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Abstract—We present here a transaction management protocol
using causal snapshot isolation in partially replicated multi-
version databases. We consider here replicated databases consist-
ing of multiple disjoint data partitions. A partition is not required
to be replicated at all database sites, and a site may contain
replicas for any number of partitions. Transactions can execute at
any site and read or write data from any subset of the partitions,
and its updates are propagated asynchronously to other sites. The
protocol ensures that the snapshot observed by a transaction
contains data versions that are causally consistent. The protocol
requires propagating updates only to the sites replicating the
updated items. In developing this protocol, we address the issues
that are unique in supporting transactions with causal consistency
together with the snapshot isolation model in partially replicated
databases. Through experimental evaluations, we demonstrate
the scalability of this model and its performance benefits over
full replication models.

I. INTRODUCTION

Database replication poses fundamental trade-offs between

data consistency, scalability, and availability. Synchronous

replication, in which the updates of a transaction are propa-

gated synchronously to other sites before committing the trans-

action, provides strong consistency but incurs high latencies

for transactions. Moreover, this may not be practical under

wide-area settings [12], [9]. In asynchronous replication, the

transaction is first committed locally and then its updates are

asynchronously propagated later. This model provides lower

latencies in transaction execution and high availability, but

guarantees only eventual consistency [12] or causal consis-

tency [33], [23].

We address here the problem of providing transaction sup-

port for partially replicated databases which use asynchronous

replication. Partial replication is useful for scalability since

the data items need not be replicated at all sites and thus the

updates need to be propagated only to the sites replicating the

updated data items. We consider a replication model in which

database is partitioned in multiple disjoint partitions and each

partition is replicated at one or more sites, and a site may

contain any number of partitions. With partial replication, a

partition may be replicated only in those geographic regions

where it is likely to be accessed most frequently. Our goal

is to provide Snapshot Isolation (SI) [8] based transaction

support with causal consistency of data under partial replica-

tion. Causal consistency provides more useful semantics than

eventual consistency and can be supported under asynchronous

replication and even under network partitions. Due to these

advantages, several systems [33], [23] have been developed

recently with focus on supporting causal consistency. However,

these systems are designed primarily for full-replication model

and do not support partial replication. Supporting causal

consistency under partial replication raises unique issues. In

this paper, we address these issues and provide an efficient

transaction model, called Partitioned Causal Snapshot Isola-

tion (PCSI).

A transaction may be executed at any site and may access

items in any of the partitions. A transaction is committed

locally at a site, and then, at some later time, its updates are

propagated asynchronously to other sites and applied there.

Transactions are ordered according to a causal ordering. The

snapshot observed by a transaction may not always reflect the

latest versions of the accessed items, but it is guaranteed to

be consistent as described below.

The PCSI model provides the following guarantees for

transaction execution under partial replication.

• Snapshot Isolation: As in the case of traditional snapshot

isolation, the PCSI model guarantees that when two or

more concurrent transactions update a common data item,

only one of them is allowed to commit.

• Transaction Ordering: The PCSI model provides ordering

guarantees for transactions based on three properties:

causal ordering, per-item global update ordering, and

per-partition site-based ordering. We define the ordering

relationship (≺) which provides a partial ordering over

a set of transactions. Two non-concurrent transactions Ti

and Tj are ordered as follows.

– causal ordering: If Tj reads any of the updates

made by Ti, then transaction Ti causally precedes

transaction Tj (Ti ≺ Tj).

– per-item global update ordering: Ti ≺ Tj if Tj

creates a newer version for any of the items modified

by Ti, i.e. Ti commits before Tj .

– per-partition site-based update ordering: Ti ≺ Tj

if both Ti and Tj execute at the same site, both

update a common partition, and Ti obtains its commit

timestamp before Tj .

The ordering relationship is transitive, i.e. if Ti ≺ Tj
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and Tj ≺ Tk, then Ti ≺ Tk. Given a set of transactions,

a site applies only those transactions which update any

of the site’s local partitions. In the PCSI model, these

transactions are applied to the partition’s replica at a site

according to the ordering relationship (≺).

• Globally Consistent Snapshot: In partial replication

model, a transaction may access multiple partitions that

may be stored at different sites. The PCSI model guar-

antees that a transaction observes a consistent snapshot

spanning multiple partitions. A consistent snapshot has

the following properties of atomicity and causality:

– Atomicity: In a consistent snapshot either all or none

of the updates of a transaction are visible.

– Causality: If a snapshot contains updates of trans-

action Ti, then updates of all transactions causally

preceding Ti are also contained in it.

We present the PCSI protocol for transaction management

in partially replicated databases. We implemented a prototype

system for evaluating the PCSI model. We evaluated this

system using a custom benchmark on a local cluster and the

Amazon EC2 environment. The main contributions of this

paper are as follows. First, we identify the unique issues in

supporting causal consistency in partitioned databases with

partial replication. Second, we present a transaction model

based on snapshot isolation in partially replicated databases.

This model ensures causal consistency of data. Third, we de-

velop a transaction execution protocol that uses asynchronous

update propagation model and requires communicating up-

dates only to the sites replicating the updated items. Finally,

through experimental evaluations, we demonstrate the scala-

bility benefits of partial replication using the PCSI model over

full replication-based models.

