Specification and Verification of Security
Requirements in a Programming Model for

Decentralized CSCW Systems

TANVIR AHMED

and

ANAND R. TRIPATHI

University of Minnesota, Minneapolis

We present in this paper a role-based model for programming distributed CSCW systems. This
model supports specification of dynamic security and coordination requirements in such systems.
We also present here a model checking methodology for verifying the security properties of a
design expressed in this model. The verification methodology presented here is used to ensure
correctness and consistency of a design specification. It is also used to ensure that sensitive security
requirements cannot be violated when policy enforcement functions are distributed among the
participants. Several aspect-specific verification models are developed to check security properties,
such as task-flow constraints, information flow, confidentiality, and assignment of administrative
privileges.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—

Access controls; K.6.5 [Management of Computing and Information Systems]: Security
and Protection— Unauthorized access

General Terms: Management, Design, Security, Verification
Additional Key Words and Phrases: Security policy specification, Role based access control,
Methodology for access control policy design, Finite-state based model checking

1. INTRODUCTION

CSCW (Computer Supported Cooperative Work) systems are designed to sup-
port cooperative activities involving a group of users performing tasks related to
some shared objectives. Examples of such systems include online conferencing, col-
laborative design and development, and workflow environments. Management of
distributed CSCW systems for such applications often needs to be decentralized,
when such systems are designed for ad hoc integration of users from different orga-
nizations or peer groups. The focus of our work is on building secure decentralized
CSCW systems from their high level specifications.

This work was supported by National Science Foundation grant 0082215 and 0411961.

This article extends [Tripathi et al. 2003] and [Ahmed and Tripathi 2003].

Author’s address: Tanvir Ahmed and Anand R. Tripathi, {tahmed,tripathi}@cs.umn.edu, De-
partment of Computer Science, University of Minnesota, Minneapolis MN 55455

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20TBD ACM 0000-0000/20TBD/0000-0001 $5.00

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD, Pages 1 32.

2 . Tanvir Ahmed and Anand R. Tripathi

Security and coordination requirements in CSCW systems tend to be dynamic
and context-based, depending on the execution state of the collaborative tasks and
history of participants’ actions. The coordination requirements are often weaved
with access control concerns. Such requirements have been addressed in workflow
systems to synchronize authorization and access control mechanisms with task-flow
events [Sandhu 1988; Atluri and Huang 1996]. Moreover, role based access control
(RBAC) models [Sandhu et al. 1996] have been found to be naturally useful in
CSCW systems because of their intrinsic ability to model organizational structures
[Greif and Sarin 1987; Demurjian et al. 1993]. Specification and enforcement of dy-
namic security and coordination requirements in role-based models is an important
problem [Bertino et al. 1999; Huang and Atluri 1999; Ahn and Sandhu 2000].

Another challenge in specifying security policies for distributed CSCW systems is
the expression of administrative level security requirements. A distributed CSCW
system may require decentralized management as no single organization, site, or
participant may be trusted to act as a “reference monitor” for the management and
enforcement of all of the policies of the system. With decentralized management,
the ownership and associated policy enforcement privileges for the various entities
— roles and objects — in the shared workspace may be under the control of different
participants. However, some participants may not correctly enforce the part of the
policies that they are entrusted with, thus possibly resulting in violation of overall
security requirements for the system. In our work, such participants are designated
by the CSCW system designer as untrusted for some of the policy enforcement
functions.

An important goal of our verification methodology is to ensure that in decentral-
ized management of a CSCW system the assignment of ownership privileges for an
entity to an untrusted participant does not result in violation of any sensitive se-
curity requirements. The goal of our verification methodology is to determine safe
assignments of ownership privileges in a design to satisfy the given set of security
requirements.

The primary contributions of this paper are twofold:

(1) Development of a role-based model together with a programming framework for
specification of coordination and security requirements in distributed CSCW
systems.

(2) Development of a verification methodology based on finite-state model checking
using SPIN [Holzmann 2003] to ensure that a design expressed in this model
satisfies a given set of requirements for coordination and security. The veri-
fication methodology is used to ensure the following kinds of properties in a
design:

—User interactions follow coordination and task-flow requirements;
—Roles do not have conflicting or inconsistent constraints;
—~Confidential information cannot flow to unauthorized users;
—No access rights can be leaked to unauthorized users;
Authorized information can be accessed;
Any dynamic constraints on accessing objects can be satisfied.

In the following section we discuss the contributions of our work in the context
of other research in this field. Section 3 presents the dynamic security and co-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

ordination requirements in CSCW systems. The role-based model developed for
secure distributed CSCW systems is described in Section 4. Based on this role-
based model, a specification framework for distributed CSCW systems is presented
in Section 5. Section 6 discusses the goals of the design verification process and
presents the verification issues that arise due to decentralized policy enforcement
in the presence of some untrusted roles. The issues in extracting the PROMELA
model of a design and verification using SPIN are discussed in Section 7. Our ver-
ification methodology is presented in Section 8. Section 9 presents the conclusions
of our work.

