
Node Selection for Placement of Migratory Tasks in Wide-Area Shared
Computing Environments

Vinit Padhye, Devdatta Kulkarni, and Anand Tripathi∗

University of Minnesota, Minneapolis MN 55455

Abstract

In a wide-area shared computing environment such as
the PlanetLab the available resource capacities at nodes
can fluctuate significantly. A node selected based on its
available resource capacities for executing a task may
become unsuitable for it within a few minutes or hours
timeframe. This motivates the need to find another node
and relocate the task. In this paper we present a compar-
ative evaluation of different strategies for selecting nodes
in the PlanetLab environment for the placement and re-
location of migratory tasks. We have developed a sys-
tem for monitoring PlanetLab nodes for their available
resource capacities. Using this system we characterize
the distribution of the number of nodes that meet a given
resource capacity requirement, and the distribution of the
duration for which a node satisfies the requirement.

1 Introduction

Scheduling of tasks in a large-scale wide-area shared
computing environment such as the PlanetLab [1]
presents several challenging problems. The available
resource capacities at a host can fluctuate significantly
in such environments as shown by the study presented
in [3]. That study indicates that typically the avail-
able resource capacity at a host may change significantly
within an hour. A host selected to execute a task with
some given resource availability considerations can be-
come overloaded during the task execution due to the
load placed by other applications. The work presented
in [3] argued for the need of supporting dynamic reloca-
tion of tasks based on resource availability. In an earlier
work [6] we developed mechanisms for autonomic relo-
cation of tasks in the PlanetLab environment for build-
ing resource-aware migratory services using the mobile
agent based programming model [5]. We implemented

∗ This work was supported by National Science Foundation grants
0834357 and 0708604

mechanisms for a task, programmed as a mobile agent,
to monitor its host execution environment and autonom-
ically migrate to another host if the available resource
capacity at the current host falls below some required
threshold. Issues related to the mechanisms for task mi-
gration in our environment have been presented in [6],
and therefore we do not discuss them here.

The focus of this paper is on the investigation and
evaluation of different approaches for selection of tar-
get nodes for placement and dynamic relocation of tasks
with some given resource requirements. An application
may consist of multiples tasks, which may have differ-
ent resource capacity requirements. Such an application
may need to schedule its tasks, and for each such task
it needs to select a node that meets the task’s resource
requirements. Moreover, such a task needs to be able to
relocate itself autonomically to a different node when the
current host fails to meet its resource requirements.

There are two problems that need to be addressed for
selecting a node for dynamic placement and relocation
of a task. The first problem is to identify the set of nodes
whose currently available resource capacities satisfy the
requirements of the task. We refer to such a set of nodes
as theeligibility set for a given requirement. In our in-
vestigation we were interested in finding the distribution
of the eligibility set size for a given resource capacity re-
quirement because it determines the probability of find-
ing a suitable target host when a task is to be scheduled
or relocated. Theeligibility periodof a node is defined as
the contiguous period for which it remains in the eligibil-
ity set. The expected duration for which a node selected
randomly from the eligibility set, at an arbitrary point in
time, would satisfy a task’s requirement is half of the ex-
pected value of the eligibility period for that requirement.
In this paper we study the distribution of eligibility peri-
ods and eligibility set sizes exhibited by a large collec-
tion of PlanetLab nodes observed over several days for a
range of resource requirements. The second problem is
to select one of the members in the eligibility set as the

1

target hostfor the placement of the task to be scheduled
or relocated. Our focus here is on the investigation of
several alternate strategies for the placement of tasks on
eligible nodes.

In the context of the first problem, the requirements of
a task could be stated in terms of CPU capacity, mem-
ory, and bandwidth. To assist in the selection of nodes
for the placement and autonomic relocation of tasks in
the PlanetLab environment, we have developed a service
for continuous monitoring of PlanetLab nodes for their
available resource capacities. One can query this service
to obtain the set of eligible nodes that satisfy a given re-
source requirement. We have used this service to study
the behavior of PlanetLab nodes in terms of their eli-
gibility periods and eligibility set sizes for a spectrum
of resource requirements. The distribution of eligibility
periods indicates how long a randomly selected node is
likely to meet the given requirement of a task. The ex-
pected value of the eligibility set size is an indicator of
the average number of tasks of a given resource capacity
requirement that can be scheduled in the system.

