
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2007; 37:799–831
Published online 2 November 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.783

Mechanisms for object caching
in distributed applications using
Java RMI

John Eberhard∗,† and Anand Tripathi

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A.

SUMMARY

Remote Method Invocation (RMI), a mechanism to access remote objects in Java-based distributed
applications, uses network communication for each method invocation. Consequently, using RMI in a
wide-area environment can cause poor application performance. One solution to improve performance
is to cache the objects such that network communication is not necessary for each method invocation.
In this paper, we present mechanisms to transparently add object caching to RMI. These mechanisms are
compatible with existing RMI applications and use an event-based model to support different consistency
policies. The mechanisms also include the ability to adaptively select the consistency policy for an object
based on its usage pattern. A novel feature of our mechanisms is the use of a ‘reduced object’, which is a
partial representation of the RMI object. We experimentally evaluate and demonstrate the benefits of our
mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.

Received 6 February 2006; Revised 10 July 2006; Accepted 14 July 2006

KEY WORDS: RMI; distributed systems; caching

1. INTRODUCTION

Distributed object systems are commonly implemented using some type of remote procedure call,
or in the Java‡ case, Remote Method Invocation (RMI) [1]. One problem inherent with RMI is the
high latency of method invocation caused by the necessity of network communication. An approach
to overcome the latency problem is to manually cache components of an object’s state at the
client’s node. For example, a programmer could structure a client program so that frequently used

∗Correspondence to: John Eberhard, Department of Computer Science, University of Minnesota, Minneapolis, MN 55455,
U.S.A.
†E-mail: eberhard@cs.umn.edu
‡Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Contract/grant sponsor: NSF; contract/grant numbers: 0082215 and 0411961

Copyright © 2006 John Wiley & Sons, Ltd.

800 J. EBERHARD AND A. TRIPATHI

components of an object are cached at the client. When manually replicating the object’s state in this
manner, the programmer must also ensure that the replicated copies of the object remain mutually
consistent. Obviously, programmatically adding caching in this manner is expensive and error-prone.
A better solution is the use of mechanisms to transparently add caching to an RMI application.
These mechanisms should permit the programmer to choose the caching and consistency policies best
suited to the application.

Other environments can also take advantage of caching. On one extreme, in a mobile environment
when the client is not connected, operations can be invoked on a cached object. Caching can also be
useful in a real-time environment where the object access must meet critical timing constraints.

Mechanisms for caching Java RMI objects must meet certain requirements. First, the object
caching mechanisms must be compatible with and transparent to current RMI clients. Second, these
mechanisms must support consistency policies tailored to both the semantics and usage of an object.
Third, a client should only cache the data that it will access. The primary reason of this requirement is
to minimize the communication cost of transmitting a large object between the client and the server.
Other reasons include memory constraints of ‘thin clients’ and the need, driven by security, to not allow
the caching of the sensitive components of an object.

Based on these requirements, we have designed a set of tools and object caching mechanisms for
adding caching to any existing Java RMI application. Specifically, this paper describes the following
contributions of our work:

• identification of issues in caching RMI objects;
• mechanisms, compatible with existing RMI based applications, to cache RMI objects;
• an event-based framework enabling the implementation of a wide range of consistency policies;
• a cost model for determining the cost of a consistency policy, and policy switching mechanisms

that permit different policies to be used for different objects, based on each object’s usage pattern;
• the notion of reduced object, which caches only parts of an object, to reduce the overhead in

caching the full object.

We evaluate our caching mechanisms for RMI applications and demonstrate their performance benefits.
This evaluation illustrates RMI compatibility and the use of different consistency policies. Furthermore,
this evaluation shows the benefits of reduced objects and the benefits of adaptively switching the
consistency policy used by the cached object.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
discusses issues and requirements to be addressed when caching RMI objects. Section 4 presents our
caching mechanisms and illustrates their support of different consistency policies and adaptive policy
selection. Section 5 provides experimental evidence of the benefits of the caching mechanism. Section 6
presents the conclusion.

2. RELATED WORK

Several researchers have investigated caching to improve the performance of RMI and Java
distributed object systems. Caching has also been used in distributed object systems. In comparison
to existing work, our mechanisms retain RMI compatibility, permitting existing RMI clients to
transparently use caching. Our mechanisms also permit different consistency policies to be associated

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 801

with different objects. We also permit several policies to be used for a given object, where the policy
is chosen based on the object’s usage. We also introduce and support the notion of ‘reduced object’,
in which an object contains a subset of the state of the original objects. Below, we briefly review the
existing work most relevant to this paper.

Several researchers have improved the performance of RMI by improving the serialization of Java
objects used with RMI [2–4]. While our work does not attempt to improve the base performance of
RMI by improving the serialization used by RMI, we use our own custom serialization to minimize the
overhead of additional objects used by our mechanisms.

In their work on RMI performance, Krishnaswamy et al. [5] describe a caching system used to
improve RMI. Their system differs from our work because they cache a serialized version of the object
inside the reference layer of the Java RMI implementation. A consistency framework assures that
the entire serialized object remains consistent with the object on the server. As with their approach,
our system retains RMI compatibility. Unlike their approach, our system caches the objects in their
unserialized forms. Furthermore, rather than caching a complete object, our system also permits
selective caching of a subset of an object’s components.

In a later work, Krishnaswamy et al. [6] developed an object caching framework supporting different
kinds of consistency management techniques. As with our work, they permit the creation and use of a
variety of consistency policies. Our work differs from their approach in that we provide a more flexible
framework in which different kinds of consistency policies can be implemented using event-based
mechanisms. We also provide the ability to dynamically change the consistency policy used to manage
object caching.

Other researchers [7] have implemented Java caching using distributed shared memory.
These approaches have required changes to the underlying Java virtual machine and would not be
appropriate in a heterogeneous wide-area environment, nor would they be usable by existing Java RMI
clients. Lipkind et al. [8] describe a Java distributed object system with caching. Their architecture
is based on ‘object views’, where the programmer explicitly states how an object is to be used.
The information from the ‘object views’ is used to optimize the behavior of a distributed shared
memory system running on a cluster of workstations. The work presented in this paper differs from
their work in that we use RMI for client-server communication, thus permitting its use in a wide-area
network.

Another distributed object system is Globe [9–11]. As with the mechanisms presented in this paper,
several subobjects are used on the client to manage a cached object. These subobjects serve roughly
the same purpose as the objects in the caching architecture presented in this paper; for example,
subobjects are used for supporting communication and coordination with remote servers to ensure
cache consistency. Our mechanisms differ from Globe in the use of byte code analysis to identify
write methods instead of requiring the programmer to explicitly identify them. Unlike our approach,
Globe does not support the use of Java wait/notify synchronization and does not permit a cached object
method to call another cached object method.

Rover [12] is a distributed object system that provides support for disconnected operations. It has
a single consistency policy that uses optimistic concurrency control to execute methods on a cached
object. Requests for method execution are queued for eventual execution at the server and conflicting
concurrent operations are required to be reconciled using resolver functions. As with most object
systems, Rover caches a complete copy of the object.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

802 J. EBERHARD AND A. TRIPATHI

In common with many other systems, we use the proxy principle [13] to implement a distributed
object system. Recently, Java 1.3 introduced a dynamic proxy mechanism [14] that has been used to
implement distributed object systems [15,16]. Similar to GARF [17], we separate the functionality of
the object from other concerns. While GARF was focused on providing fault tolerance, our focus is on
improving the performance of RMI-based distributed applications.

Thor [18] is a distributed object system with page-based, transactional object caching. It uses a
single consistency policy based on optimistic concurrency. Our work differs in that we do not require
transactional boundaries and our framework can support multiple consistency policies and dynamic
switching between policies at runtime.

Our work applies the principle of binary rewriting for creating objects to support caching.
Binary rewriting has been used in the past to remove synchronization [19,20] and also to improve
the performance of applet-loaded classes [21]. To achieve our byte code manipulation, we use the
Jakarta Byte Code Engineering Library [22].

We presented our initial work in [23]. Caching support for the Java wait and notify synchronization
constructs was presented in this earlier work and is omitted here. In this paper, we have refined and
extended several aspects of our caching mechanisms. The most significant changes are our event-based
consistency management framework and the mechanisms for adaptively selecting the consistency
policy for an object.

3. ISSUES IN CACHING OF RMI OBJECTS

This section presents issues and problems present when caching RMI objects. First, the caching
mechanisms must be compatible with RMI. Second, since an object may be cached at multiple clients,
appropriate consistency management policies must be supported. Third, since caching involves the
placing of data on the client, the Java object model must be understood, including properties that
determine which components of the object may be cached.

3.1. Design issues and requirements related to RMI compatibility

Java RMI permits a client to access objects residing on remote servers. To use RMI, a Java
interface extending java.rmi.Remote is defined for remotely accessible objects. This interface is then
implemented by a Remote object. This implementation must be enabled to receive remote method
invocations either by creating the object as a subclass of UnicastRemoteObject, or by using the
exportObject() method of UnicastRemoteObject. Prior to JDK 5.0, the programmer uses the Java
rmic tool, or RMI compiler tool, to generate the stub and skeleton classes for each distributed object.
In JDK 5.0, when a stub class does not exist, the RMI runtime will use Java’s dynamic proxy
mechanism [14] to create a dynamic proxy which uses a RemoteObjectInvocationHandler as the
invocation handler for the proxy.

To enable a client to obtain a reference to an RMI object, Java provides an RMI registry, with which
a server registers a remote object. The RMI registry merely stores the stub or proxy for the object.
When a client looks up an object in the RMI registry, it receives the stub, which serves as a reference
for the Remote object. The client invokes a method on the stub, resulting in the invocation of the method
on the server. The key feature of the RMI system is that when a Remote object is passed as a parameter
to a method invocation, the RMI system serializes and passes the stub as a reference for the object.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 803

When caching a RMI object, two aspects of RMI compatibility must be maintained. First, the client
protocol of interaction with the RMI registry should be unaltered. Second, the object returned by the
RMI registry as a reference to the Remote object should be usable in the same manner as the RMI stub,
with the exception that it may cache the RMI object.