The rest of the paper is organized as follows. In the next

section we discuss the related work. Section III highlights

the issues in supporting snapshot based transactions with

causal consistency in partially replicated databases. Section IV

provides conceptual overview of the PCSI model. In Section V

we present the details of the PCSI protocol. Evaluations of

the proposed model and its mechanisms are presented in

Section VI. Conclusions are presented in the last section.

II. RELATED WORK

The problem of transaction management in replicated data-

base systems has been studied widely in the past. Initial work

on this topic focused on supporting transactions with 1-copy

serializability. The issues with scalability in data replication

with strong consistency requirements are discussed in [16].

Such issues can become critical factors for data replication in

large-scale systems and geographically replicated databases.

This has motivated use of other models such as snapshot

isolation (SI) [8] and causal consistency.

Replication using snapshot isolation (SI) has been studied

widely [22], [14], [35], [21]. SI-based database replication

using lazy replication in the primary-backup model is in-

vestigated in [11]. Compared to the primary-backup model,

the symmetric execution model is more flexible but requires

coordination among replicas. Many of the systems for SI-based

database replication [22], [14], [18] use eager replication with

atomic broadcast to ensure that the replicas observe a total

ordering of transactions. The notion of 1-copy snapshot isola-

tion [22] means that the schedule of transaction executions at

different replicas under the read-one-write-all (ROWA) model

is equivalent to an execution schedule of the transactions using

the SI model in a system with only one copy.

Recently, many data management systems for cloud data-

centers distributed across wide-area have been proposed [12],

[9], [7], [23], [33]. Dynamo [12] uses asynchronous replication

with eventual consistency but does not support transactions.

PNUTS [9] also does not provide transactions, but provides a

stronger consistency level than eventually consistency, called

as eventual timeline consistency. Megastore [7] provides trans-

actions over a group of entities using synchronous replication.

COPS [23] provides causal consistency, but does not provide

transaction functionality, except for snapshot-based read-only

transactions. Eiger [24] provides both read-only and update

transactions with causal consistency but requires maintaining

causal dependencies on per object level. PSI [33] provides

transaction functionality for geo-replicated data using asyn-

chronous replication, guaranteeing causal consistency.

Another approach for achieving higher scalability is to use

partial replication instead of replicating the entire database

on all sites [17], [32], [15], [34], [29], [30]. The approach

presented in [17] guarantees serializability. It uses epidemic

communication that ensures causal ordering of messages using

a vector clock scheme where each site knows how current is

a remote site’s view of the events at all other sites. Other

approaches [32], [29], [4], [28] are based on the database

state machine model [27], utilizing atomic multicast protocols.

These approaches support 1-copy serializability. In contrast,

the approach presented in [30] is based on the snapshot

isolation model, providing the guarantee of 1-copy snapshot

isolation. This model is applied to WAN environments in [31]

but relies on a single site for conflict detection in the validation

phase. The notion of genuine partial replication [28] requires

that the messages related to a transaction should only be

exchanged between sites storing the items accessed by the

transaction. The system presented in [4] uses the notion of

generalized snapshot isolation (GSI) [14], where a transaction

can observe a consistent but old snapshot of the database.

The Non-Monotonic Snapshot Isolation (NMSI) protocol

presented in [3] is the closest to our work. Our work differs

from NMSI in following ways. NMSI protocol requires main-

taining dependency information either on per object version

level or on per partition level with the restriction that updates

within a partition should be serialized. For detecting concur-

rent update conflicts on a partition, it uses an atomic multicast

protocol involving all replicas of all objects in a transaction’s

write-set. In contrast, PCSI uses vector clocks effectively to

avoid maintaining any dependency information on per object

level, and it does not require that updates on a partition be

serialized. Only the updates on a given object are serialized

which is a result of the no write-write conflict requirement,
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z(299) z(299) x(99) y(199)P1 x(99) P2 P2 y(199)P3 P1 P3P2 z(299)

x(100)P1

y(200)P3

z(300)P2

z(300)P2 z(300)P2

Site 1 Site 2 Site 3 Site 4 Time

T1: write[ x(100) ]

T2: read[ x(100) ] write[ y(200) ]

T3: read[ y(200) ] write[ z(300) ]

T4: read[x(100) y(199) z(300)]

Fig. 1. Issues in supporting causality under partial replication

and the updates from a site to a partition are serialized using

a local sequencer, without requiring any remote coordination.

PCSI also minimizes causal dependencies by considering only

the read-write sets of a transaction [26]. For obtaining the

start snapshot, NMSI supports the notion of forward freshness,

whereas in PCSI it is obtained in the beginning and it is

“frozen”. We believe that this advantage of NMSI is minor

considering that typically abort rates due to update conflicts

tend to be small, whereas its model of serializing all updates

on a partition is a major drawback.

Orbe [13] supports partitioned and replicated databases

supporting causal consistency, but it does not support multi-

key update transactions. PCSI uses two-dimensional vector

clocks similar to Orbe’s dependency matrix and time-tables

in [36]. Bolt-on causal consistency [6] provides mechanisms

for causal consistency in systems with eventual consistency.

