software systems [18]. The application of agent-based designs for building complex
control systems are elaborated in [19] with specific concerns for diagnosis and repair functions
needed in such systems to ensure robust operation. Management aspects of open multi-agent systems
have been addressed through a three-level model of organizational rules, organizational structures,
and organizational patterns in [20], and through the law governed interactions in [21,22]. Policies
used in this paper define rules of agent interactions similar to the organizational rules or the laws.
Similar notions have also been proposed in the context of normative multi-agent systems [23,24].
Other researchers have also considered using a policy-based approach for building agent systems [25].
In their approach policies related to roles, agent authorizations, and agent obligations are expressed
through the Ponder policy language and are enforced through an agent-based middleware.

Policy-based management of networked systems is a well-established field with considerable work
done in the development of policy specification languages [16,17]. The Internet Engineering Task Force
(IETF) has defined a common terminology [26] and an information model for network monitoring
policies [27]. The XML-based policy framework presented in this paper follows these efforts by
expressing the policies as ECA rules. Our policy specification framework is confined to agent-
based systems and closely follows the architectural mechanisms provided in the Konark framework.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

520 A. R. TRIPATHI ET AL.

The policy specification framework is not a general purpose framework as other policy specification
languages, such as Ponder [16] or PDL [17]. An advantage of using an XML-based approach is that
the policy specification schema can be easily extended with constructs corresponding to evolving
requirements.

Konark’s dynamic component integration model and event subscription/notification mechanism
supports dynamic configuration of peer-to-peer failure monitoring agents, ECA based-policy
expression and enforcement, and flexible inter-agent communication. Event-based publish/subscribe
systems have matured and are being used as the standard communication mechanism in distributed
systems [28–31]. We embed such an event subscription/notification mechanism within a mobile agent
paradigm. We use a soft-state approach [32] for failure recovery. In this approach, each agent is required
to maintain minimal amount of information necessary for recovery. This corresponds to the location
of the SMA in the system. Such an approach avoids the complexity of replica maintenance required in
replication-based agent fault tolerance [33].

The Konark framework provides capabilities for realizing the vision of autonomic computing
systems [1]. An architectural reference model for autonomic computing, consisting of component
interfaces for monitoring, testing, addition/modification of policies, negotiation, and binding, is
presented in [34]. The embodiment of these concepts into a working prototype system is presented
in [35]. They use goal-driven policies [36] to enable appropriate autonomic actions by the agents
in the system. The high-level functional and non-functional requirements presented in Section 4 are
similar to the notion of goals in goal-driven policies. We translate these high-level requirements into
action policies [36] which are enforced by the SMA.

8. CONCLUSIONS

In this paper we have presented an approach for building policy-based autonomic mechanisms for
configuration and recovery in agent-based systems. In this approach policies are defined based on the
ECA model and they are expressed in XML. The distributed event processing model of the Konark
framework is used for policy enforcement by the SMA. Distributed agents are used to monitor the
environment for events that may signify potential violation of policies. Such events are communicated
to SMA for enforcement actions. We have successfully integrated these autonomic mechanisms in a
distributed agent-based network monitoring application built using Konark. Experimental evaluations
using this system demonstrate both the feasibility and the scalability of this policy-based approach for
building autonomic and robust agent-based systems.

REFERENCES

1. Kephart JO, Chess DM. The vision of autonomic computing. IEEE Computer 2003; 41–50.
2. Tripathi A, Ahmed T, Pathak S, Carney M, Dokas P. Paradigms for mobile agent-based active monitoring. Proceedings

of the 2002 IEEE Networks Operations and Management Symposium (NOMS 2002), Florence, Italy, 2002. IEEE
Communication Society, 2002; 65–78.

3. Tripathi AR, Koka M, Karanth S, Pathak A, Ahmed T. Secure multi-agent coordination in a network monitoring system.
Software Engineering for Large-Scale Multi-Agent Systems 2002 (SELMAS 2002) (Lecturer Notes in Computer Science,
vol. 2603). Springer: Berlin, 2003; 251–266.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

AUTONOMIC CONFIGURATION AND RECOVERY 521

4. Tripathi A, Karnik N, Vora M, Ahmed T, Singh R. Mobile agent programming in Ajanta. Proceedings of the
19th International Conference on Distributed Computing Systems, Austin, TX, 1999. IEEE Computer Society Press:
Los Alamitos, CA, 1999; 190–197.

5. Kiniry J, Zimmerman D. A hands-on look at Java mobile agents. IEEE Internet Computing 1997; (July–August):21–30.
Available at: http://computer.org/internet/.