In [6] we presented our observations of eligibility pe-
riods and eligibility set sizes solely based on CPU ca-
pacity requirements. We present here the results of our
study of node availability behavior when both CPU and
memory requirements are considered together for iden-
tifying the eligibility set. Our investigation was driven
by the following key questions: How does the eligibil-
ity periods of the nodes and the size of the eligibility set
are affected when both CPU and memory requirements
are considered together in comparison to the behavior
when only the capacity requirement for CPU or mem-
ory is considered in isolation? Second, we wanted to
investigate whether any particular dimension of resource
requirement, i.e. CPU or memory, dominates. Third, we
also wanted to determine how the eligibility set size for
a given resource capacity requirement varies over time.

In regard to the second problem mentioned above,
we observed that typically the eligibility set for a given
resource requirement contains nodes with a significant
variation in their available capacities. There are various
approaches for selecting a node as a target host from the
set of eligible nodes, considering that the nodes may have
varying levels of available resource capacity. For exam-
ple, one may select a node that has the largest idle capac-
ity available, or another option is to select a node whose
available capacity is closest to the task’s requirement.

The node selection and task placement strategies men-
tioned above can be viewed in some sense as analogous
to memory allocation schemes such asbest-fitandworst-
fit. While selecting the target host, we may also need to
consider, whether two or more tasks of the same appli-
cation can be placed on one host if it satisfies the cumu-
lative resource requirements of those tasks. We refer to

this ascolocation. For some applications, the colocation
of tasks may not be a suitable option. For example, in
case of a replicated service, it may be required that no
two service replicas be placed on the same host. The
policy of whether to allow colocation of tasks can affect
the behavior of the node selection and placement strate-
gies. In this paper we present and evaluate four different
strategies for node selection and placement, and evalu-
ate them under the policies of allowing and disallowing
colocation of tasks.

In the next section we address the problem of identi-
fying eligible nodes for a given requirement. We present
the data and analysis of node eligibility periods and the
distribution of eligibility set sizes for different capacity
requirements for CPU and memory. In Section 3 we
present different approaches for selecting a target node
from the set of eligible nodes. We present here the com-
parative evaluation of these approaches for different ap-
plication loads and requirements.

2 Monitoring of PlanetLab Nodes for Eli-
gibility Sets

In this section, we describe the methods of identifying
the set of nodes which satisfy the given resource require-
ment of a task, and present the results of our study of
node availability for different resource requirements.

In order to find a target host for relocation and place-
ment of a task, we need to first identify the eligibility
set for a given resource requirement. For this purpose
we have developed a service for monitoring PlanetLab
nodes for their resource utilization. This monitoring ser-
vice collects the data about resource consumption of ev-
ery monitored node by probing itsSliceStat[4] data ev-
ery 10 seconds in order to obtain an accurate estimate of
the node’s resource utilization behavior over time. For
selecting the nodes for inclusion in the eligibility set for
the given requirement for a resource (such as CPU or
memory), we consider the average value of a node’s idle
capacity for that resource over 5 minutes. We also take
into account the standard deviation of a node’s idle ca-
pacity over 5 minutes to mitigate the effects of fluctua-
tions in the node’s idle capacity. IfC is the average idle
capacity on a node andδ is its standard deviation, then
for a given resource requirementR we select the node if

CPU 1GHz, 2GHz, 3GHz, 4GHz
Memory 512MB, 1GB, 2GB, 3GB

CPU+Memory (1GHz + 512MB), (2GHz + 1GB)
(3GHz + 2GB), (4GHz + 1GB)

Table 1: Capacity requirements used in experiments

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

Mean Node Eligibility Period (mins)

1GHz

2GHz

3GHz

4GHz

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

Eligibility Set Size

1GHz 2GHz 3GHz 4GHz

Cpu Threshold = 4000 MHz
Cpu Threshold = 3000 MHz
Cpu Threshold = 2000 MHz
Cpu Threshold = 1000 MHz

(a) CDF of Eligibility Periods based on CPU (b) CDF of Eligibility Set Size based on CPU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

Mean Node Eligibility Period (mins)

512MB

1GB

2GB

Mem Threshold = 3072 MB
Mem Threshold = 2048 MB
Mem Threshold = 1024 MB
Mem Threshold = 512 MB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

Eligibility Set Size

512MB1GB2GB

Mem Threshold = 2048 MB
Mem Threshold = 1024 MB
Mem Threshold = 512 MB

(c) CDF of Eligibility Periods based on Memory (d) CDF of Eligibility Set Size based on Memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