2. GOALS AND RELATED WORK

Our work has been driven by the goal of developing a programming framework for
constructing secure distributed CSCW systems from their high level specifications
[Tripathi et al. 2003]. We present here a role-based model that is used by the
designer of a CSCW system for specifying its architectural design for integrating
application level components and users, and specifying the policies for role-based
user participation, coordination, and security. A middleware system automatically
constructs the distributed runtime system for a given design. In the past, other
researchers [Li and Muntz 1998; Corts and Mishra 1996] have also investigated this
kind of approach for building distributed collaboration systems, but with the pri-
mary focus on coordination requirements. In contrast, our work addresses security
requirements in CSCW systems, particularly with decentralized management.

In the specification model presented here, roles are defined in the context of an
application rather than the global context of an organization. Others have also used
similar concepts, defining the context of a role, such as team in [Thomas 1997],
domain in [Lupu and Sloman 1997], and role template in [Giuri and Iglio 1997].
Similar to the RBAC model in [Sandhu et al. 2000], role permissions in our model
represent object level operations. The RBAC model presented in [Bacon et al.
2002] for distributed autonomous domains, where roles resemble capabilities, has
influenced our model for dynamic constraints on role membership and activation.
An important aspect in which our work differs significantly from other role models is
in regard to its support for specifying coordination constraints and shared privileges
among role members. Such requirements for shared privileges in roles are discussed
in [Lupu and Sloman 1997].

Integration of various different kinds of constraints in the RBAC model is dis-
cussed in [Sandhu et al. 1996]. Several researchers have developed models for speci-
fying dynamic authorization constraints in RBAC [Bertino et al. 1999; Bertino et al.
2001; Ahn and Sandhu 2000; Huang and Atluri 1999; Jajodia et al. 1997], specifi-
cally motivated by higher level organizational policies such as separation-of-duties.
A formal language for specifying authorization constraints in the RBAC96 model
is presented in [Ahn and Sandhu 2000]. In [Bertino et al. 1999] static and dynamic
constraints for separation-of-duties requirements in workflow systems are expressed
as clauses in a logic programming language, which are enforced by a centralized
mechanism. The focus of that work is primarily on specification, analysis, and
enforcement of constraints. The language presented there is intended for system-
level enforcement mechanisms, and not for application-level specification of con-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

4 . Tanvir Ahmed and Anand R. Tripathi

straints. In contrast, our work presents a specification framework which is intended
for expressing complete architectural design of a CSCW system, with dynamic con-
straints specified as integral part of the design specification. TRBAC, a temporal
RBAC model [Bertino et al. 2001], supports expression of temporal constraints for
periodic enabling and disabling of roles. X-GTRBAC [Bhatti et al. 2005] is an
XML-based policy specification language with a context-based RBAC model sup-
porting dynamic fine-grained constraints for assigning users to roles, permissions
to roles, and their activation. Our work also shares this goal of supporting dy-
namic context-based security requirements in role-based systems; however, instead
of enterprise-wide policy specification our focus is on expressing these requirements
in the design of a CSCW system.

For dynamic constraints, the notion of events and their integration with autho-
rization mechanisms is a salient feature of our RBAC model. This is conceptually
similar to authorization template [Atluri and Huang 1996] model where task-flow
events are implicitly used for supporting dynamic authorization by the system us-
ing a Petri net model. In contrast, events are “first class” entities in our model and
event-based predicates are specified explicitly. This event-based model can express
different kinds of separation-of-duties requirements, and there is no need to include
any policy-specific constructs as in [Crampton 2003]. Moreover, our model supports
distributed and decentralized policy enforcement by the participants in the system.
From the constraints specified in a design, a middleware generates the appropriate
policy enforcement components, which may not be necessarily executed under a
single user’s control or managed in a centralized fashion [Tripathi et al. 2002].

Our model includes the concept of a meta-role, termed owner, associated with
each object and role for policy enforcement related administrative privileges. It
supports dynamic assignment of administrative rights based on the system state. In
contrast to administrative RBAC models [Sandhu et al. 1999; Oh and Sandhu 2002;
Crampton and Loizou 2003], where roles with administrative rights are separately
defined, in our work, different participant roles of a CSCW system are entrusted
with the ownership privileges for various entities in the system. The goal of our
verification methodology is to ensure that the ownership assignments specified in a
design are safe in the sense that an untrusted participant in any owner role would
not be able to violate any sensitive security requirements.