Spanner [10] provides strong consistency with serializable

transactions under global-scale replication. However, it relies

on special purpose hardware such as GPS or atomic clocks

to minimize clock uncertainty. The work presented in [20]

provides a new type of consistency scheme called as red-

blue consistency which uses operation commutativity to relax

certain ordering guarantees for better performance. The work

in [19] presents a transaction commit protocol for wide-area

replication that is more efficient than 2PC or Paxos.

III. ISSUES IN SUPPORTING CAUSAL CONSISTENCY UNDER

PARTIAL REPLICATION

Several issues arise in supporting causal consistency in

partially replicated database systems where transaction updates

are propagated asynchronously and only to the sites containing

replicas of modified partitions. Ensuring causality guarantees

requires that for applying a given transaction’s updates to a

partition’s replica at a site, all its causally preceding events,

including the transitive dependencies, must be captured in the

state of the local partitions of that site. We illustrate this

problem using the example shown in Figure 1. In this example,

partition P1 containing item x is replicated at sites 1 and 3.

Partition P2 containing item z is replicated at sites 1, 2, and

y(49)

x(100) y(50)

P2

P1 P2

P1 P1x(99) x(99) P2

P1

y(49)

x(100)

Site 1 Site 2 Site 3 Time

T1: write[ x(100) y(50) ]

T2: read[ x(100) y(49) ]

Fig. 2. Issues in obtaining atomically consistent snapshot

3. Partition P3 containing y is replicated at sites 2 and 4. The

latest version number of an item is shown in parentheses.

Transaction T 1 executed at site 1 updates item x and creates

version x(100). This update is asynchronously propagated to

site 3, shown by a dashed arrow in the figure. Transaction

T 2 executed at site 2 reads x(100) from partition P1 at site

1 and updates y to create version y(200). Later transaction

T 3 is executed at site 2, which reads y(200) and modifies

z to create version z(300). Note that version z(300) causally

depends on x(100). T 3’s update is propagated asynchronously

to sites 1 and 3. Suppose T 3’s update for z(300) arrives at

site 3 before the update of transaction T 1 for x(100). In

case of full replication based model such as PSI [33], all

transactions’ updates are sent to all sites and the update of T 3
in the above scenario would only be applied after the updates

of transaction T 1 and T 2 are applied. However, with partial

replication shown in Figure 1, the updates of T 2 would never

be sent to site 3. Therefore, we need an update synchronization

mechanism that selectively waits for the updates of transaction

T 1 but not T 2. Applying the update z(300) before applying

the update of x(100) will result in causally inconsistent state

of partitions P1 and P2 at site 3.

A straightforward solution for supporting causal consistency

requires either (1) maintaining the entire causal dependencies

graph for every item version [23], or (2) communicating every

update to all the sites in the system so that each site is

cognizant of all causal dependencies. The first solution is not
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feasible since the causal dependency graph can potentially

become very large. The second solution nullifies the advantage

of partial replication, since it requires communicating the

updates to all sites [5].

Next we illustrate the issues that arise when executing a

transaction that needs to access some partitions stored at a

remote site. Suppose, in the example shown in Figure 1, at

site 4 transaction T 4 is executed which reads items x, y, and

z. This transaction reads y(199) from the local partition P3
and reads x(100) and z(300) from site 1 since site 4 does not

contain partitions P1 and P2. The snapshot observed by T 4
is causally inconsistent because it contains z(300) but not the

causally preceding version y(200).
Another issue that arises when reading data from remote

partitions under asynchronous propagation is related to the

atomicity property of consistent snapshots. We illustrate this

with an example shown in Figure 2. Here partition P1
containing item x is replicated at sites 1 and 2, and partition

P2 containing y is replicated at sites 1 and 3. Transaction T 1
executed at site 1 updates x and y, creating versions x(100)
and y(50). The updates of this transaction are propagated

asynchronously to sites 2 and 3. Suppose that site 3 executes

transaction T 2 which reads item x and y. T 2 is executed

before site 3 applies the update of T 1 for version y(50). T 2
reads y(49) from its local partition and reads x(100) from

site 2. This reflects an atomically inconsistent snapshot of

partitions P1 and P2 with respect to items x and y. In the next

section, we present the PCSI model to address such issues in

ensuring causal consistency.

IV. OVERVIEW OF THE PCSI MODEL

We consider partial replication of a database that consists

of a set of data items partitioned into multiple disjoint data

partitions. The system consists of multiple sites, and each site

contains one or more partitions. Each site is identified by a

unique siteId. Each partition is replicated across one or more

sites. Each site has a local database which supports multi-

version data management.

Before executing read/write operations, a transaction must

obtain a globally consistent snapshot satisfying the atomicity

and causality properties. All read operations on a partition

are performed according to the snapshot obtained for that

partition. If the partition to be read is stored at the local site,

it executes read operation on the local database, otherwise the

transaction performs a read from a remote site. The writes

are buffered till the commit time. When a transaction is ready

to commit, it checks for update conflicts with concurrently

committed transactions. In case of no conflicts, the transaction

is committed and applied at the local site and its updates

are asynchronously propagated to other sites that store the

partitions updated by the transaction. For ensuring causal

consistency, the causal dependencies of the transaction are

computed and this information is communicated with the

update propagation message. A remote site applies the updates

only if it has applied updates of all the causally preceding

transactions.