6. Tripathi A, Koka M, Karanth S, Osipkov I, Talkad H, Ahmed T, Johnson D, Dier S. Robustness and security in a mobile-
agent based network monitoring system. Proceedings of the International Conference on Autonomic Computing (ICAC-04),
New York, May 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004; 320–321.

7. Karnik N, Tripathi A. Security in the Ajanta mobile agent system. Software—Practice and Experience 2001;
31(4):301–329.

8. Tripathi A, Kulkarni D, Ahmed T. Policy-driven configuration and management of agent based distributed systems.
Software Engineering for Multi-Agent Systems IV: Research Issues and Practical Applications (Lecture Notes in Computer
Science, vol. 3914). Springer: Berlin, 2006; 1–16.

9. Tripathi A, Karnik N, Ahmed T, Singh R, Prakash A, Kakani V, Vora M, Pathak M. Design of the Ajanta system for mobile
agent programming. The Journal of Systems and Software 2002; 123–140.

10. Moats R. RFC 2141: URN Syntax, May 1997.
11. Candea G, Cutler J, Fox A. Improving availability with recursive micro-reboots: A soft-state system case study.

Performance Evaluation Journal 2004; 56(1–3).
12. Clark DD. The design philosophy of the DARPA Internet Protocols. Proceedings of the ACM SIGCOMM, Stanford, CA,

August 1988. ACM Press: New York, 1988; 106–114.
13. CERT. www.us-cert.gov/channels/techalerts.rdf.
14. Roesch M. Snort-lightweight intrusion detection for networks. Proceedings of the 13th Systems Administration

Conference—LISA, Seattle, WA, November 1999. USENIX Association: Berkeley, CA, 1999.
15. Ceri S, Widom J. Deriving production rules for constraint maintenance. Proceedings of the 16th International Conference

on Very Large Databases (VLDB’90), Brisbane, Australia, 1990. Morgan Kaufmann: San Francisco, CA, 1990; 566–577.
16. Damianou N, Dulay N, Lupu E, Sloman M. The Ponder policy specification language. Proceedings of the International

Workshop on Policies for Distributed Systems and Networks (POLICY’01), London, U.K., January 2001 (Lecture Notes in
Computer Science, vol. 1995). Springer, 2001; 18–38.

17. Lobo J, Bhatia R, Naqvi S. A policy description language. Proceedings of the 16th National Conference on Artificial
Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial
Intelligence (AAAI’99/IAAI’99). American Association for Artificial Intelligence: Menlo Park, CA, 1999; 291–298.

18. Jennings NR. An agent-based approach for building complex software systems. Communications of the ACM 2001;
35–41.

19. Jennings NR, Bussman S. Agent-based control systems: Why are they suited to engineering complex systems?
IEEE Control Systems Magazine 2003; 23(3):61–73.

20. Zambonelli F, Jennings NR, Wooldridge M. Organisational abstractions for the analysis and design of multi-agent systems.
Proceedings of the 1st International Conference on Agent Oriented Software Engineering (AOSE 2000), Limerick, Ireland,
January 2001.

21. Minsky N, Ungureanu V. Law-governed interaction: A coordination and control mechanism for heterogeneous distributed
systems. ACM Transactions on Software Engineering and Methodology (TOSEM) 2000; 9(3):273–305.

22. Minsky NH, Murata T. On manageability and robustness of open multi-agent systems. Proceedings of Computer Security,
Dependability and Assurance (Lecture Notes in Computer Science, vol. 2940), Lucena C, Garcia A, Romanovsky A,
Castro J, Alencar P (eds.). Springer: Berlin, 2004; 189–206.

23. Lopez F, Luck M, d’Inverno M. A normative framework for agent-based systems. Proceedings of the 1st International
Symposium on Normative Multiagent Systems (NorMAS2005), Hatfield, U.K. AISB, 2005.

24. Jones A, Sergot M. The characterisation of law and computer systems: The normative systems perspective. Deontic
Logic in Computer Science: Normative System Specification, Meyer JJCh, Wieringa RJ (eds.). Wiley: Chichester, 1993;
275–307.

25. Corradi A, Dulay N, Montanari R, Stefanelli C. Policy-driven management of agent systems. Proceedings of the
International Workshop on Policies for Distributed Systems and Networks (POLICY 2001), London, U.K., January 2001
(Lecture Notes in Computer Science, vol. 1995). Springer, 2001; 214–229.