When caching an RMI object, we use the term cache stub to refer to the object which replaces the
RMI stub. When passing a Remote object as a parameter to an RMI call, the use of a cache stub in
place of an RMI stub should be transparent to the client. In the case where a cache stub is being passed
from the server to a client that has not cached the object, the cache stub should include a copy of the
object. Otherwise, the client already has a cached copy of the object and including a cache copy of the
object is unnecessary.

RMI also provides the ability to load classes from the network using dynamic class loading. A server
configures dynamic class loading by using the java.rmi.server.codebase property to specify the URL
from which to load classes. This codebase information is included when RMI passes a Remote object,
enabling the client to load classes remotely.

These issues result in the following requirements for RMI compatibility and transparency.
When accessing an RMI object, a client application should not have to change in order to use caching.
Instead, the appropriate mechanisms should ensure that a suitable representation of the RMI object is
available to the client application when the object is requested.

3.2. Design issues and requirements related to consistency management

When a cached RMI object is used, the behavior should be consistent with normal RMI object behavior.
To ensure consistency, a proxy must intercept each method invocation and assure the method invocation
completes in a consistent manner. The proxy should be designed such that a small set of mechanisms
can enable the implementation and use of different kinds of consistency policies. When choosing a
consistency policy for an object, an application developer should be able to create a new consistency
policy or to select one from a library of existing policies. While it is possible to analyze an application’s
behavior and assign a single policy for each object, there may be cases where an object may require
different consistency policies at runtime, depending on the current usage of the object. A caching
mechanism must include the ability to adaptively select the consistency policy best suited to the current
usage of the cached object.

3.3. Design issues and requirements related to the Java object model

Caching an RMI object implies that a copy of the object is placed on the client. The placement of
a copy of an RMI object causes difficulties due to Java mechanisms for object serialization, object
synchronization, nested method invocation, and object creation.

Java object serialization converts a Serializable object, including its components and referenced
objects, into a Stream of bytes which is sent through a communication channel. To serialize an object,
Java serialization converts the fields of the object into their serialized form. A field of an object may be
marked as transient to indicate that it should not be serialized. The Java serialization mechanism will
fail if a field references a non-serializable object.

To cache an RMI object, a suitable representation of the object, called ‘cached object’, must be
created. Since the Remote interface implemented by the RMI object causes an RMI stub to be serialized,

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

804 J. EBERHARD AND A. TRIPATHI

a ‘cached object’ must not implement the Remote interface. Furthermore, since transient and non-
serializable fields cannot be serialized, the ‘cached object’ should not include these fields. Since some
fields may not or should not be used on the client, the ‘cached object’ should not include these kinds
of fields.

Another factor to consider when caching an RMI object is the synchronization mechanism in Java.
All Java objects support object synchronization and coordination through the use of the wait and notify
methods. Because an RMI object may use these mechanisms, caching mechanisms must support the
use of the wait and notify methods.

An RMI object has the ability to invoke a method on another RMI object. If active replication
is used in conjunction with ‘function shipping’, the duplicated method invocation problem [24], or
nested invocation problem [25], may occur. The root of this problem is the use of ‘function shipping’
to update object replicas. As each function is invoked on a replica, each replica then could invoke a
method on another object. This latter object then receives multiple method invocations, when it should
have received only one. In the consistency policies presented in this paper, this problem does not
appear because ‘function shipping’ is not considered. However, in the case where our mechanisms
are extended to use function shipping, either a mechanism must be used to prevent duplicate method
invocations or a Globe-like restriction on nested method invocations [25] must be followed by the
cached RMI objects.

A final factor to consider is an RMI object’s ability to create other RMI objects. When caching is
not used, the created RMI objects reside on the server. To maintain the current behavior of an RMI
application, created RMI objects must reside on the server. This can be accomplished by requiring that
all methods creating RMI objects be invoked on the server.

4. CACHING MECHANISMS AND CONSISTENCY POLICIES

To support caching, we have created the cache template and server template which respectively
represent the RMI object at the client and the server. The cache template and server template contain
components which ensure RMI compatibility, provide consistency management, and maintain cached
object state.

4.1. Overview of cache template and server template

The cache template and server template, shown in Figure 1, are the basic structures used to cache
an RMI object. The topmost objects in the cache template and server template are the cache stub and
server proxy. Their primary purpose is to assure RMI compatibility, especially when references to RMI
objects are passed between Java virtual machines.

The next level of objects in the cache template and server template are the consistency managers:
Client Consistency Manager (CCM) and Server Consistency Manager (SCM). The role of a consistency
manager is to intercept a method invocation and perform actions to consistently complete that method
invocation. To complete the method invocation, the CCM may need to communicate with the SCM,
which it does using the SCM stub. Because the SCM may need to communicate with the CCM,
a callback interface is also provided.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 805

SCM
Stub

Client
Consistency

Manager
(CCM)

Server Consistency
Manager (SCM)

Policy
Server

Object
Descriptor

Callback
Interface

Object
Descriptor

Client
Policy

Server
Object
(MSO)

Master

Client Program

Cache Template

Server Program

Server Template

Cache
Stub

Cached
Object

Server Proxy

Figure 1. Cache template and server template.

The SCM and CCM are controlled by objects representing the consistency policy used to manage
the object. These objects are named client policy and server policy. In order to implement a consistency
policy, these objects must have some knowledge about the object being managed. This knowledge is
captured in the object descriptor.

The cache template uses the cached object to contain the cached state of the RMI object. The object
may not contain all the state of the object, in which case we call it a ‘reduced object’. The Server
Template contains the Master Server Object (MSO), which represents the RMI object on the server.

4.2. Mechanisms for RMI compatibility

The objects of the cache template and server template that interface with the application program are
the cache stub and server proxy. These objects ensure RMI transparency and compatibility and provide
the same Java interface as the original RMI object. The classes for the cache stub and server proxy are
created from the original RMI classes using a tool that we have developed. These two classes contain
a method corresponding to each method in the original RMI object’s interface. The generated class for
the cache stub extends a base class that contains most of the logic for RMI compatibility.

To assure RMI transparency and compatibility, the class generated for the cache stub extends a Java
class named CacheStubBaseClass. This class contains a reference to the SCM stub, which is used to
contact the server. It may also contain a reference to the CCM. The cache stub contains logic to ensure
that it is serialized in the correct form when passed via an RMI method. When passed to a client, the
cache stub causes the sending of either an entire cache template or a partial cache template, consisting
of only the cache stub and the SCM stub. For example, at the time when the cache stub is sent to the
RMI registry, a partial cache template is sent. Clients then receive the partial cache template when they
lookup the object from the RMI registry. When the partial cache template is accessed by a client, the
cache stub contains the logic needed to contact the server, using the SCM Stub, and to request the
remaining components of the cache template. This we refer to as object fault handling.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

806 J. EBERHARD AND A. TRIPATHI

Local applications at the server access the object using the server proxy. The purpose of the server
proxy is to provide RMI compatibility. The RMI system considers the server proxy to be a Remote
object that has the cache stub as its RMI stub. Consequently, if the server proxy is passed via RMI, RMI
serialization will serialize the cache stub. The cache stub also overcomes a shortcoming of the current
RMI implementation. Suppose a server receives, through a parameter of an RMI call, a reference
to an RMI object residing at the server. If the server uses this reference, which is an RMI stub, to
access the object, the communication overhead of RMI will be incurred. However, if a cache stub
is received on the server, its deserialization routine recognizes that it has returned to the server and
allows the cache stub to directly access the server proxy, thus avoiding unnecessary communication
overhead. This optimization also eliminates the need for a cache template to include the SCM stub,
when returning an RMI reference to the server. This can cause a significant reduction in communication
cost for applications that return RMI references to the server.

To use the server template, minimal changes to the server application are needed. First, the server
proxy object, described above, must be created instead of the original RMI object. Second, instead of
exporting the object using the export method of UnicastRemoteObject, the application must export the
object using the export method of the CacheableObject class, which we provide. This method uses
the export method of UnicastRemoteObject to register the server proxy with RMI and to export the
SCM. When the server proxy is registered with RMI, the system uses the corresponding cache stub as
the RMI stub. Because our mechanisms rely on RMI serialization to serialize the cache stub, dynamic
loading of class files can still be used with our caching mechanisms.

As mentioned earlier, RMI produces a proxy for an exported class either using a Stub class or,
beginning in JDK 1.5, by dynamically generating a proxy. We rely on the former behavior to cause the
use of cache stub instead of the standard RMI stub. An alternate approach is to use a Java dynamic
proxy in conjunction with reflection. Unfortunately, the current RMI system does not permit the use of
an invocation handler other than the default RemoteObjectInvocationHandler. For this reason, we use
the older approach of using precompiled cache stubs.

4.3. Mechanisms for consistency management

As introduced in Section 4.1, the consistency managers (CCM and SCM) are controlled by a
consistency policy represented by the client policy and server policy components of the templates.
A policy directs a consistency manager using an event–action model.

4.3.1. Event–action model overview

To allow a client policy or server policy object to direct a CCM or SCM, we adopted an event–action
based model for consistency control. In this model, a CCM or SCM sends a policy event to a client
policy or server policy to indicate that some consistency related actions are required. This event is
triggered by a client program invoking a method on the client template or by actions taken by the CCM
or SCM. In response to an event, the client policy or server policy returns an action list to direct the
CCM or SCM. An Action List is a list of actions that is sequentially executed by the CCM or SCM.