A. Timestamps, Vector Clocks and Partition Dependency View

Our goal in designing the PCSI model is to avoid the need

of propagating updates to all sites. This requires distinguishing

between transactions based on the partitions modified by them.

Our solution to this problem is based on assigning transaction

sequence numbers and maintaining causal dependency infor-

mation on per-partition-replica basis. We refer to the partitions

stored at a site as the local partitions of that site. In the PCSI

model, a site maintains a sequence counter for each of its local

partitions, which is used to assign sequence numbers to local

transactions modifying items in that partition.

A transaction may update multiple partitions thus resulting

in distinct update events in different partitions. We define an

atomic event set as the set of all update events of a given

transaction. A transaction obtains, during its commit phase, a

timestamp for each partition it is modifying. A timestamp is a

pair <siteId, seq>, where seq is a local sequence number

assigned to the transaction, for that partition, by the site

identified by siteId. The commit timestamp vector (Ct) of

transaction t is a set of timestamps assigned to the transaction

corresponding to the partitions modified by the transaction.

For example, the commit timestamp vector Ct of transaction

t modifying partitions p, q, and r is a set of timestamps {Cpt ,

Cqt , Crt }. For an item modified by transaction t in partition q,

the version number of the item is commit timestamp Cqt .

Each site maintains a vector clock for each local partition,

referred to as the partition view (Vp). The partition view Vp for

a local partition p maintained by site j indicates the sequence

numbers of transactions from all sites that have updated any

of the items in partition p and have been applied to the local

copy of p at site j. Thus, the value Vp[k] indicates that site j

has applied all the transactions pertaining to partition p from

site k up to this value as well as all the causally preceding

transactions that updated any of the partitions at the site.

For capturing causality and atomicity dependencies, a site

also maintains, for each local partition p, a partition depen-

dency view (Dp), which is a set of vector clocks. For causality,

it identifies for each of the other partitions the events that have

occurred in that partition and that causally precede the partition

p’s state as identified by its current partition view. In other

words, Dp indicates the state of other partitions on which the

current state of partition p is causally dependent. For atomicity,

it captures the atomic event sets of all the transactions applied

to partition p. The partition dependency view Dp consists of a

vector clock for each other partition. Formally, Dp is a set of

vector clocks {D1

p,D
2

p, · · · ,D
q
p, · · · ,D

n
p }, in which an element

Dq
p is a vector clock corresponding to partition q. Each element

of the vector clock Dq
p identifies the transactions performed on

partition q that causally precede the transactions performed on

partition p identified by Vp. Note that partition q may or may

not be stored at site j. Also, note that the vector clock Dp
p is

same as Vp.

B. Snapshot Based Access

A transaction t executing at site i is assigned, when it

begins execution, a start snapshot timestamp St, which is a
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set of vector clocks {S1t ,S
2

t , · · · ,S
q
t , · · · ,S

n
t }. An element

Spt corresponds to the snapshot vector clock obtained for

partition p. This snapshot should satisfy the global consistency

requirement as defined below. For this, we define the visible

relationship as follows. A transaction is visible in a snapshot

of a partition at a site if the transaction’s updates have been

applied at that site. We formally define below the visible

relationship for a transaction τ and snapshot Sq for a partition

q as follows.

visible(τ,Sq) : Cqτ .seq ≤ S
q[Cqτ .siteId] (1)

Globally consistent snapshot: A snapshot S is globally con-

sistent, if for all pairs of partitions p, q in the snapshot S, the

following two requirements hold.

1) Causality: If a transaction ti is visible in the snapshot

Sp for partition p, i.e. visible(ti,S
p), and there exists

transaction tj , tj ≺ ti, such that tj has modified partition

q, then tj should be visible in snapshot for q, i.e.

visible(tj,S
q).

2) Atomicity: If transaction ti has modified partitions p and

q, then visible(ti,S
p) if and only if visible(ti,S

q)

When obtaining a snapshot, we use the partition dependency

views to check if a snapshot is globally consistent for a

given set of partition replicas to be accessed. For each pair

of partitions p, q to be accessed by the transaction, we can

consider Vp and Vq as snapshots for p and q provided the

following conditions holds: Dq
p ≤ V

q ∧ Dp
q ≤ V

p.

C. Transaction Validation

Like PSI [33], for each data item, there is a designated

conflict resolver site which is responsible for checking for

update conflicts for that item. A conflict resolver site maintains

an ordered list of the commit timestamps (<siteId, seq>) of

all the committed versions of the corresponding item. The

transaction coordinates with conflict resolver sites responsible

for the items in its write-set to check if some other transaction

has created an item version newer than the latest version

visible in the transaction’s snapshot. Such a situation indicates

an update conflict. This coordination is done using a two-

phase-commit (2PC) protocol. The transaction commits only

if none of the items in its write-set have an update conflict.

D. Update Propagation

For ensuring causal consistency, a transaction’s updates are

applied at remote sites only after the updates of all the causally

preceding transactions have been applied. For this purpose,

the causal dependencies of the transaction are captured in

form of a set of vector clocks, called transaction dependency

view (T D). A vector clock in this set corresponds to a

partition and identifies all the causally preceding transactions

pertaining to that partition. The atomicity dependencies are

captured by the commit timestamp Ct value. The T D and

Ct values are communicated with the update propagation

message. The transaction’s updates are delayed at a remote

site until all its local partitions are advanced enough according

to corresponding vectors in T D. Furthermore, when applying

the transaction, the partition dependency views of the modified

partitions are updated using T D and Ct values to indicate the

partition’s causal and atomic dependencies on other partitions.