Mean Node Eligibility Period (mins)

1GHz+512MB

2GHz+1GB

3GHz+2GB

4GHz+1GB

Combo Threshold = 4000 MHz, 1024 MB
Combo Threshold = 3000 MHz, 2048 MB
Combo Threshold = 2000 MHz, 1024 MB
Combo Threshold = 1000 MHz, 512 MB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Eligibility Set Size

1GHz+512MB2GHz+1GB3GHz+2GB

4GHz+1GB

Combo Threshold = 4000 MHz, 1024 MB
Combo Threshold = 3000 MHz, 2048 MB
Combo Threshold = 2000 MHz, 1024 MB
Combo Threshold = 1000 MHz, 512 MB

(e) CDF of Eligibility Periods based on Combined (f) CDF of Eligibility Set Size based on Combined

Figure 1: Cumulative distributions of Eligibility Periodsand Eligibility Set Size for CPU, Memory, and Combined
Requirements

it satisfies the following condition:

C − 2 ∗ δ > R (1)

A node is dropped from the eligibility set if the idle ca-
pacity at that node falls below the resource requirement
R. When considering the CPU and memory require-
ments together for selecting nodes, we select a node only
if it satisfies the above condition for both CPU and mem-
ory requirement. We drop a node from the eligibility set,
if either the available CPU capacity or available memory
capacity on that node falls below the corresponding re-
quirement given byR, the requirement threshold. The
eligibility period of a node for a given resource require-
ment is measured as the time between the node’s entry
in the eligibility set for that resource requirement and its

departure from the eligibility set. A node may enter and
leave the eligibility set multiple times during the obser-
vation period. Thus a node may have multiple values of
eligibility periods. For such nodes, we consider the av-
erage value of their individual eligibility periods. In [6],
we have presented the data in terms of the measures dis-
cussed above for CPU requirements only. In this paper,
we study the behavior of node availability for memory
requirements as well as conjoined requirements for CPU
cycles and memory. The first goal of the study presented
here was to compare the distribution of eligibility periods
for CPU requirements with that of memory requirements.
The key questions in this study were: How the size of el-
igibility set varies over time? How does the behavior of
nodes vary for CPU and memory requirements? Do the

3

Dataset-1 (75 hours – Nov 18-21, 2009) Dataset-2 (97 hours – December 1-4, 2009)
Eligibility Period Unique Eligibility Eligibility Period Unique Eligibility

(minutes) Nodes Set Size (minutes) Nodes Set Size
Avg Median Std Dev Avg Std Dev Avg Median Std Dev Avg Std Dev

1GHz CPU 315 46 472 138 103 9.29 522 145 874 134 64 15.3
2GHz CPU 103 34 221 74 51 6.24 367 50 553 92 35 6.4
3GHz CPU 218 31 376 47 38 3.15 423 356 412 54 30 4.02
4GHz CPU 163 40 284 35 25 3.72 799 359 1362 30 21 3.0

1GB Memory 650 438 494 109 105 2.7 1061 1022 578 105 84 8.4
2GB Memory 335 284 281 39 34 1.75 910 787 564 35 20 5.0
2GHz+1GB 119 48 256 50 30 4.8 392 53 552 61 20 5.06
3GHz+2GB 218 108 305 16 13 1.0 518 577 502 11 5 1.7

Table 2: Eligibility Period and Set Size Statistics

nodes show more availability in terms of larger eligibility
period and eligibility set size for memory requirements
than those for CPU requirements? The second goal of
this study was to determine whether the node availabil-
ity is dominated by either the CPU requirement or the
memory requirement, when both CPU and memory re-
quirements are considered together.

In these experiments we monitored about 200 Planet-
Lab nodes for their available resource capacities at dif-
ferent periods over the past one year. Table 1 shows the
capacity requirements used in these experiments. Fig-
ure 1 shows the CDFs of eligibility periods and the el-
igibility set sizes for the dataset observed for 75 hours
during November 18–21, 2009. Table 2 presents statis-
tics such as average eligibility period and set size for the
two datasets: Dataset-1 is the one mentioned above and
Dataset-2 is observed for 97 hours during December 1–
4, 2009. During the period for which the Dataset-1 was
collected, the monitored PlanetLab nodes were highly
loaded while in the case of Dataset-2 they were relatively
lightly loaded. Both the datasets correspond to same set
of 200 monitored nodes.