Figure 2 illustrates the typical usage of policy events and action lists. In this figure, two clients have
cached the object. In step 1, a client program invokes a method. The CCM uses an event to notify the
client policy of the invocation in step 1c, to which the client policy returns an action list in step 1d.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 807

Policy
Client

Policy
Server

SCM
Stub

Legend: Action ListPolicy Event

Client Program

Client 1 Client 2Server

Policy
Client

CCM

1b

1a
2b

2e
2f

2a

1c
2g

1d

2h

3g2c

2d 3h

3e
3b

3f

3a

3c

3d

CCM

SCM
Callback
Interface

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��

����

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

���
���
���
���

��
��
��
��

Cache
Stub

Figure 2. Usage of action lists and policy events.

Suppose, in step 2, that the method cannot be invoked on the cached object. In that case, the action
list, from step 1d, directs the CCM to build an event and invoke the method on the server, passing the
method parameters and this event, as shown in steps 2a and 2b. In step 2c, the SCM passes this event
to the server policy. In step 2d, the server policy then returns an action list to the SCM. The SCM
executes the action list and creates an event that is returned in steps 2e and 2f. This event is delivered
to the client policy in step 2g, which causes the client policy, in step 2h, to return an action list to direct
the CCM.

In some cases, another client must be notified, using the callback interface, to assure the consistency
of the RMI object. To accomplish this, in step 3a, the server policy directs the SCM to send an
event to the client’s callback interface. This event is delivered to the client policy in steps 3b and 3c.
Upon receiving the event, the client policy returns an action list to the CCM in step 3d. The CCM
executes this action list and creates an event that is returned to the server in steps 3e and 3f. In step 3g,
the event is delivered to the server policy, which provides an action list to the SCM in step 3h.

4.3.2. Policy events

A policy event’s primary purpose is to convey information about a consistency condition to a policy
object. To identify a consistency condition, an event contains a type, a subtype, and attributes. The type
indicates the condition that caused the event to be generated. As shown in the steps in Figure 2,
the possible types are MethodCall (step 1c), ServerCall (step 2a), ServerDone (step 2e), Callback
(step 3a), and CallbackDone (step 3e). The subtype enables a policy to convey simple information
about the event. One use of the subtype is to indicate the consistency policy related state of the cached
object. An example of this will be shown later when discussing the Multiple-Reader-Single-Writer
(MRSW) policy. Since the event is used to send information between the server and clients, it also
includes attributes that a policy can set. Attributes that can be included are a client id, a return value,

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

808 J. EBERHARD AND A. TRIPATHI

Table I. Actions executable by consistency managers.

Action category Actions

Invocation flow control InvokeOnLocal(), InvokeOnServer()
Object state control SetReturnValue(returnedValue), SetCachedObject(cachedObject)
Policy event construction AddSubtype(eventSubtype), AddReturnValue(),

AddCachedObject(), AddObjectCopy(classname)
Callback control Callback(List of {clientId, policyEvent})

and a cached object. The client id uniquely identifies a client that caches an RMI object and is always
included with a ServerCall and CallbackDone events. The remaining attributes, described below, are
set using actions.

In our initial implementation, we passed an event as an RMI parameter and allowed RMI to handle
the serialization of the event. However, we found that the RMI serialization of the event added
considerable overhead. To overcome this difficulty, we created routines to convert between an event
and a Java string. We pass the string instead of the event as the RMI parameter. As will be illustrated
later, this serialization change drastically reduced the overhead associated with the passing of the event.

4.3.3. Action lists and actions

The Action List contains actions, where each action directs the CCM or SCM to perform a consistency-
related function. While executing these actions, the CCM or SCM maintains two objects. The first
object is the method-return-value, which is returned to the client program after the CCM finishes
executing an action list. This value is set when the CCM invokes a method on the cached object or
when the SCM invokes a method on the Master Server Object (MSO). Alternatively, this value can
also be set using an action. The second object is a policy event that is created when an action list is
executed. Actions are used to set the attributes of this event or cause the event to be delivered to a
server policy or client policy.

The actions executable by a CCM or SCM, shown in Table I, can be classified into four
categories: invocation flow control, object state control, policy event construction, and callback control.
Examples of using these actions are provided later.

• Invocation flow control. If an object is cached, one of the primary functions of the CCM or SCM
is to invoke a method on the local object, either a cached object or MSO. An InvokeOnLocal
action causes a CCM or SCM to invoke a method on the local object and set the method-return-
value. If a policy determines that a method should not be invoked locally, it must contact the
server. The client policy uses the InvokeOnServer action to direct the CCM to invoke the method
on the server, passing a policy event. The steps that occur after the server is contacted were
described above.

• Object state control. Two actions are used to set the value returned by the CCM and to change
the cached object. The SetReturnValue action includes a return value parameter and directs the

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 809

CCM to set the method-return-value. The SetCachedObject action directs the CCM to set the
cached object using the specified cached object parameter.

• Policy event construction. Several actions are used to add attributes to the event created by the
CCM or SCM. The AddSubtype action sets the subtype of the event. To add the return value of
the server method invocation to the event, an AddReturnValue action is used. To add the cached
object to the event, the AddCachedObject action is used. To create a new copy of the object at
the server and added it to the event, the AddObjectCopy action is used. This action contains the
classname of the object to send to the client. The SCM uses this classname to create an object
from the MSO.

• Callback control. The server policy uses a Callback action to trigger actions on a client
currently caching an object. This Callback action specifies a list of client id/policy event pairs.
The processing of a Callback action was shown in Figure 2 and takes place in three phases.
In the first phase, as shown by step 3a, the SCM uses each client id/policy event pair to send the
corresponding client the Callback policy event. In phase 2, the client policy receives the Callback
event (step 3c) and returns an action list (step 3d) to the CCM. The CCM then executes the action
list and returns a CallbackDone event (steps 3e and 3f) to the server. In phase 3, a CallbackDone
event is received from each client (step 3g). The server policy then uses an action list (step 3h) to
direct the SCM to take additional actions. The Callback action is complete after all clients have
returned a CallbackDone event and the subsequent action lists have been processed.

4.3.4. Object descriptors

A generic consistency policy requires information about the cached RMI object to guide the actions
of the CCM or SCM. While the specific information required by the client policy depends upon
the consistency policy it implements, we provide an object descriptor for use by general purpose
consistency policies. The object descriptor categorizes each method of a cached RMI object according
to the method’s usage of the object’s instance variables. The three categories of instance variable usage
are as follows.

• Read-only. This type of method only reads the object’s instance variables.
• Read–write. This type of method both reads and writes the object’s instance variables.
• Server-only. This type of method must be executed on the server because some instance variables

used by the method are not available in the cached object.

Our current analysis is a pessimistic analysis that considers a method as a single entity and does not
consider different execution branches of the method. A possible area for future research is to use
compiler-inspired approaches to determine the conditions under which different instance variables are
used by the method. Once this is known, each method can be assigned categories based on a specific
precondition.

4.4. Implementation of different consistency policies

The flexibility of our event-based consistency management framework permits the use of a variety of
consistency policies. In this section, we illustrate three generic consistency policies that use policy
events and action lists. These policies are the no-cache policy, the server-write policy, and the MRSW
policy.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

810 J. EBERHARD AND A. TRIPATHI

Policy
Server

Server
Object

Master
Stub
SCM

Policy
Client

Policy Event Action List

Client Program

Cache Template Server Template

4

5 6

7
8

CCM

SCM

10 8

2

1

3

4

9
8

Legend:

{MethodCall}

 {InvokeOnServer}

 {Actions}{EventType / Attributes}

Cache
Stub

 {SetReturn}

{InvokeOnLocal,
AddReturnValue}

 {Server Done/
Return Value}

{Server Call}

Figure 3. Steps for executing a method using the no-cache policy.

4.4.1. No-cache policy

The simplest consistency policy is one where caching is disabled and all client method invocations
communicate with the server. We implemented this policy in order to compare the overhead of our
mechanisms with standard RMI. This performance data will be given in Section 5.2. Figure 3, shows
the steps that occur when a method is invoked and includes the corresponding policy events and action
lists. In step 1, the method is invoked and calls the corresponding method of the CCM. In step 2,
the CCM notifies the client policy of the method invocation using a MethodCall event. In step 3, the
client policy returns an action list containing one action, InvokeOnServer. In step 4, the CCM executes
this action and uses the SCM stub to invoke the method on the server, passing a ServerCall event.
In step 5, the SCM delivers this event to the server policy, which returns, in step 6, an action list
containing InvokeOnLocal and AddReturnValue. The SCM first executes the InvokeOnLocal action by
invoking the method on the MSO as shown in step 7. It then executes the AddReturnValue action to
add the method-return-value to the ServerDone event that is returned to the client. In step 8, this event
is delivered to the client policy. In step 9, the client policy retrieves the return value from the event and
uses it to create a SetReturnValue action, which is returned in an action list. The CCM then executes
this action list, setting the return value of the method, which is returned in step 10 to the client program.

4.4.2. Server-write policy

A slightly more complex policy, the server-write policy, caches an object for access by read-only
methods. In this policy, all methods that modify the object are executed at the server. When the method

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 811

Table II. Client policy responses for server-write policy.

ResponsePolicy event Method type or Consistency
type (event subtype) state Action list New state

1 MethodCall Read-only Valid {InvokeOnLocal} Valid
2 MethodCall Read-only Invalid {InvokeOnServer} Invalid
3 MethodCall Read–write Any {InvokeOnServer} Invalid

Server-only
4 ServerDone (ReadComplete) Any {SetCachedObject, Valid

InvokeOnLocal}
5 Callback (Invalidate) Any {} Invalid
6 ServerDone (WriteComplete) Any {SetCachedObject, Valid

SetReturnValue}

is executed at the server, all cached copies are invalidated to ensure that all clients will view the latest
changes to the object.