V. PCSI PROTOCOL DESCRIPTION

We present here a formal description of the PCSI protocol.

For simplicity of the presentation, we first describe the exe-

cution of a local transaction, i.e. a transaction executed at a

site which stores all the partitions accessed by the transaction.

Later, we describe how a transaction that requires accessing

partitions at remote sites is executed.

A. Execution of Local Transactions

Obtaining start snapshot time: In the case when all partitions

to be accessed by the transaction are local, the start snapshot

time St for transaction t is obtained using the partition views

of those partitions. The partition views of the local partitions

at a site always form a consistent snapshot. The pseudocode

for obtaining start snapshot time is shown in Algorithm 1.

Later in Algorithm 7 we generalize this for a transaction

accessing partitions from remote sites. When the snapshot is

obtained, the D vector values of the accessed partitions are

also recorded, which are later used in Algorithm 4. We call

these as snapshot-D vectors. The steps enclosed in ‘begin’ and

‘end atomic region’ are performed as a critical section at the

execution site.

Performing read operations: When a transaction reads a data

item x from a partition p, we determine the latest version

for x that must be visible to the transaction based on the

transaction’s start snapshot time Spt for that partition. The pro-

cedure to read a data item version from partition p according to

transaction’s snapshot Spt is as described earlier. Algorithm 2

gives the pseudocode for performing read operations. In case

of write operations, the writes are buffered locally until the

commit time.

Transaction Validation: When the transaction reaches its com-

mit point, it performs update conflict checking if it has mod-

ified any items. Algorithm 3 shows the protocol for conflict

Algorithm 1 Obtaining start snapshot time

function GETSNAPSHOT

P ← partitions accessed by the transaction

[ begin atomic region

for all p ∈ P do

Spt ← Vp
snapshot-Dp ← Dp

end atomic region ]

Algorithm 2 Performing read operations

function READ(item x)

p← partition containing item x

/* performed in reverse temporal order of versions */

for all version v ∈ version log of x do

if Spt [v.siteId] ≥ v.seq then return v.data
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Algorithm 3 Update conflict checking performed by a trans-

action at site j

function CHECKCONFLICTS(writeset)

sites← conflict resolver sites for items ∈ writeset

for all s ∈ sites do

itemList ← {x|x ∈ writeset ∧ resolver(x) = s};
invoke RecvPrepare(itemList, S) at s

if all votes are ‘yes’ then

perform Commit function as shown in Algorithm 5;

for all s ∈ sites do

invoke RecvCommit(itemList, Ct) at s

else

invoke RecvAbort(itemList) at each s ∈ sites;

abort transaction

/* Functions executed by the conflict resolver site */

function RECVPREPARE(itemList, St)
for all x ∈ itemList do

p← partition containing item x

v ← latest version of item x

if Spt [v.siteId] ≥ v.seq ∧ x is unlocked then

lock x

else

return response with ‘no’ vote

if all x ∈ itemList are locked then send response with

‘yes’ vote

function RECVCOMMIT(itemList, Ct)
for all x ∈ itemList do

p← partition containing item x

record version timestamp Cpt in version log

release lock on x

function RECVABORT(itemList)

release locks on all x ∈ itemList

checking. The update conflict checking is performed using a

two-phase commit (2PC) protocol with the conflict resolver

sites responsible for the items contained in the transaction’s

write-set. If the local site is the conflict resolver for all

write-set items then the conflict checking is performed locally

without any coordination with any remote sites. In the first

phase of 2PC, the transaction sends a prepare message to the

conflict resolver sites, containing its write-set items and its

start snapshot timestamp. A conflict resolver site checks, for

each item it is responsible for, whether the latest version of

that item is visible in transaction’s start snapshot and that item

is not locked by any other transaction. If this check fails, it

sends a ‘no’ vote, else it sends ‘yes’ vote. If the transaction

receives ‘yes’ votes from all conflict resolvers, it proceeds to

executing commit phase.

Determining transaction dependencies: After successful vali-

dation, transaction t computes its transaction dependency view

T Dt. T Dt is a set of vector clocks:

Algorithm 4 Computing transaction dependency view for

transaction t

function COMPUTETRANSACTIONDEPENDENCY

P ← set of partitions on which t performed any

read/write operation.

for all p ∈ P do

T Dp
t ← S

p
t

[ begin atomic region

for all p ∈ P do

for all Dq
p ∈ snapshot-Dp do

if T Dt does not contain element for q then

T Dq
t ← D

q
p

else

T Dq
t ← super(Dq

p, T Dq
t )

end atomic region ]

function SUPER(V 1, V 2,· · ·,V k) returns V

∀i, V [i] = max(V 1[i], V 2[i], · · · , V k[i])