From Table 2, we observe that for most of the require-
ments typically the median values for the eligibility peri-
ods tend to be less than the average values. The standard
deviation also tends to be high, comparable to the aver-
age values. This indicates that some nodes tend to exhibit
significantly large eligibility periods. This also indicates
that the available resource capacities at a node may fluc-
tuate significantly, and there is a large variation of eligi-
bility periods across the nodes. In this table, theUnique
Nodescolumn gives the number of nodes that became el-
igible during the entire duration of the observation. The
CDF graphs in Figure 1(a, c, e) and the statistics in Ta-
ble 2 for a requirement correspond to the unique nodes
for that requirement. For example, in case of 2GHz CPU
requirement the average eligibility period of 103 minutes
is the average of 74 nodes’ average eligibility periods.
Similarly, in Figure 1(a) the CDF for 2GHZ is for the av-
erage eligibility periods of 74 nodes, whereas for 3GHz

the distribution given is for 47 nodes.

Comparing the eligibility periods for CPU and mem-
ory requirements in Figure 1(a, c) and Table 2 we ob-
serve that typically nodes show high eligibility periods
for memory requirements, as indicated by their average
and median values. For example the median value for
1GB requirement is 438 minutes and that for 2GB is
284 minutes. From Figure 1, we observe that the dis-
tributions of eligibility periods and eligibility set sizefor
a combined CPU+Memory (with up to 2 GB memory)
requirement tend to be close to the distribution for the
corresponding CPU requirement. In these cases the eli-
gibility of nodes for combined requirements was largely
dependent on the availability of the idle CPU capacity.
However, in all experiments we found that for high mem-
ory requirements (e.g. 3GB), extremely few nodes were
eligible. Also, in some other experiments for datasets
observed in January 22 through February 1, 2010, we
found that for 2GB requirement the median values for
the eligibility periods sharply declined to 7-8 minutes.
In such cases, the eligibility periods in the combined re-
quirements were dominated by memory.

From the CDFs for the eligibility set sizes in Fig-
ure 1(b, d, f) and the data in Table 2, we observe that for
a given requirement the eligibility set size varies very lit-
tle. There is always some constant number of nodes that
can satisfy a given requirement. For example, in case
of the 4GHz CPU requirement there were always more
than 18 nodes available, and for 2GHz at least 36 nodes
were in the eligibility set. This is an indicator of how
many tasks of a given requirement can be successfully
scheduled in the system. We also find that the eligibility
set sizes decrease with the increasing capacity require-
ments. However, one cannot draw such a generalization
for eligibility periods, which in some cases increase for
larger requirements. We found that in those cases fewer
nodes became eligible but they remained in the set for a
long time.

4

3 Node Selection and Task Placement

In this section, we present and evaluate different strate-
gies for selecting a node from the eligibility set as the tar-
get host for a given task. There are different approaches
for selecting a node for hosting a given task based on the
available resource capacity of that node and the task’s re-
quirement. The selection of target host also depends on
the colocation policy. Based on these considerations, we
developed and evaluated the following four strategies for
selecting a node for task placement.
1. Highest-Available:In this strategy the highest avail-
able capacity node is selected from the eligibility set for
the given requirement. The motivation behind this strat-
egy is that selecting the node with the highest available
capacity maximizes the likelihood that the node will con-
tinue meeting the resource requirement of the given task
for a long period of time, thereby reducing the number
of times the task may need to be relocated. On the other
hand, picking the node that has the highest available ca-
pacity for a low requirement task may not be always
a good option because it may render that node ineligi-
ble for tasks with higher capacity requirements. This
will lead to migration failures of high requirement tasks.
This strategy can be considered analogous to theworst-fit
strategy in memory management.
2. Lowest-Available:In this strategy, a node is selected
from the set of eligible nodes which has the lowest avail-
able resource capacity. This strategy helps avoiding the
problem noted above for theHighest-Availablestrategy.
A disadvantage of this strategy is that placing a task on
the node with available capacity closest to the task’s re-
quirement may lead to frequent migrations of the task.
This strategy can be considered analogous to thebest-fit
strategy in memory management.
3. Lowest-with-Slack:This is a variation of theLowest-
Availablestrategy. In this strategy a node is selected from
the eligibility set with the available capacity closest to
the task’s requirement with some additional slack. Thus
if a task’s requirement for CPU capacity is 2GHz and the
slack is 500MHz, then the node with available capacity
closest to 2.5GHz is selected. The motivation behind this
strategy is that by selecting a node with some additional
available capacity the likelihood that the task would need
to be relocated is reduced.
4. Random:The approach here is to select the target node
randomly from the eligibility set. Because the capacity
of the node selected by any strategy can fluctuate sig-
nificantly, we wanted to find how the random selection
would perform in comparison to the others.