In this policy, the object is cached in one of two consistency states: Valid or Invalid. The Valid state
means that the cached object contains the latest changes to the object. When in this state, the client
policy permits read-only methods to be invoked locally. Otherwise, the Invalid state indicates that the
cached object should not be used because it does not contain the latest changes to the object.

The server-write policy can be represented by tables indicating the responses returned by the client
policy and server policy for specific policy events. Table II shows the responses returned by the client
policy. Rows 1–3 of Table II describe how the client policy handles a method call. The simplest case,
shown in row 1, occurs when calling a read-only method and the consistency state is valid. In this case,
the client policy returns an action list containing InvokeOnLocal. This causes the CCM to invoke the
method on the cached object. For all other method invocations, the method must be invoked on the
server. The client policy returns an action list containing the InvokeOnServer action to cause the CCM
to send a ServerCall event to the server.

Upon receiving the ServerCall event, the server policy returns an action list as shown in rows 1
and 2 of Table III. If a read-only method was invoked, the server policy recognizes that the client has
not cached the object. As shown in row 1, it returns an action list to add an object copy and the subtype
ReadComplete to the ServerDone policy event. The SCM then executes these actions and returns the
ServerDone event to the client. As shown in row 4 of Table II, the client policy recognizes the event
subtype of ReadComplete which indicates that the ServerDone event contains a cached object. It then
uses the cached-object in the event to create a SetCachedObject action to update the cached object.
It then sets the current consistency state to Valid and adds the InvokeOnLocal action to invoke the
method.

If a ServerCall event indicates that a read–write or server-only method was invoked, the server policy
returns the actions shown in row 2 of Table III. The first action causes the SCM to initiate the three
phases of callback processing. In phase 1, the SCM sends a Callback event of subtype of Invalid to
each of the clients. In phase 2, the client policy receives the Callback event and, as shown by row 5
of Table II, sets the cache state to Invalid and returns an empty action list. The CCM then returns

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

812 J. EBERHARD AND A. TRIPATHI

Table III. Server policy responses for server-write policy.

Event type Method type Action list

1 ServerCall Read-only {AddObjectCopy, AddSubtype(ReadComplete)}
2 ServerCall Read–write {Callback({clientId, Policy Event(Invalid)}*),

Server-only InvokeOnLocal, AddReturnValue, AddObjectCopy,
AddSubtype(WriteComplete)}

3 CallbackDone — {}

a CallbackDone event to the server. In phase 3, the server policy receives the CallbackDone event and,
as shown by row 3 of Table III, returns an empty action list to indicate that no additional actions need to
be taken by the SCM. Phase 3 ends after CallbackDone events have been received from all the clients
currently caching the object.

Once the SCM has completed the three phases of the callback processing, it executes the remaining
actions in the action list. It invokes the method, and adds the return value, object copy, and subtype
to the policy event. In this case, the subtype is set to WriteComplete to indicate that a server-write
operation has completed. Once the action list has been processed, the ServerDone event is returned
to the client. Row 6 of Table II shows the client policy’s response to the ServerDone event. In this
case, the client policy knows that the event contains an updated cached object as well as a return value.
The information from the event is used to construct an action list containing SetCachedObject and
SetReturnValue, which will update the cached object and set the return value. The policy also changes
its state to Valid.

4.4.3. Multiple-Readers-Single-Writer policy

We have also implemented a policy, MRSW, which permits read–write methods to be executed locally
on a cached object. In this policy, an object is cached either in read-only mode by multiple clients or in
read–write mode by a single client.

This policy considers a cached object to be in one of three consistency states: Write, Read, or Invalid.
The Write state indicates the cached object is the only cached copy of the object and invoking write
methods is permitted. The Read state means that the cached object is valid and read-only methods can
be invoked. Otherwise, the Invalid state indicates that the Cached Object is stale and should not be
used.

As with the server-write policy, the MRSW policy is represented by tables indicating the client
policy and server policy responses. A client policy’s responses for method calls are shown in
rows 1–5 of Table IV. If it is valid to invoke a method in the current consistency state, then an action list
containing InvokeOnLocal is returned as shown in rows 1, 2, and 3. Otherwise, an action list containing
InvokeOnServer is returned, as shown in rows 4 and 5. The client-side processing for this action list is
the same as for the server-write policy.

On the server, the server policy considers the object to be in one of three consistency
states: NotCached, ReaderCached, or WriterCached. NotCached means that the object is

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 813

Table IV. Client policy responses for the MRSW policy.

ResponsePolicy event Method type or Consistency
type (event subtype) state Action list New state

1 MethodCall Read-only Read {InvokeOnLocal} Read
2 MethodCall Read-only Write {InvokeOnLocal} Write
3 MethodCall Read–write Write {InvokeOnLocal} Write
4 MethodCall Any Invalid {InvokeOnServer} Invalid
5 MethodCall Read–write Read {InvokeOnServer} Read
6 Callback (Invalidate) Read {} Invalid
7 Callback (Invalidate) Write {AddCachedObject} Invalid
8 ServerDone (Read) Any {SetCachedObject, Read

InvokeOnLocal}
9 ServerDone (Write) Any {SetCachedObject, Write

InvokeOnLocal}

not cached by any clients. ReaderCached means that the object is cached by clients in Read state.
WriterCached means that the object is cached by one client in Write state. Table V shows the response
of the server policy to policy events. Rows 1, 2, and 3 show the responses to ServerCall events.
For these events, the policy invalidates, if needed, existing clients using the Callback action. In the
case where only readers have cached the object, the callback processing is identical to the callback
processing for the server-write policy, as shown by row 6 of Table IV and row 4 of Table V. In the
case where a client has cached the object in Write mode, the client policy will add the cached object
to the CallbackDone event and set the client cache state to Invalid as shown by row 7 of Table IV.
Upon receiving the CallbackDone event, the server policy completes the callback processing by using
a SetCachedObject action to update the MSO as shown by row 5 of Table V.

After the callback processing has been completed, the action lists in the first three rows of Table V
use the AddObjectCopy action to add an object copy to the policy object. It also uses the AddSubtype
action to return the client’s consistency state. If the client should cache the object in Read state, then
the subtype is set to Read. Otherwise the subtype is set to Write.

4.5. Adaptive policy selection

The previous section described various consistency policies usable by cached RMI objects.
Each policy’s performance benefit depends upon the behavior of the clients. For example, while using
the MRSW policy with an object that is cached by only one client may result in good performance,
using the same policy when several clients concurrently access the object may result in poor
performance. In order to achieve optimal application performance, the caching mechanisms should
provide a facility to adaptively select the consistency policy used for a cached object. This facility
should select the policy that will provide the best performance and should enable the changing of the
consistency policy as the behavior of the object changes.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

814 J. EBERHARD AND A. TRIPATHI

Table V. Server policy responses for MRSW policy.

ResponseConsistency
Event type Method type state(s) Action list New state

1 ServerCall Read-only ReaderCached {AddObjectCopy, ReaderCached
AddSubtype(Read)}

2 ServerCall Read-only WriterCached {Callback({. . . (Invalidate)}*), ReaderCached
AddObjectCopy,

AddSubtype(Read)}
3 ServerCall Read–write ReaderCached {Callback({. . . (Invalidate)}*), WriterCached

or AddObjectCopy,
WriterCached AddSubtype(Write)}

4 CallbackDone ReaderCached {} NotCached
5 CallbackDone WriterCached {SetCachedObject} NotCached

This section describes the mechanisms to adaptively change the consistency policy used for a cached
object. Before deciding whether to change the consistency policy, we must be able to determine the cost
of a particular consistency policy, given the previous behavior of client access. To estimate this cost,
we have defined the locality window cost model to estimate a consistency policy’s caching behavior
and associated cost. Once a decision is made to change the consistency policy, steps must be taken to
accomplish that policy change.

4.5.1. Locality window cost model

To assess the cost of various consistency policies, we have developed a cost model to represent the
cost of caching an object. When designing our cost model, we considered several factors. First, the
recording and reporting of usage data should not cause significant overhead. The information reported
by each client should be minimal and should be passed only when the consistency policy requires
communication with the server. Second, a policy should be able to estimate its cost based on usage
data collected by another policy. Third, we assume that the primary cost of a policy will be the time
required for a client to communicate with the server.

Each time a client caches an object, it incurs a communication cost. We call this cost the retrieval
time. Using the retrieval times experienced by the clients, there are two ways to calculate the cost of
a policy. In one method, the cost of a policy is calculated as the sum of all retrieval times experienced
by the clients. This method ignores that some communication occurs in parallel and would be useful
in environments where minimizing communication is more important than application performance.
Because our current focus is to improve the client response time, we use another method that improves
system throughput by calculating the policy cost using retrieval times that are known to be sequential.
In this method, we organize the retrieval times into groups, which we refer to as frames, where
communication could occur in parallel. We then calculate the cost of a policy as the sum of the
maximum retrieval time from each group.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 815

class LocalityWindow { Vector<LocalityFrame> localityFrames; }
class LocalityFrame { Vector <ClientUsageData> usageData; }
class ClientUsageData { ClientId clientId; long retrievalTime; Vector<MethodUsage> usage }
class MethodUsage { int methodId; int count }

Figure 4. Locality window definitions.

By considering these factors, we have defined a cost model which we call the locality window model.
A locality window represents clients’ method invocations on a cached object during a specific period
of time. As shown in Figure 4, a locality window consists of a sequence of locality frames, where
each locality frame represents concurrent access by clients to the cached object while a particular
consistency policy is being used. Typically, a locality frame begins when a client starts caching the
object and ends when the server revokes all cached copies of an object. A locality frame can also begin
when a method is invoked on the server. Each locality frame contains the usage data for each of the
clients accessing the object. The usage data for each client consists of the client id, the retrieval time,
and the id and the count of methods invoked by the client. The usage data is returned to the server
when a cached object on a client is invalidated by the server. A locality frame is created at the server
by combining the usage data returned by the clients during cache invalidation.