T Dt = {T D
1

t , T D
2

t , · · · , T D
q
t , · · · , T D

n
t }

An element T Dq
t identifies the transactions performed on

partition q which causally precede t. Algorithm 4 shows the

pseudocode for computing T Dt. We first compute T Dt using

the start snapshot timestamp of the transaction. Since the

transaction observes only the events visible in its snapshot,

the snapshot vector captures all the causally preceding events

pertaining to the partitions accessed by the transaction. The

start snapshot may contain events, or in other words item

versions, that are not read by the transaction. In order to

eliminate the false dependencies on such events, we can

consider only the item versions read by t in computing T Dt,

as described in our earlier work on CSI [26]. However, for

simplicity of discussion we omit this part in our protocol

description. We then capture the causal dependencies on other

partitions by including in T Dt the snapshot-Dp vectors of

each partition p accessed by t. If any two partitions p1 and p2
accessed by t, each have in their dependency view an element

for some other partition q, i.e. ∃q s.t. Dq
p1 ∈ Dp1∧D

q
p2 ∈ Dp2,

then we take element-wise max value from Dq
p1 and Dq

p2 using

the ‘super’ function shown in Algorithm 4.

Commit phase: Algorithm 5 shows the commit protocol for

a transaction. A commit timestamp vector Ct is assigned

to the transaction by obtaining a sequence number of each

partition modified by t. The items updated by the trans-

action are written as new versions in the local database,

and transaction dependency view set T Dt is computed. The

updates to different partitions are applied concurrently without

needing any synchronization, except when getting sequence

number, and advancing vector clocks and dependency views.

The partition views V and dependency views D of all updated

partitions are advanced using T Dt and Ct, as shown in the

function ‘AdvanceVectorClocks’. If the committed transaction

involves modifying items in multiple partitions, then the above
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Algorithm 5 Commit Protocol for transaction at site j

function COMMIT(writeset)

P ← partitions pertaining to writeset.

[ begin atomic region

for all p ∈ P do

ctrp ← local sequence counter for partition p

Cpt .seq ← ctrp++

end atomic region ]

ApplyUpdates(writeset, Ct)
// compute dependencies as shown in Algorithm 4

T Dt ← ComputeTransactionDependency()

// advance local vector clocks

AdvanceVectorClocks(T Dt, Ct)
/* propagate updates */

propagate to every site that stores any partition p ∈ P
(T Dt, writeset, Ct)

function APPLYUPDATES(writeset, Ct)
P ← partitions pertaining to writeset.

for all p ∈ P do

for all item x in writeset pertaining to p do

write the new version of x to the local database.

record version timestamp Cpt in version log

/* Function to update vector clocks for partitions */

function ADVANCEVECTORCLOCKS(T Dt, Ct)
P ← partitions pertaining to writeset

[ begin atomic region

for all p ∈ P do

for all T Dq
t ∈ T Dt s.t. q 
= p do

Dq
p ← super(T Dq

t , Dq
p)

/* Advance D using Ct to capture the t’s

update events in other partitions */

for all Cqt ∈ Ct s.t. q 
= p do

Dq
p[C

q
t .siteId]← C

q
t .seq

Vp[Cpt .siteId]← C
p
t .seq

end atomic region ]

procedure ensures that the partition dependency view D for

each modified partition is updated using the Ct value to capture

all events in the atomic set of the transaction. The above

procedure is done as a single atomic action to ensure that the

transaction’s updates are made visible atomically. The updates,

along with T Dt and Ct values, are asynchronously propagated

to every site that stores any of the partitions modified by t.

Applying updates at remote sites: When a remote site k re-

ceives update propagation for t, it checks if it has applied,

to its local partitions, updates of all transactions that causally

precede t and modified any of its local partitions. Thus, for

every partition p specified in T Dt, if p is stored at site k, then

site checks if its partition view Vp is advanced up to T Dp
t .

Moreover, for each of the modified partitions p for which

the remote site stores a replica of p, the site checks if Vp

Algorithm 6 Applying updates at a remote site k

function RECVUPDATEPROPAGATION(T Dt, writeset, Ct)
// check if the site is up to date with respect to T Dt

for all T Dp
t ∈ T Dt do

if (p is local partition) ∧ Vp < T Dp
t then

buffer the updates locally

synchronize phase: delay applying updates

till the vector clock advances enough.

for all Cpt ∈ Ct do

if (p is local partition) ∧ Vp[Cpt .siteId] < C
p
t .seq−1

then synchronize phase as shown above

// apply updates to local partitions at site k

ApplyUpdates(writeset, Ct)
// advance vector clocks of site k

AdvanceVectorClocks(T Dt, Ct)

of the replica contains all the events preceding the sequence

number value present in Cpt . If this check fails the site delays

the updates until the vector clocks of the local partitions

advance enough. If this check is successful, the site applies

the updates to the corresponding local partitions. Updates of

t corresponding to any non-local partitions are ignored. The

partition views at site k are advanced as shown in procedure

‘AdvanceVectorClock’ in Algorithm 5.

B. Execution of Multi-site Transactions

It is possible that a site executes a transaction that ac-

cesses some partitions not stored at that site. This requires

reading/writing items from remote site(s). An important re-

quirement for a multi-site transaction is to ensure that it

observes a consistent global snapshot. We describe how the

start snapshot vector is determined. Algorithm 7 shows the

modified ‘GetSnapshot’ function. Note that at a given site the

partition dependency view of any partition reflects a consistent

global snapshot. We can thus form a consistent global snapshot

by combining the partition dependency views of all the local

partitions. If two local partitions contain in their D sets a

vector for some partition p, then we can take ‘super’ of these

two vectors as the snapshot for p. We follow this rule for each

partition to be accessed across all local partition dependency

views to form a global snapshot. Such a snapshot is consistent

because the causal and atomic event set dependencies of all

the local partitions are collectively captured in this snapshot.