For safety analysis and consistency checking of role-based constraints in workflow
systems, a logic programming based approach is presented in [Bertino et al. 1999].
The focus of that work is on determining all valid execution paths for a workflow
given a set of constraints, and enforcing constraints at runtime to ensure that only
a valid path is taken. This problem is also addressed in [Crampton 2004] using a
graph-based model. In contrast, our focus is on model-checking during the design
phase, rather than at runtime, to verify safety properties as well as information
flow properties of a system with decentralized control. Graph-based models have
also been used to analyze safety of role constraints in RBAC models [Jaeger and
Tidswell 2001; Nyanchama and Osborn 1999; Osborn 2002; Koch et al. 2002].

An approach based on type checking and data labeling in programming languages
[Myers and Liskov 2000] has been developed for secure information flow in decen-
tralized systems. However, trusted execution platforms are assumed to exists in

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

the distributed execution environment. In contrast, we verify a design with the
assumption that the members in certain roles are untrusted and they may violate
policies in any arbitrary manner. During analysis, we model various aspects of such
behavior of an untrusted participant in an owner role, such as bypassing operation
preconditions or role admission constraints, and omitting or falsifying coordination
events. Similar requirements on securing event causality are addressed in [Reiter
and Gong 1995].

The RT framework [Li et al. 2002] is family of languages for trust management
and policy specification for distributed authorization. This framework combines
role-based access control and trust management model, with semantic foundations
in logic programming using Constraint Datalog. A formal analysis for safety and
availability based on several forms of access delegation models in this framework
is presented in [Li et al. 2003]. Our research, on the other hand, is on a software
engineering methodology for modeling, specifying, verifying, and realizing secure
distributed collaboration systems. The CSCW systems expressed in our specifica-
tion model have restricted structure in regard to the number of role types, the set of
privileges associated with a role, and scope rules. This facilitates finite-state based
model checking of security requirements including information flow. Moreover, the
notion of trust in our work is mainly related to the designer’s trust in various
participant roles in regard to correctly enforcing policies under their control.

Our verification process is similar to research in finite state based model checking
of workflow processes [Eshuis and Wieringa 2002; Janssen et al. 1998]. Using SPIN
model checker, verification of workflow constraints is presented in [Janssen et al.
1998] and verification of RBAC constraints is presented in [Hansen and Oleshchuk
2005]. In contrast to these research, we utilize a model for collaboration envi-
ronments for verification of coordination, role constraints, as well as security re-
quirements, such as access leakage and information flow constraints. Similar to the
approach used in finite-state based protocol verification [Maggi and Sisto 2002], we
model trusted and untrusted participants in our verification procedures.

3. SECURITY REQUIREMENTS IN ROLE-BASED DISTRIBUTED CSCW SYSTEMS

We identify here dynamic security and coordination requirements in role-based
decentralized CSCW systems. These requirements need to be expressed through
appropriate constructs in a specification model.

3.1 Role Admission and Revocation Constraints

In distributed systems, the role admission related constraints need to support spec-
ification of conditions for granting or revoking role memberships [Bacon et al. 2002].
Role admission constraints specify the conditions that must to be satisfied for a user
to be admitted in the role. These constraints can be based on: user’s current or
past membership in some “prerequisite” roles (for allowing admission) or in “con-
flicting” roles (for denying admission), history of past actions by a user, and role
membership cardinality. The role admission constraints are also needed to enforce
requirements related to static separation-of-duties. Because the role admission con-
dition may not hold after a user has been admitted into the role, a role revocation
condition is needed to verify the validity of a participant’s current membership in
a role.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

6 . Tanvir Ahmed and Anand R. Tripathi

3.2 Role-based Coordination Requirements

Coordination between participants in different roles within an activity is referred
to as inter-role coordination, which is supported in several role based coordination
systems [Li and Muntz 1998; Corts and Mishra 1996]. On the other hand, intra-
role coordination is required when multiple members in a role need to coordinate
among themselves. The role tasks can be considered as either shared or independent
privileges for the role members [Lupu and Sloman 1997]. Intra-role coordination
can be based on independent, cooperative, or ad hoc modes for role task execution
by the members.

In independent participation, a role specific task responsibility is assumed indi-
vidually by a member, irrespective of the presence of the other members in the role.
For example, every member in the conference reviewer role has to independently
write a review. On the other hand, when the members in a role are assuming task
responsibilities cooperatively, they need to coordinate among themselves. Con-
sider the example in [Lupu and Sloman 1997], where a hospital patient ward may
have several nurses present in the role of nurse-on-duty. However, some medical
procedure on a patient may be needed to be performed only once by any of the
members. In some CSCW applications, the role members may interact in ad hoc
and unstructured fashion, e.g. as in an unrestricted whiteboard sharing activity.