Each locality frame represents the cost of caching an object during a time period. Because we
consider communication from different clients to occur in parallel, we calculate the cost of a locality
frame as the largest retrieval time in the locality frame. The costs for the locality frames are summed
together to calculate the cost of the locality window.

Each policy provides a Java method, estimateCost(), which uses a locality window to estimate the
cost. In general, a policy estimates this cost by determining the number of locality frames that would
have been in the locality window had the policy been used. The basic approach is to examine each
locality frame to determine if it would have been combined with the previous frame, or remained as a
frame, or divided into several frames. The number of locality frames is then multiplied by the average
retrieval time for the policy.

Figure 5 shows the algorithm used to estimate the cost, under a given policy, of executing the
methods in a locality window. Given a locality window as input, the goal is to estimate the count
of frames in the locality window that would result under the given policy. The algorithm builds an
estimated locality window by iteratively processing each frame in the input locality window to estimate
and add frames to this the estimated window. In each iteration step, the algorithm maintains a working
frame for the estimated locality window and examines the current frame from the input window as
described below.

If the current frame is compatible with the working frame, then the current frame is combined with
the working frame. Two frames are compatible if none of the method invocations in the two frames
would cause a cache invalidation. If the frames are not compatible, the algorithm determines if the
current frame is a legal frame for the policy. A frame is legal if none of the method invocations within
the frame would cause a cache invalidation. If the current frame is legal, then it becomes the working
frame and the frame count is incremented because the previous working frame would have been added
to the estimated locality window. If the frame is not legal, then the frame must be split into multiple

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

816 J. EBERHARD AND A. TRIPATHI

/* Algorithm to estimate cost for a policy */
/* Input: localityWindow Output: estimatedCost */
long estimateCost(LocalityWindow localityWindow) {
LocalityFrame workingFrame = UNKNOWN; int framecount = 0;
for (LocalityFrame currentFrame : localityWindow) {
if (compatible(workingFrame, currentFrame) {

workingFrame = mergeFrames(workingFrame, currentFrame);
} else {

if isLegalFrame(currentFrame) {
workingFrame=currentFrame; frameCount++;

} else {
workingFrame=UNKNOWN; frameCount += frameSplitCount(currentFrame);

}
}

}
return frameCount * averageRetrievalTime;
}

Figure 5. Algorithm to estimate policy cost.

frames that are legal for the policy. Therefore, the algorithm uses the frameSplitCount() method to
determine the maximum number of legal frames needed to represent the current frame. This count is
added to the frame count and the working frame is set to UNKNOWN. The working frame is set to
UNKNOWN because the ordering of the new frames is not known. This may cause the algorithm to
slightly over-estimate the cost. After all the frames have been processed, the cost is calculated using
the frame count and the average retrieval time for that policy. This average retrieval time is maintained
by our caching mechanisms. It is based on the current application run as well as previous application
runs.

Figure 6 shows examples of estimating locality windows from locality windows generated by other
policies. In Example 1, a locality window generated by the server-write policy is converted to a locality
window for the MRSW policy. In this case, frames 1 and 2 can be combined to form frame A because
the MRSW policy can cache an object in read–write mode. Frame 3 is not compatible with frame A
and cannot be merged. However, frame 3 is a legal frame for the MRSW policy and is added to the
estimated window, as shown by frame B. In Example 2, a locality window generated by the MRSW
policy is converted to a locality window for the server-write policy. In this case, frame 1 is a legal
frame, and is added to the estimated window as frame A. Frame 2 cannot be merged with frame A
and it is not a legal frame. Because, in the server-write policy, all writes take place at the server, and
each write operation must take place in a single frame. Consequently, frame 2 must be divided into
frames B, C, and D.

At runtime, the server periodically uses the locality window to estimate the costs for other candidate
policies for comparison with the cost of the current policy. If the estimated cost is 20% less, then a
policy switch will be triggered.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 817

MRSW
Policy

MRSW
Policy

1RC1

W 1 R 1

1RC1

Policy
Server Write

Policy
Server Write

W 1C21RC1

R 1W 2C3

W 1C3 W 1C31C3 R

Client Id Method Type Count Method Type Count

Usage DataLocality Frame

Legend :

W 1C2

RC2 2

W 1C1

C1

RC2 2

2 3

1 2

A

A B

1

B C D

Example 1

Example 2

Figure 6. Examples of estimating cost by locality window merging and splitting.

4.5.2. Policy switching

Once the server has used the cost model to determine that the policy should be changed, mechanisms
are needed to support dynamic policy switching. We have augmented our caching mechanisms to
permit the switching of consistency policies. Figure 7 shows steps taken to switch the consistency
policy, along with the associated policy events and action lists.

Once the server has decided that the policy must be switched, the current server policy sends
a PolicyRelinquish action to the SCM, as shown in step 1. In step 2, the SCM receives the
PolicyRelinquish action and sends a Suspend event to every client that is currently caching the object.
Each client’s CCM then delivers the Suspend event to the current client policy. In step 3, the current
client policy takes the necessary actions to suspend itself so that it can no longer be used. It then returns
an action list to build a SuspendDone event. If the cached copy of an object has updates, this action
list should contain actions to add those updates to the SuspendDone event. In step 4, the SuspendDone
event is returned to the server and given to the current server policy. In step 5, the server policy returns
an action list to update the MSO object with the updates from the client. In step 6, the SCM executes the
action lists from the all clients and then discards the current server policy. It then creates a new server
policy and asks the new server policy for Switch events to be sent to the clients. In step 7, the new
server policy provides Switch events to be passed to the clients. Each event must include the new client
policy to be used by the client. These events are then sent from the SCM to the CCM. In step 8, the
CCM retrieves the new client policy from the Switch event and replaces the current client policy with
the new client policy. In step 9, the CCM returns to the SCM an indication that the switch processing
has completed.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

818 J. EBERHARD AND A. TRIPATHI

Server
Policy

Current

SCM CCM

Client
Policy

Current
Client
Policy

New
Server
Policy

New

2

Policy Event Action List

1

2
3

4 5
 6

8
7

4

7
9

Server Client

Legend:

��
��
��
��{Suspend}

 {Actions}{EventType / Attributes}

�
�
�
�

��
��
��
��

�
�
�
�

 {PolicyRelinquish}

{Switch/
ClientPolicy}

 {Suspend Done/...}

 {Switch Done}

Figure 7. Steps for switching consistency policy.

4.6. Modified server object and cached object

On the server, a MSO represents the RMI object. On the clients, the cached object represents the
RMI object. The MSO is a slightly modified version of the original RMI object. The first reason for the
modification is to permit the SCM to access the instance variables of the RMI object. The second reason
is to replace Java synchronization primitives with method calls to support Java object synchronization,
as discussed in Section 3.3 and also in [23]. The tool used to generate the MSO is discussed below.

In order to satisfy the design requirements as outlined in Section 3.3, we create an appropriate
representative of the object for use on the clients. This representative object, a reduced object, is a
version of an RMI object which is serializable, which may contain a subset of the instance variables of
the original RMI object, and which has been modified to support Java object synchronization based on
wait/notify.

When creating a reduced object, the Remote interface is removed from the definition of the object
and replaced with the Serializable interface. This change permits Java to serialize the instance variables
of an object when it is transferred to a remote node.

Since only a subset of the instance variables of an object may be used on the client, a reduced
object may contain those variables. During application development, our mechanisms can record which
methods are invoked on a cached object. The application developer then provides this list of methods to
the reduced object generator to create a reduced object containing only the specified methods and the
instance variables which they use. The unused methods are disabled. The tool also creates the object
descriptor for the reduced object, which marks the unused methods as ‘server-only’, so then will not
be invoked on the cached object.

The final change to create a reduced object is to replace calls to the Java synchronization wait and
notify methods with calls to CCM. The CCM will convert those calls into appropriate events that are
delivered to the client policy.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 819

The use of reduced objects provides several benefits. First, communication overhead is reduced as
unnecessary object components are not transferred to the client. Second, false sharing is reduced. If a
method invoked at the server only accesses instance variables that are not cached, it is not necessary
to invalidate clients that have cached other parts of the object. Third, a reduced object can prevent
sensitive data from being cached on a client. The object descriptor can be used to identify methods that
access sensitive data. By excluding those methods from the list of methods provided to the reduced
object generator, the application developer can remove sensitive data from the reduced object.

4.7. Code generation

In order to implement our caching mechanism, we developed several programs to create the Java classes
for the objects in the cache template and server template. When enabling an RMI object for caching,
we use a script, GenerateObjects, to invoke these programs.

The first class files created by GenerateObjects are two Java interfaces. The first interface is the
‘non-remote’, or NR, interface. This interface has the same methods as the Remote interface used by the
RMI object, but the interface extends the java.rmi.Serializable interface instead of the java.rmi.Remote
interface. The NR interface is needed to enable the creation of the CCM and cached object classes
which have the same methods as the RMI object, but must be serializable so that they can be transferred
between the client and the server. The second interface is the SCMInterface. This is the Remote
interface which is used by the CCM to communicate with the SCM. When the CCM communicates
with the SCM, it must also pass a policy event. Consequently, the SCMInterface contains methods with
the same names as the methods of the RMI’s object remote interface, but each method has an additional
parameter to permit a policy event to be passed with the method invocation.

The next class files created by GenerateObjects contain the classes for the objects in the server
template. These objects are the server proxy, the SCM, and the MSO. The server proxy implements the
Remote interface. For each method in the Remote interface, the corresponding method of the SCM is
called. The SCM implements the SCMInterface discussed above. For each method, code is generated
to deliver a MethodCall event to the server policy and to execute the resultant action list. The MSO is
generated from the original server object class, making the changes described in the previous section.