26. Westeriner A, Schnizlein J, Strassner J, Scherling M, Quinn B, Herzog S, Huynh A, Carlson M, Perry J, Waldbusser S.
Terminology for policy-based management. Internet Engineering Task Force RFC 3198, November 2001. The Internet
Society, 2001. Available at: http://www.ietf.org/rfc/rfc3198.txt.

27. Moore B, Ellesson E, Strassner J, Westerinen A. Policy Core Information Model—Version 1 Specification. Internet Engi-
neering Task Force RFC 3060, February 2001. The Internet Society, 2001. Available at: http://www.ietf.org./rfc/rfc3060.txt.

28. Eugster PTh, Felber PA, Guerraoui R, Kermarrec A-M. The many faces of publish/subscribe. ACM Computing Surveys
2003; 35(2):114–131.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

522 A. R. TRIPATHI ET AL.

29. Carzaniga A, Rosenblum DS, Wolf AL. Design and evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems 2001; 19(3):332–383.

30. Rowanhill JC, Varner PE, Knight JC. Efficient hierarchic management for reconfiguration of networked information
systems. International Conference on Dependable Systems and Networks (DSN’04), Florence, Italy, 28 June–1 July 2004.
IEEE Computer Society Press: Los Alamitos, CA, 2004.

31. Pietzuch PR, Shand B, Bacon J. A framework for event composition in distributed systems. Proceeding of the 4th
ACM/IFIP/USENIX International Conference on Middleware (Middleware’03), Rio de Janeiro, Brazil, June 2003 (Lecture
Notes in Computer Science, vol. 2672). Springer, 2003. 62–82.

32. Fox A, Gribble SD, Chawathe Y, Bewer EA, Gauthier P. Cluster-based scalable network services. Proceedings of the 8th
International Symposium on Operating Systems Principles (SOSP’97), St Malo, France, October 1997. ACM SIGOPS,
1997; 78–91.

33. Guessoum Z, Briot JP, Charpentier S, Marin O, Sens P. A fault-tolerant multi-agent framework. Proceedings of the 1st
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02). ACM Press: New York,
2002; 672–673.

34. White SR, Hanson JE, Whalley I, Chess DM, Kephart JO. An architectural approach to autonomic computing. Proceedings
of the International Conference on Autonomic Computing (ICAC’04), New York, 2004. IEEE Computer Society Press:
Los Alamitos, CA, 2004; 2–9.

35. Tesauro G, Chess DM, Walsh WE, Das R, Segal A, Whalley I, Kephart JO, White SR. A multi-agent systems approach
to autonomic computing. Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04). IEEE Computer Society: Washington, DC, 2004; 464–471.

36. Kephart JO, Walsh WE. An artificial intelligence perspective on autonomic computing policies. Proceedings of the 5th
IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04). IEEE Computer Society
Press: Washington, DC, 2004; 3–12.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:493–522
DOI: 10.1002/spe

	1 INTRODUCTION
	2 AGENT-BASED DISTRIBUTED EVENT PROCESSING MODEL
	2.1 Agent architecture
	2.2 Agent-based distributed event model
	2.2.1 Event delivery
	2.2.2 Event detectors
	2.2.3 Event handlers
	2.2.4 Trigger-dependency handler
	2.2.5 Event dispatcher

	3 DESIGN OF A NETWORK EVENT MONITORING SYSTEM USING KONARK
	3.1 Detectors and handlers
	3.2 System management agent

	4 SYSTEM MANAGEMENT AGENT DESIGN FOR POLICY-BASED AUTONOMIC MANAGEMENT
	4.1 Requirement 1
	4.2 Requirement 2
	4.3 Requirement 3
	4.4 XML-based policy specification framework
	4.4.1 Policy specification
	4.4.2 Condition specification
	4.4.3 Object definition
	4.4.4 Policy enforcement action specification
	4.4.5 Example policy specification

	5 AUTONOMIC CONFIGURATION AND RECOVERY OF AGENTS
	5.1 Failure modes and recovery requirements
	5.2 Agent-level self-configuration
	5.2.1 Agent level self-monitoring
	5.2.2 Detector self-configuration
	5.2.3 Self-configuration of event subscriptions

	5.3 Peer-to-peer cooperative failure detection and recovery by agents
	5.4 Recovery of system management agent

	6 EXPERIMENTAL EVALUATION OF POLICY-BASED MECHANISMS FOR AUTONOMIC CONFIGURATION AND RECOVERY
	6.1 Evaluation of policy-based network monitoring system
	6.2 Performance evaluation of autonomic mechanisms for configuration and recovery
	6.3 Autonomic configuration
	6.4 Autonomic failure recovery

	7 RELATED WORK
	8 CONCLUSIONS