The performance of these strategies can be measured
in mainly two aspects: the first measure is the number
of times a task needs to be migrated because the cur-
rent host no longer satisfies the task’s requirement, and

the second measure is the time for which a node meets
the task’s requirement. We define the time between the
placement of task on a node and it’s relocation to another
node as theresidency timeof that task. A task may fail
to relocate itself to another node because of not finding
any eligible node, or in case of the no-colocation policy
if all the eligible nodes are already hosting some tasks of
the same application. If a task fails to migrate, it would
still continue its execution on the current node, however,
that node would no longer fully satisfy the task’s require-
ment. If the task fails to migrate, it makes periodic at-
tempts to migrate till it is successful or the current node
becomes eligible again. We call the fraction of the res-
idency time for which the node is satisfying the task’s
requirement as thegoodness factor. The performance of
the placement strategies can be evaluated in terms of the
following measures: (1) Number of migrations, (2) Av-
erage residency time of tasks, and (3) Goodness factor.

We present here our evaluation of these strategies
based on the above measures. The mobile agent-based
task migration system [6], which we have implemented
over the PlanetLab, could be used to implement and eval-
uate the strategies discussed above. However, we wanted
a comparative evaluation of these strategies, and that re-
quired evaluating them for exactly the same conditions of
node resource availability. We could not directly use the
prototype system to evaluate these strategies because the
evaluation experiments would interfere with each other
if conducted simultaneously using the prototype system,
In order to circumvent this problem, we used the trace-
driven simulation approach. We developed a simulator of
the prototype system, implementing the details of its task
migration and node selection policies. We integrated the
placement strategies in the simulator. We used the data
collected by our monitoring service to perform a trace-
drive simulation of various placement strategies.

We present here the results of these simulations and
our observations about the behavior of different place-
ment strategies for the two representative datasets. Ta-
ble 3 shows how different strategies performed on the
Dataset-1 and Dataset-2. In this experiment we sim-
ulated execution of 60 mobile agent-based migratory
tasks, comprising of 20 tasks for each of the three re-
quirements of 2GHz, 3GHz, and 4GHz CPU capacity.
We used the task colocation policy. Since the study pre-
sented in Section 2 indicates that memory availability
tends to be high, we considered only CPU capacity re-
quirements in these simulations.

From the results shown in Table 3 for colocation
policy, we observe that for Dataset-1 all four strate-
gies performed comparably, however, theRandomstrat-
egy shows slightly better performance. Dataset-1 cor-
responds to the period when the load on the monitored
nodes was high. For the Dataset-2, which corresponds

5

Dataset-1 (75 hours – November 18-21, 2009)
2GHz Requirement Migratory Tasks 3GHz Requirement Migratory Tasks 4GHz Requirement Migratory Tasks

Placement Strategies T N Goodness T N Goodness T N Goodness
hrs:min:sec Factor hrs:min:sec Factor hrs:mins:sec Factor

Highest-Available 0:29:22 147.8 0.99 0:35:2 114.2 0.92 0:52:34 79.2 0.89
Random 0:38:31 107.2 0.98 0:38:30 110.3 0.92 0:57:38 75 0.92

Lowest-Available 0:24:25 179.2 0.98 0:41:58 103.5 0.94 0:55:19 76 0.87
Lowest-with-Slack 0:36:29 117.2 0.99 0:36:50 115.2 0.82 0:35:48 122 0.81

Dataset-2 (97 hours – December 1-4, 2009)
Highest-Available 34:42:1 1.75 0.99 36:8:58 1.6 0.99 31:00:0 2.15 0.99

Random 4:53:22 20.5 0.99 10:12:2 8.3 0.99 8:40:38 10.2 0.99
Lowest-Available 0:35:19 183 0.99 2:27:41 36 0.99 2:24:49 36 0.99
Lowest-with-Slack 8:11:2 10.7 0.99 2:48:10 34.8 0.99 3:59:21 23.5 0.99

Table 3: Performance of Placement Strategies (T – Avg Residency Time per task; N – Avg Migrations per task)

to a lightly loaded environment, theHighest-Available
strategy clearly outperformed the others. Because in case
of Dataset-1 the performance difference betweenRan-
domandHighest-Availableis not much, we recommend
that the latter can be used in all cases.