GenerateObjects then creates the class files for the objects used by the cache template. First, the
class for the cache stub is created. For each of the methods in the NR interface, a method is generated
which calls the CCM, if it is available. If the CCM is not available, the method will contact the server
to retrieve the CCM. Second, the class for the CCM is created. For each method in the remote object,
a method is generated which creates a method call policy event and delivers it to the client policy.
The CCM also contains code to execute the action list returned by the client policy. The next classes
created are the reduced object and object descriptor. As described above, the tool to create the reduced
object uses a list of methods to create a class file containing those methods and the instance variables
used by those methods. The object descriptor is created by analyzing the byte codes of a Java class
to determine how each method uses the instance variables of the object. Using this information, the
methods of the reduced object are categorized as read-only, read–write, or server-only.

4.8. Policy configuration and creation

For each cached object class, an application developer creates a configuration object which specifies
the consistency policies used for objects of that class. A configuration object is created using

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

820 J. EBERHARD AND A. TRIPATHI

public class NoCacheClientPolicy extends ClientPolicyBase
public ActionList getEventActionList(PolicyEvent event) {
switch (event.eventType) {
case PolicyEvent.METHOD_CALL:
return new ActionList(new ActionInvokeOnServer());

case PolicyEvent.SERVER_DONE:
return new ActionList(new ActionSetReturnValue(event.returnValue));

...

public class NoCacheServerPolicy extends ServerPolicyBase {
public ActionList getEventActionList(PolicyEvent pe) {

switch (pe.eventType) {
case PolicyEvent.SERVER_CALL:
return new ActionList(new ActionInvokeMethod(),

new ActionAddReturnValue());
...

Figure 8. Sample NoCacheClientPolicy and NoCacheServerPolicy classes.

a ConfigurationWriter program by specifying the cached object class and its associated consistency
policy classes and the reduced object classes. The first policy specified is the default policy used for
the object. When more than one policy is specified for the configuration object, the adaptive policy
selection mechanism will select between these policies at runtime.

Besides using existing consistency policies, an application developer can create client policy
and server policy classes which extend a base class. The developer then adds to each class a
getEventActionList method which returns an action list. Figure 8 shows the implementation of the
NoCacheClientPolicy and NoCacheServerPolicy. As shown earlier, the client policy returns an action
list to invoke the method on the server when a method is called. The server policy returns an action list
to invoke the method and to add the return value to the policy event. When the SERVER_DONE event
arrives, the client policy creates an action list with the SetReturnValue action using the return value
contained in the event.

5. EXPERIMENTAL EVALUATION

After implementing the mechanisms described above, we evaluated their effectiveness using RMI
applications. Using these applications, we evaluate the overhead of our mechanisms, the benefits of
caching, and the benefits of caching with reduced objects. We demonstrate the benefits of adaptive
policy selection.

5.1. Benchmark development and experiment methodology

To evaluate our mechanisms, we used two different RMI applications and structured a methodology
for conducting our experiments. The first application is a single-client medium size object benchmark

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 821

Company

History

Warehouse

Stock

District NewOrder

OrderCustomer

Orderline

1

1
Item

1

*

1

1

1

1

1
1

1

*

*

*

*

*
1 1

*1

Figure 9. Objects in the rmiBOB benchmark.

similar to the TPC-C benchmark [26]. This application contains a variety of RMI objects with RMI
objects passed frequently between the client and the server. This application is used primarily for
measuring the benefits of caching and reduced objects. It shows performance benefits for applications
where clients do not share objects. The second application is a benchmark with objects representing
bank accounts. This application contains a collection of RMI objects, all of which are of the same type,
but they are used in a different manner. This application has several clients which access shared and
non-shared objects. We use this application to show the performance benefits of adaptive consistency
management.

5.1.1. rmiBOB application

To obtain an application with a rich variety of RMI objects, we created rmiBOB from IBM’s
Business Object Benchmark (BOB) from the book Enterprise Java Performance [27]. This benchmark
implements the business logic in the TPC-C benchmark [26]. The benchmark creates a ‘company’,
with associated objects, and measures the performance of executing ‘transactions’ on the objects.

In developing rmiBOB, we changed the primary objects in the application to be RMI objects.
The primary objects in the benchmark are shown in Figure 9. There is one company object that has
the items sold by the company as well as a history of payments made by customers. This company
has warehouses that stock the items sold by the company. Each warehouse has sales districts, with
customers assigned to each sales district. Each district has orders that are placed by customers, and
each order contains a number of order lines. For our tests, we used an initial population of 6141 objects,
as shown in Table VI.

The benchmark executes five types of ‘transactions’ on these objects. The transactions are executed
such that for every 23 transactions the following number of transactions are executed: 10 new order,
10 payment, 1 order status, 1 delivery, and 1 stock level.

We modified the benchmark for a single client to execute 1000 transactions. To verify that the
consistency policies were working correctly, we enabled screen writes for each run and saved the
output to a file. At the end of each run, we compared the output to a previous RMI run to ensure that
the results were correct.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

822 J. EBERHARD AND A. TRIPATHI

Table VI. Number of initial objects.

Class Count Class Count Class Count Class Count

Company 1 District 10 Warehouse 1 NewOrder 210
Item 1000 Customer 300 Stock 1000 Order 300
History 300 OrderLine 3019

Total 6141

We ran our experiments using two PCs. The server had 1 GB of memory and a 1.6 GHz Pentium�§

processor running Windows�¶ XP and the JDK 1.5 level of Java. The client had 512 MB of memory
and a 1.6 GHz Celeron� processor running Linux�‖ 2.4 and the JDK 1.4.2 level of Java. The PCs
were connected together using 100 MB Ethernet.

5.1.2. A bank account application

We created a second application in which several clients access a set of bank account objects using
deposit(), withdraw(), and getBalance() methods. The benchmark was designed to simulate different
object usage patterns by several clients. It does this by creating scripts that dictate the operations to be
performed by the clients. The clients run their respective scripts and the server reports statistics about
the run.

The script generator for this application uses several parameters to control the behavior of the
benchmark. These parameters, and the settings used for our experiments, are shown in Table VII.
For our experiments, we varied the number of clients between 2, 4, and 8. Following the 80:20 rule,
each client used 80 non-shared (not used by any other client) RMI objects and 20 shared RMI objects.
Each client invoked 100 000 method invocations on these RMI objects. For each method invocation,
an object is randomly chosen. To emulate locality of access we introduced another parameter in the
workload generation to control the probability of accessing an object that was recently accessed.
We performed experiments with two values—20% and 80%—for this parameter. To control the sharing
of object, we used the values 0, 25, and 50, as the probability of choosing a shared object. We also
control the type of method that was invoked by using either 25 or 50% probability of using a deposit()
or withdraw() method.

We conducted our experiments on Sun workstations. The server and three of the clients had 1024 MB
of memory and 1 GHz SPARC�∗∗ processors. The remaining clients had 512 MB of memory and
502 MHz SPARC� processors.

§Pentium and Celeron are registered trademarks of Intel Corporation in the United States and other countries.
¶Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
‖Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
∗∗SPARC is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are based on an
architecture developed by Sun Microsystems, Inc.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 823

Table VII. Parameters passed to bank account benchmark script generator.

Parameter Meaning Settings

Client count Number of clients accessing RMI objects 2, 4, 8
Shared object count Number of RMI objects that are accessed by all clients 20
Non-shared object count Number of RMI objects that are accessed by a single

client
80

Client method calls Number of method calls to RMI objects done by each
client

100 000

Locality probability Probability of accessing a recently used object 20%, 80%
Shared object probability Probability of a client accessing a shared RMI object.

Otherwise, the client will access a non-shared object
0%, 25%, 50%

Write method probability Probability of the client calling a deposit() or withdraw()
method. Otherwise a getBalance() method is called

25%, 50%

5.1.3. Experiment methodology

When conducting our experiments, we measured two key metrics. The primary metric was response
time. For the rmiBOB application, we measured the average time to execute a transaction. For the
banking application, we measured the average time to invoke an RMI method. The second metric was
the number of bytes transferred between the clients and the server. We did this by configuring RMI
to use a custom socket factory [28] that created a custom socket which recorded the number of bytes
transferred.

We made multiple observations of our experiments in order to achieve a confidence level in our
results. Using Student’s t-distribution, we determined that 10 runs provided a 95% confidence level of
obtaining results that were within 5% of the actual mean.

5.2. Overhead of mechanisms

To assure that our caching mechanisms did not add significant overhead, we conducted several
experiments using RMI and the no-cache policy. We first conducted experiments to obtain the basic
overhead of the mechanisms. We then conducted experiments to gain a detailed understanding of the
data transfer and processing overhead.

5.2.1. Basic overhead

To observe the basic overhead of our caching mechanisms, we compared the performance of the
benchmarks when using RMI and when using mechanisms with the no-cache policy (see Section 4.4.1).
Our results are shown in Table VIII. For the rmiBOB benchmark, the response time for using the
no-cache policy was about the same as RMI, with 39% fewer bytes transferred. The primary reason
for this improvement was the ability to transfer a reference to an RMI object that does not include an
RMI stub, as described in Section 4.2. For the bank account benchmark, the overhead of our caching

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

824 J. EBERHARD AND A. TRIPATHI

Table VIII. Overhead measurements.

Response time Bytes transferred

Benchmark (clients) Policy Mean Overhead Mean Overhead

rmiBOB (1) RMI 115.75 ms 26 062 359
rmiBOB (1) No-cache 119.38 ms 3% 15 840 131 −39%
banking (2) RMI 430.6 µs 13 616 091
banking (2) No-cache 494.7 µs 15% 16 757 644 23%
banking (4) RMI 623.8 µs 27 232 457
banking (4) No-cache 787.4 µs 26% 33 514 987 23%
banking (8) RMI 1186 µs 54 464 057
banking (8) No-cache 1511 µs 27% 67 028 150 23%

Table IX. Detailed data transfer overhead for the no-cache policy.