It is still possible that this set may not have a snapshot vector

for some partition to be accessed by the transaction. For each

such partition q, we then need to follow a procedure to obtain

a snapshot from some remote site containing that partition.

We read the partition view Vq of the remote site and consider

it as the snapshot for q provided that its causal dependencies

as indicated by the Dq set at the remote site have been seen

by the local site. The function ‘GetRemoteSnapshot’ performs

this step to ensure that the condition Dq
p ≤ V

q ∧ Dp
q ≤ V

p

holds for all pairs of partitions p and q.

After obtaining the start snapshot time, transaction t per-

forms local reads as shown in Algorithm 2. For a remote
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Algorithm 7 Obtaining snapshot for a multi-site transaction t

at site i

function GETSNAPSHOT

L ← local partitions accessed by t

R← non-local partitions accessed by t

for all p ∈ L do

Spt ← Vp

for all q ∈ R do

for all local partition p do

if Dq
p ∈ Dp then

Sqt ← super(Dq
p, Sqt )

for all q ∈ R such that Sqt 
∈ St do

Sqt ← GetRemoteSnapshot(St, q)

if Sqt is null then repeat above step using some other

replica site for partition q

/* Function executed at remote site j to

obtain snapshot for t for partition q */

function GETREMOTESNAPSHOT(St, partition q)

for all r such that Dr
q ∈ Dq ∧ S

r
t ∈ St do

if r 
= q ∧ Srt < Dr
q then

return null; // indicates failure to get snapshot

if r = q ∧ Srt > Vq then

return null; // indicates failure to get snapshot

return (Vq, Dq);

read, site i contacts the remote site j which then performs a

local read and returns the version. Before performing the read

operation, site j checks if it is advanced up to the transaction’s

snapshot for that partition. This check is needed only in the

case where the transaction did not contact the remote site for

obtaining its start snapshot.

If a transaction involves updating any remote partition, the

execution site creates a local ghost replica for that partition.

A ghost replica does not store any data but provides following

functions. The main function is to assign local commit times-

tamps, using a local sequencer, to transactions updating this

partition. It also stores the snapshot timestamp vector and the

corresponding dependency vectors obtained from the remote

site. The PCSI protocol does not propagate updates to the

ghost replicas of any partition. The rest of the commit protocol

is performed as shown in Algorithm 5. The updates to local

partitions are applied first and remote updates are sent to the

remote site using the update propagation mechanism described

above. Even though there is a delay in applying updates to

the remote partition, the atomicity guarantee in obtaining a

snapshot is still ensured because the D vector set of the local

partitions would force the use of the updated view of the

remote partition.

Due to space limitation, the correctness proof of the protocol

is omitted here. It is presented in [25] and establishes how

the protocol guarantees the properties of snapshot isolation,

transaction ordering, and consistent snapshots.

VI. EVALUATIONS

We present below the results of our evaluation of the PCSI

model. For these evaluations, we implemented a prototype

system implementing the PCSI protocol. In our prototype im-

plementation, we experimented with both in-memory database

as well as HBase [2] as the persistent storage backend. In these

evaluations, we were interested in evaluating the following

aspects: (a) scalability of the PCSI model, (b) advantages of

partial replication using PCSI over full replication, (c) impact

of remote partition access in transaction execution, (d) the

update application delays due to causal dependencies, and (e)

average delay in a transaction’s updates becoming visible at

remote sites, which we refer to as visibility latency.

A. Experiment Setup

System Environments: We performed the evaluations using

two types of system environments. The first environment is

a local cluster of nodes using the resources provided by

Minnesota Supercomputing Institute (MSI). In this cluster,

each node had 8 CPU cores with 2.8 GHz Intel X5560

Nehalem EP processors, and 22 GB main memory. Each node

in the cluster served as a database site in our experiments. The

other system environment we used is the Amazon EC2 cloud

service [1]. We used 8 geographically distributed datacenters.

At each site we used single ‘Extra-Large’ VM instance type,

which had 8 cores with 1.2 GHz CPU capacity and 15 GB

main memory. The average RTT between any two sites was

found to be 214 ms.

Benchmarks and Database Configuration: We developed

a custom benchmark to evaluate the impact of various pa-

rameters such as the degree of partial replication, number of

partitions accessed by a transaction, percentage of read/write

ratio, and the percentage of transactions accessing remote par-

titions, etc. The workload consists of two types of transactions:

local transactions which accessed only local partitions, and

non-local transactions which accessed some remote partitions

from a randomly selected site. In our benchmark workload,

the percentage of non-local transactions is configurable. In our

evaluations, all transactions involve updating some items. Each

transaction read from 2 partitions and modified 1 partition.

For each accessed partition, the transaction read 4 items and

modified 2 items, which were selected randomly with uniform

distribution.

We performed experiments for different numbers of sites.

The number of partitions was set equal to the number of sites.