We also simulated the same workload under the no-
colocation policy and observed that no single strategy
performed consistently better than the others. How-
ever, for tasks with high capacity requirements the
Highest-Availablestrategy performed better than the oth-
ers, whereas for tasks with low capacity requirements the
Lowest-Availablestrategy performed the best. This con-
forms with the motivation behind these two strategies, as
for tasks with low capacity requirements it is desirable
to select the node with closest available capacity, while
for tasks with higher capacity requirements selecting the
node with highest capacity is a more desirable option.

4 Related Work

The CoMon project [4] has investigated monitoring of
PlanetLab nodes for their resource consumption. CoMon
provides node-level statistics such as the number of ac-
tive slices, per slice utilization of CPU, memory, and
bandwidth. A number of research projects have ana-
lyzed this data for characterizing the resource utilization
[3, 2]. The work in [2] presents statistical methods for re-
source discovery and for characterization of nodes based
on their resource usage. The focus of the work in [3] was
mainly on the characterization of resource availability of
the PlanetLab nodes. In [7], analysis of the CoMon data
is presented for characterizing node failures and avail-
ability. In contrast to these previous works, our focus is
on online monitoring and selection of PlanetLab nodes
for dynamic placement and relocation of tasks.

5 Conclusion

Our study finds that the number of nodes available for
a given requirement does not vary much. The available

CPU capacity tends to have more variation as compared
to available memory. The eligibility periods for CPU re-
quirements tend to have significantly smaller median val-
ues as compared to their average values, and their stan-
dard deviations tend to be greater than the averages. For
combined requirements with 1 GB memory needs, we
found that node eligibility was mainly determined by the
CPU capacity needs. In our evaluation of different place-
ment strategies, we find that under the colocation pol-
icy theHighest-Availablestrategy outperforms others in
a lightly loaded environment. In a heavily loaded envi-
ronment all strategies perform equally well. Therefore,
one can use theHighest-Availablestrategy in all cases.

References

[1] BAVIER , A., BOWMAN , M., CHUN, B., CULLER, D., KARLIN ,
S., MUIR, S., PETERSON, L., ROSCOE, T., SPALINK , T., AND

WAWRZONIAK , M. Operating System Support for Planetary-scale
Network Services. InNSDI’04: Proc.of the 1st Symp. Networked
Systems Design and Implementation(2004), pp. 19–19.

[2] CARDOSA, M., AND CHANDRA , A. Resource Bundles: Using
Aggregation for Statistical Wide-Area Resource Discoveryand
Allocation. In The 28th IEEE International Conference on Dis-
tributed Computing(June 2008), pp. 760–768.

[3] OPPENHEIMER, D., CHUN, B., PATTERSON, D., SNOEREN,
A. C., AND VAHDAT, A. Service Placement in a Shared Wide-
Area Platform. InATEC ’06: Proceedings of the Annual Confer-
ence on USENIX ’06 Annual Technical Conference(Berkeley, CA,
USA, 2006), USENIX Association, pp. 26–26.

[4] PARK , K., AND PAI , V. S. CoMon: A Mostly-scalable Monitoring
System for PlanetLab.SIGOPS Oper. Syst. Rev.(2006), 65–74.

[5] TRIPATHI, A., KARNIK , N., VORA, M., AHMED, T., AND

SINGH, R. Mobile Agent Programming in Ajanta. InInterna-
tional Conference on Distributed Computing Systems (ICDCS’99).

[6] TRIPATHI, A., PADHYE , V., AND KULKARNI , D. Resource-
Aware Migratory Services in Wide-Area Shared Computing En-
vironments . InProceedings of the IEEE Symposium on Reliable
Distributed Systems (SRDS’09)(2009), pp. 51–60.

[7] WARNS, T., STORM, C.,AND HASSELBRING, W. Availability of
Globally Distributed Nodes. InProceedings of the IEEE Sympo-
sium on Reliable Distributed Systems(2008), pp. 279–284.

6