Operation RMI bytes NC bytes Overhead

Object reference retrieval 1125 1190 5.78%
First call 69 240 247%
getBalance calls (499) 33 445 41 507 24.11%
deposit calls (250) 16 756 20 264 20.94%
withdraw calls (250) 16 766 20 260 20.84%

Total 68 155 82 411 22.45%

mechanisms, as measured by increased average response time, was 15% in the two client case, and
increased to 27% in the eight client case. The overhead in bytes transferred remained constant at 23%.

5.2.2. Measurement of data transfer overhead

To understand the data transfer overhead, we created a smaller version of the bank account benchmark
which made 1000 calls to an RMI object. We ran the program using both RMI and the no-cache policy.
This application retrieved the object reference as the return value from an RMI call, made one call to
the getBalance method, then called the getBalance method 499 times, the deposit method 250 times,
and the withdraw method 250 times. Table IX shows the number of bytes transferred for the RMI and
no-cache policy.

As seen in the table, retrieving the object reference using a cache stub instead of an RMI stub added
less than 6% overhead. However, the overhead for the first call was more substantial, requiring an
additional 171 bytes to transfer the CCM and client policy objects to the client. The average overhead
for the remaining getBalance, deposit, and withdraw calls was an additional 16, 14, and 14 bytes,
respectively. This overhead included the cost for transferring an additional policy event parameter
on the method call, and for receiving a policy event object as the return value of the method call.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 825

Table X. Execution and processing times for instrumented banking benchmark.

getBalance withdraw

RMI stub execution time 401 401
Cache stub execution time 493 475

Cache stub processing time 2 2
CCM execution time 491 473

CCM processing time 22 19
Client policy execution time 4 2
Policy event marshalling time 6 3
SCM stub execution time 459 449

SCM stub processing time 432 429
SCM execution time 27 24

SCM processing time 21 20
Server policy execution time 1 1
Policy event marshalling time 5 3

This low overhead was possible because of our serialization technique which converts a policy event
to a string, as described earlier. When we did not use this technique, the overhead for the getBalance,
deposit, and withdraw calls was an additional 102, 56, and 56 bytes, respectively.

5.2.3. Measurement of processing overhead

To analyze the processing overhead, we instrumented important classes in our framework and RMI to
record the time, in microseconds, when each method was entered and exited. Using the bank account
benchmark, we ran the application with just a single client. Compared to the performance of a single
client with no instrumentation, the instrumentation added a 4% overhead when using RMI and a 10%
overhead when using the no-cache policy.

Using the instrumentation, and repeating the experiment for 10 runs, we measured the average
execution time of each component, which is the time between when the component was entered and
exited. The actual processing time of each component is the component’s execution time minus the
execution time of the components it calls. Table X shows our measurements and the relationship
between the component execution and processing times. The first two rows show the execution time for
the RMI stub and the cache stub. With the instrumented code, the overhead of using our mechanisms
was 23% for the getBalance calls and 18% for the withdraw calls. Examining the cache stub execution
time, it consists of the cache stub processing time and the CCM execution time. In turn, the CCM
execution time consists of the CCM processing time, the client policy execution time, the policy event
marshalling time, and the SCM stub execution time. The SCM stub execution time consists of the SCM
stub processing time, which includes the time required for an RMI call, and the SCM execution time.
The SCM execution time consists of the SCM processing time, the server policy execution time, and
the policy event marshalling time.

When compared to RMI, the getBalance call had an overhead of 92 µs. The largest portion of the
overhead, 43 µs, was caused by the processing of an action list, as can be seen in the CCM processing

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

826 J. EBERHARD AND A. TRIPATHI

Table XI. Consistency policies used for caching objects.

Object class Company Warehouse Stock Customer OrderLine

Policy Server-write Server-write Server-write MRSW Server-write

Table XII. Performance of caching and reduced objects for the rmibob benchmark.

Response time Bytes transferred

Configuration Mean Speedup factor Mean Reduction factor

Caching 62.7 ms 1.84 9 847 525 2.65
Reduced object 56.1 ms 2.07 7 776 857 3.35

time and the SCM processing time. An addition overhead of 31 µs was caused by the passing of the
policy event on the RMI call, as calculated as the difference between the SCM stub processing time
and the RMI stub execution time. An additional overhead of 11 µs was encountered when marshalling
the policy event. The remaining overhead was caused by the policy objects (5 µs) and cache stub (2 µs).

5.3. Benefits of caching for rmiBOB benchmark

To evaluate the benefits of caching and reduced objects when used with an RMI application having
different types of objects, we used the rmiBOB benchmark. By experimentation, we determined the
best performing policy settings, shown in Table XI, for each type of object. We then ran the benchmark
with and without the use of reduced objects. The results are shown in Table XII. We calculated
the speedup factor as the RMI response time divided by the response time with caching enabled.
We calculated the communication reduction factor as the RMI communication cost, measured as
number of bytes transferred, divided by the cost when caching was enabled. Without using reduced
objects, we measured an average transaction cost of 62.7 ms, which is a 1.84 speedup factor from the
RMI transaction cost. When reduced objects were used, we measured an average transaction cost of
56.1 ms, which is a 2.07 speedup factor from the RMI transaction cost. The improvement in bytes
transferred was much better, with a reduction factor of 2.65 when caching was used. Using reduced
objects further improved the reduction factor to 3.35.

5.4. Benefits of caching without object sharing

To understand the best possible caching performance, we conducted experiments, using the bank
account application, to determine the benefits of object caching when the objects were not shared.
For these experiments, we set the shared object probability, described in Table VII, to zero.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 827

Table XIII. Performance of bank account benchmark with no shared objects.

Response time Bytes transferred

Clients Policy Mean Speedup factor Mean Reduction factor

2 RMI 427.8 µs 13 573 102
2 MRSW 11.0 µs 39.0 314 554 43.2

4 RMI 621.1 µs 27 145 825
4 MRSW 11.5 µs 54.0 627 448 43.3

8 RMI 1197 µs 54 291 318
8 MRSW 21.1 µs 56.8 1 255 355 43.2

The results are shown in Table XIII. The speedup factor ranged from 38.9 to 56.7. The communication
reduction factor was about 43.2. As expected, significant performance improvement is possible when
caching an object that is not shared by other clients.

5.5. Benefits of adaptive policy switching

Since there are many applications where RMI objects may be shared by different clients, we conducted
some experiments using the bank account application to determine the benefits of caching with adaptive
policy switching. The adaptive policy switching was configured to initially use the MRSW policy and
adaptively switch to/from the no-cache policy. To test different usage patterns, we conducted four sets
of experiments. For two sets of experiments, we used a locality setting of 80%. To illustrate the extreme
where little locality was present, the remaining two sets used a locality setting of 20%. For each locality
setting, we conducted one set of experiments using 25% sharing and 25% write methods and the other
set using 50% sharing and 50% write methods. These results are shown in Figures 10–13.

Figure 10 shows the results for 80% locality, 25% sharing, and 25% write. Because of the high
locality and low sharing, the MRSW policy performed very well, with a speedup factor ranging
from 5.7 to 2.7. Because the MRSW policy performed so well, the adaptive policy mechanisms did
not switch the policy. As shown in the figure, the response time overhead of enabling the adaptive
mechanism was very small. The communication cost of enabling the adaptive mechanism was larger,
yet the cost was still much less than the RMI cost.

Figure 11 shows the results for 80% locality, 50% sharing, and 50% write. Because of the higher
sharing, the MRSW policy performed worse than with 25% sharing. In the worst case, the speedup
factor for MRSW was only 1.08. In the four client case, the adaptive mechanism caused a slight
degradation in response time when compared to MRSW. However, in the eight client case, the adaptive
mechanism performed very well, with a speedup factor of 1.40.

Figure 12 shows the results for 20% locality, 25% sharing, and 25% write. In this case, the MRSW
policy performed worse than the 80% locality case. On the other hand, the adaptive mechanism
performed well, resulting in improvements over MRSW for the 4 and 8 client cases. For these cases,
the adaptive mechanism achieved speedup factors of 2.70 and 2.67.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

828 J. EBERHARD AND A. TRIPATHI

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 4 8

R
es

po
ns

e
T

im
e

(
s)

clients

RMI
No-Cache

MRSW
Adaptive

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 2 4 8

N
et

w
or

k
(b

yt
es

)

clients

RMI
No-Cache

MRSW
Adaptive

 µ

Figure 10. Performance with 25% sharing, 25% write, and 80% locality.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 4 8

R
es

po
ns

e
T

im
e

(
s)

clients

RMI
No-Cache

MRSW
Adaptive

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 2 4 8

N
et

w
or

k
(b

yt
es

)

clients

RMI
No-Cache

MRSW
Adaptive

 µ

Figure 11. Performance with 50% sharing, 50% write, and 80% locality.

Figure 13 shows the results for 20% locality, 50% sharing, and 50% write. In this case, MRSW
performed very poorly. For 4 and 8 clients, the response time was 13% and 63% worse than RMI.
In those cases, the adaptive mechanism permitted the caching mechanism to still outperform RMI,
with speedup factors of 1.42 and 1.37 in the 4 and 8 client cases.

These experiments illustrate the importance of adaptive policy switching. In general, adaptive policy
switching had acceptable overhead when the MRSW policy was being used. When the MRSW policy
performed poorly for an object, the adaptive policy switching caused the no-cache policy to be used
instead, resulting in better application performance.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 829

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 4 8

R
es

po
ns

e
T

im
e

(
s)

clients

RMI
No-Cache

MRSW
Adaptive

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 2 4 8

N
et

w
or

k
(b

yt
es

)

clients

RMI
No-Cache

MRSW
Adaptive

 µ

Figure 12. Performance with 25% sharing, 25% write, and 20% locality.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2 4 8

R
es

po
ns

e
T

im
e

(
s)

clients

RMI
No-Cache

MRSW
Adaptive

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 2 4 8

N
et

w
or

k
(b

yt
es

)

clients

RMI
No-Cache

MRSW
Adaptive

 µ

Figure 13. Performance with 50% sharing, 50% write, and 20% locality.