We emulated an environment where a geo-scale system is

distributed over multiple regions, and each region has several

sites. About half of the replicas of a partition are present

in one region, and the other replicas are located at sites in

different regions. In our experiments, all sites had the same

number of partitions, and all regions had the same number of

sites, which was set to 4 in our experiments. Each partition

contained 100,000 items of 100 bytes each. In our experiments

on the MSI cluster we conducted evaluations using replication

degrees of 3, 4, 5, and full. In case of experiments using

Amazon EC2, due to relatively small number of geographic
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sites, we set the replication degree to 2. For a partition, we

designated one of its replica sites as the conflict resolver for

the items in that partition.

B. Scalability of PCSI

We evaluated the scalability of the PCSI model for various

number of sites. In our experiments on the MSI clusters we

set the update propagation period to 1 second, which also

accounts for wide-area network latencies, which are typically

around 100-200 msec. For each system size, we measured the

maximum transaction throughput, average transaction response

time, time required for validation with a remote conflict

resolver site, and delays in applying updates at remote sites

due to causal dependencies.

Figure 3 shows the maximum transaction throughput for

the custom benchmark, with all local transactions. This eval-

uation was performed using the MSI cluster. We observe that

PCSI provides near-linear scalability; the maximum through-

put achieved scales almost linearly with the number of sites.

In contrast to partial replication, full replication offers poor

throughput scalability. For example, as we increase the number

of sites from 12 to 28, in case of full replication throughput

decreased by a factor of roughly 3.4. In contrast, for partial

replication with degree 3, throughput increased by 1.95. In

these experiments the transaction response times were around

100 milliseconds, and the 2PC validation time was in 70-90

milliseconds range. Even when a transaction accesses all local

partitions, it may still involve some remote sites in the 2PC

validation phase. Figure 4 shows maximum throughput with

replication degree of 3 with HBase as the storage backend, and

also shows in-memory throughput for the same configurations.

C. Impact of Non-local Transactions

To evaluate the impact of locality in transaction exe-

cution, we induced non-local transactions, i.e. transactions

with remote partition access. In this evaluation we varied

the percentage of non-local transactions to 0, 10, and 20.

Figure 5 shows the results of this evaluation. We show in

this figure the average latencies for all transactions as well

as average latencies for non-local transactions. We observe

only a slight increase in the overall latencies due to non-

local transactions, however, these latencies can be higher in

wide-area environments. The reason for small difference in

the performance of local and non-local transactions is that a

local transaction can involve communication with some remote

conflict resolver sites during the validation phase.

D. Impact of Propagation Period on Update Delays

A transaction’s updates are applied at a site only after all

of its causally preceding transactions have been applied. We

refer to such delays as causal delay. Furthermore, updates also

incur delays due to queueing at remote sites. We refer to the

total amount of delay at a remote site as update delay. A

transaction update also incurs queueing delays at the sending

site, which we refer to as propagation delay. These delays

depend on the propagation period, i.e. the periodic interval of

transmitting updates to remove sites.

The visibility latency of a transaction is the sum of prop-

agation delay, network delay, and update delay. Increasing

the propagation period increases the latency in applying a

transaction’s updates at remote sites, thereby delaying updates

of other causally dependent transactions. We conducted ex-

periments to determine how these delays are impacted by the

propagation period. Here we used a system with 28 sites and

replication degree of 5, under a moderate load (60% of the

max throughput).

TABLE I
IMPACT OF PROPAGATION FREQUENCY

Propagation Propagation Causal Update Commit

Period Delay Delay Delay Rate

(sec) (msec) (msec) (msec) %

1 968 41 41.5 99.3

2 1929 83.3 84 98.8

4 3801 275 276 97.8

Table I shows the impact of the propagation period on

propagation delay, causal delay, and update delay. In this

experiment, the read/write set size was set to 8 reads and 2

writes. Both the propagation delay and causal delay increase

with increase in propagation period.

E. Evaluations on EC2

Table II shows the throughput scalability data for evalua-

tions performed on Amazon EC2. In case of partial replication,

the response times remain roughly constant with increase in

the number of sites. The throughput with partial replication

is higher than the throughput with full replication. The partial
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TABLE II
SYSTEM PERFORMANCE ON AMAZON EC2

Num. of Max Throughput Avg. Response Avg. Visibility
Sites (txns/sec) Time Latency

Partial Replication

4 1730 208 ms 10.82 sec

8 3012 231 ms 10.16 sec

Full Replication

4 738 324 ms 18.76 sec

8 910 391 ms 31.1 sec

replication configuration provides lower response times com-

pared to full replication. Moreover, in case of full replication,

the response times typically increase with increase in the

number of sites. The higher visibility latencies observed here

were mainly due to wide-area communication latencies and the

EC2 instances were much less powerful than the MSI nodes.

VII. CONCLUSION

We have presented here the Partitioned Causal Snapshot

Isolation (PCSI) model for transaction management in

partially replicated databases with asynchronous update

propagation. The PCSI model is based on a weaker form

of snapshot isolation providing causal consistency. We have

elaborated here the unique issues that are raised due to partial

replication in supporting causal consistency with the snapshot

isolation model. The PCSI model addresses these issues and

provides a transaction management protocol which ensures

causal consistency and requires sending update propagation

messages only to the sites storing the modified partitions.

Our evaluations show that partial replication using the PCSI

model provides significantly better scalability compared to

full-replication.
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