6. CONCLUSION

This paper presented mechanisms for caching RMI objects. These mechanisms are compatible with
RMI and transparent to existing RMI clients. These mechanisms ensure the consistency of a cached
RMI object using an event-based consistency model. Using this consistency model, we have illustrated
the design and implementation of several consistency policies. Moreover, we have also created adaptive
mechanisms that use a cost model to adaptively select a consistency policy best suited to the current
usage of the object. Our mechanisms also permit the use of reduced objects, which reduces both the
amount of data that is cached by clients and the communication overhead of caching the object.

In this paper, we illustrated the performance benefits of the caching mechanisms using RMI
applications. When using an RMI application with a single type of object, but with different usage

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

830 J. EBERHARD AND A. TRIPATHI

patterns, the response time speedup factor was 56.7 in the best case. In the worst case, where 50% of
method invocations accessed shared objects and locality was only 20%, adaptive policy switching still
resulted in a speedup factor of 1.37. When using an RMI application containing several types of RMI
objects, the mechanisms improved the response time of the application by a speedup factor of 2.07
when both caching and reduced objects were used.

These mechanisms provide the base for our continuing research in distributed object caching.
While the consistency policies presented here do not support disconnected operation, our framework
provides enough flexibility to create consistency policies for use in a mobile environment. In particular,
we are utilizing these mechanisms to create consistency policies that utilize the semantics of object
methods to ensure the consistency of cached objects. Our results for these semantics-based consistency
policies are not discussed here, but a preliminary report is available in [29].

ACKNOWLEDGEMENTS

We wish to thank the anonymous reviewers for their insightful comments that have improved the quality of this
paper. This work would not have been possible without IBM’s degree work study plan’s support of the primary
author’s PhD program.

REFERENCES

1. Sun Microsystems. Java remote method invocation specification, 2003.
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html [17 August 2006].

2. Ghezzi C, Martena V, Picco GP. Enhancing remote method invocation through type-based static analysis. Proceedings of
the 7th International Conference on Fundamental Approaches to Software Engineering (FASE04), Barcelona, March 2004.
Springer: Berlin, 2004; 339–353.

3. Maassen J, van Nieuwpoort R, Veldema R, Bal H, Kielmann T, Jacobs C, Hofman R. Efficient Java RMI for parallel
programming. ACM Transactions on Programming Languages and Systems 2001; 23(6):747–775.

4. Veldema R, Philippsen M. Compiler optimized remote method invocation. Proceedings of the 5th IEEE Conference on
Cluster Computing, Hong Kong, 2003. IEEE Computer Society Press: Los Alamitos, CA, 2003; 127–136.

5. Krishnaswamy V, Walther D, Bhola S, Bommaiah E, Riley G, Topol B, Ahamad M. Efficient implementation of Java
remote method invocation (RMI). Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, April 1998. USENIX: Berkeley, CA, 1998.

6. Krishnaswamy V, Ganev IB, Dharap JM, Ahamad M. Distributed object implementations for interactive application.
Proceedings of the Middleware 2000 Conference, April 2000. Springer: Berlin, 2000; 45–70.

7. Aridor Y, Factor M, Teperman A, Eliam T, Schuster A. A high performance cluster JVM presenting a pure single system
image. Proceedings of the ACM of 2000 Java Grande Conference, San Francisco, CA, 2000. ACM Press: New York, 2000;
168–177.

8. Lipkind I, Pechtchanski I, Karamcheti V. Object views: Language support for intelligent object caching in parallel and
distributed computations. Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Denver, CO, November 1999. ACM Press: New York, 1999.

9. Bakker A, Kuz I, van Steen M, Tanenbaum AS, Verkaik P. Design and implementation of the Globe middleware. Technical
Report IR-CS-003, Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam, June 2003.

10. Bakker A, van Steen M, Tanenbaum AS. From remote objects to physically distributed objects. Proceedings of the 7th
IEEE Workshop on Future Trends of Distributed Computing Systems, Cape Town, South Africa, December 1999. IEEE
Computer Society Press: Los Alamitos, CA, 1999.

11. van Steen M, Homburg P, Tanenbaum AS. Globe: A wide-area distributed system. IEEE Concurrency 1999; 7(1):70–78.
12. Joseph AD, deLespinasse AF, Tauber JA, Gifford DK, Frans Kaashoek M. Rover: A toolkit for mobile information access.

Proceedings of the 15th Symposium on Operating Systems Principles, Copper Mountain Resort, CO, December 1995.
ACM Press: New York, 1995; 156–171.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

MECHANISMS FOR OBJECT CACHING 831

13. Shapiro M. Structure and encapsulation in distributed systems: The proxy principle. Proceedings of the 6th IEEE
International Conference on Distributed Computer Systems (ICDCS), Boston, MA, May 1985. IEEE Computer Society
Press: Los Alamitos, CA, 1985; 198–204.

14. Sun Microsystems. Dynamic proxy classes, 2003.
http://java.sun.com/j2se/1.4.2/docs/guide/reflection/proxy.html [17 August 2006].

15. Hassoun Y, Johnson R, Counsell S. Applications of dynamic proxies in distributed environments. Software—Practice and
Experience 2005; 35(1):75–99.

16. van Heiningen W, Brecht T, MacDonald S. Exploiting dynamic proxies in middleware for distributed, parallel, and mobile
Java applications. Proceedings of the 8th International Workshop on Java for Parallel and Distributed Computing, Rhodes
Island, Greece, April 2006. IEEE Computer Society Press: Los Alamitos, CA, 2006.

17. Garbinato B, Guerraoui R, Masouni KR. Implementation of the GARF replicated objects platform. Distributed Systems
Engineering Journal 1995; 2(1):14–27.

18. Liskov B, Castro M, Shrira L, Adya A. Providing persistent objects in distributed systems. Proceedings of the 13th
European Conference on Object-Oriented Programming (ECOOP’99), Lisbon, Portugal, June 1999. Springer: Berlin,
1999; 230–257.

19. Aldrich J, Chambers C, Sirer EG, Eggers S. Static analyses for eliminating unnecessary synchronization from Java
programs. Proceedings of the 6th International Static Analysis Symposium, Venezia, Italy, September 1999. Springer:
Berlin, 1999; 19–38.

20. Bogda J, Hölzle U. Removing unnecessary synchronization in Java. Proceedings of the 14th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Denver, CO, November
1999. ACM Press: New York, 1999.

21. Krintz C, Calder B, Hölzle U. Reducing transfer delay using Java class file splitting and prefetching. Proceedings of the 14th
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
Denver, CO, November 1999. ACM Press: New York, 1999.

22. Jakarta Byte Code Engineering Library. http://jakarta.apache.org/bcel [17 August 2006].
23. Eberhard J, Tripathi A. Efficient object caching for distributed Java RMI applications. Proceedings of Middleware 2001

Conference, Heidelberg, Germany, November 2001. Springer: Berlin, 2001; 15–35.
24. Mazouni KR, Garbinato B, Guerraoui R. Building reliable client-server software using actively replicated objects.

Proceedings of the International Conference on Technology of Object Oriented Languages and Systems (TOOLS),
Versailles, France, March 1995. Prentice-Hall: Englewood Cliffs, NJ, 1995.

25. Maassen J, Kielmann T, Bal HE. Parallel application experience with replicated method invocation. Concurrency and
Computation: Practice and Experience 2001; 13(8–9):681–712.

26. Transaction Processing Performance Council. TPC benchmark C, 2004. http://www.tpc.org/tpcc [17 August 2006].
27. Halter SL, Munroe SJ. Enterprise Java Performance. Prentice-Hall: Englewood Cliffs, NJ, 2000.
28. SUN Microsystems. Using a custom RMI socket factory, 2003.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/socketfactory [17 August 2006].
29. Eberhard J, Tripathi A. Object-based commutativity analysis for real-time applications. Proceedings of the 10th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems, Sedonia, AZ, February 2005. IEEE Computer
Society Press: Los Alamitos, CA, 2005; 279–286.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:799–831
DOI: 10.1002/spe

	1 INTRODUCTION
	2 RELATED WORK
	3 ISSUES IN CACHING OF RMI OBJECTS
	3.1 Design issues and requirements related to RMI compatibility
	3.2 Design issues and requirements related to consistency management
	3.3 Design issues and requirements related to the Java object model

	4 CACHING MECHANISMS AND CONSISTENCY POLICIES
	4.1 Overview of cache template and server template
	4.2 Mechanisms for RMI compatibility
	4.3 Mechanisms for consistency management
	4.3.1 Event--action model overview
	4.3.2 Policy events
	4.3.3 Action lists and actions
	4.3.4 Object descriptors

	4.4 Implementation of different consistency policies
	4.4.1 No-cache policy
	4.4.2 Server-write policy
	4.4.3 Multiple-Readers-Single-Writer policy

	4.5 Adaptive policy selection
	4.5.1 Locality window cost model
	4.5.2 Policy switching

	4.6 Modified server object and cached object
	4.7 Code generation
	4.8 Policy configuration and creation

	5 EXPERIMENTAL EVALUATION
	5.1 Benchmark development and experiment methodology
	5.1.1 rmiBOB application
	5.1.2 A bank account application
	5.1.3 Experiment methodology

	5.2 Overhead of mechanisms
	5.2.1 Basic overhead
	5.2.2 Measurement of data transfer overhead
	5.2.3 Measurement of processing overhead

	5.3 Benefits of caching for rmiBOB benchmark
	5.4 Benefits of caching without object sharing
	5.5 Benefits of adaptive policy switching

	6 CONCLUSION