3.3 Dynamic Access Control Policies

Security requirements in CSCW systems tend to be dynamic in nature. Such re-
quirements depend on the execution history of the collaborative tasks [Sandhu 1988;
Atluri and Huang 1996]. They may also depend on temporal conditions for exam-
ple, certain tasks can only be performed during some specified time periods [Bertino
et al. 2001] — or ambient conditions, such as the co-location of some users in some
physical space [Sampemane et al. 2002]. The privileges assigned to a user in a
role may change with time due to the actions of other participants. In some cases,
permissions change due to the participant’s own actions, such as making a final
agreement on a document, after which the creator of the document may not have
the right to modify it [Atluri and Huang 1996]. This includes situations where the
ownership privileges for an object may change from one role to another. Another
example is the requirement that a role operation be performed only when some
minimum number of participants are members of that role. A broad range of of
separation-of-duties requirements also tend to be dynamic [Sandhu 1988; Simon
and Zurko 1997; Nyanchama and Osborn 1999] and they fall into the category of
history-based access control policies.

3.4 Meta-level Security Policies

Secure management of a CSCW activity requires correct enforcement of the as-
sociated policies. For example, in managing a role, the admission and revocation
constraints need to be enforced correctly. In a distributed CSCW system, there
may not be a single participant, or a role, or a domain that could be trusted to
serve as a reference monitor to enforce all of the security policies. Instead, it should
be possible to designate for each entity (object, role, and activity) a role that can be
trusted to correctly enforce its management functions. Specification of such meta-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

policies assigning administrative privileges to a role for managing specific entities
in an activity needs to be supported. Such policies may also be dynamic, requiring
change in the assignment of administrative privileges depending on the execution
state of the activity.

3.5 Information Flow and Access Leakage

In a CSCW system, an important concern is to prevent information flow and
access leakage to unauthorized users. Confidentiality requirements express such
information-flow constraints. With decentralized policy enforcement and dynamic
policies for admission of users into roles, it is important to ensure that any assign-
ment of administrative privileges preserves integrity of access authorization and
information confidentiality.

4. A ROLE BASED MODEL FOR CSCW SYSTEMS

We present here the central elements of the role based specification model for pro-
gramming distributed CSCW systems. In our model, an activity is an abstraction
of a collaboration or workflow task involving a set of users in various roles. These
users perform collaborative tasks involving some shared objects/resources. In an
activity, users are represented by their roles, and roles within an activity are as-
signed privileges to perform certain tasks. We term these role specific tasks as
operations. An operation typically involves invocation of a method on an object
defined within the activity or creation of a new activity.

4.1 Activity Template

An activity template defines a pattern for a CSCW activity. An activity is created
and started by instantiating its template using a distributed middleware system
[Tripathi et al. 2002]. Any number of instances of a template can be dynami-
cally and independently created. An activity represents a namespace, defining and
encapsulating the following elements:

—A fixed set of roles.

—A fixed set of operations associated with each role.

—A set of object types that are created and accessed through the role operations.
A fixed set of child activity templates that can be instantiated through the exe-
cution of role operations. Each nested activity instance defines an independent
and separate namespace.

—A dynamic set of events that are generated during the life-cycle of the activity,
representing the execution history of the role operations.

In our model an activity has a fixed number of roles within its scope, and the set
of operations associated with a role is also fixed. The creation of new nested child
activity results in the creation of new set of roles that are visible only in the scope
of that child activity. Events in our model are used for enforcing dynamic security
requirements and coordination constraints.

4.2 Roles

A role can be viewed as a protection domain with a set of privileges represented by
its operations, which perform actions on the objects in the activity’s namespace. A

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

8 . Tanvir Ahmed and Anand R. Tripathi

role definition involves specification of three aspects: meta-level policies in regard
to admission of users to the role, role operations, and conditions under which a role
operation can be executed.

The admission condition of a role controls user memberships in the role. It is
checked only when a user is to be admitted to a role, and it may not hold later
when an operation is invoked by that user. The role activation condition associated
with a role must be true every time a role member invokes a role operation. Role
activation condition can be viewed as a common precondition for all operations
in the role. A role wvalidation condition can be specified for a role to determine
when a participant’s role membership needs to be revoked. Role admission and
activation constraints, operation preconditions, and validation conditions are used
for enforcing dynamic security and coordination requirements.

4.3 Role Operations

A role operation may have a precondition and an action. An operation’s precon-
dition must be true to execute its action. The preconditions are expressed using
predicates involving events within the activity’s namespace. They can also include
predicates related to role memberships in the activity. An operation’s action can
be one of the following: an object method invocation, creation of a new object, or
creation of a new nested activity. It is also possible for an operation not to have
any action when the operation is provided solely for coordination purposes.

4.4 Events

Events and event counters [Roberts and Verjus 1977] are used in operation precondi-
tions and role constraints for specifying coordination and dynamic security policies.
Events correspond to execution of role operations and creation/termination of child
activities. Related to each role operation and activity, there are two types of events:
start, and finish. These events are implicitly generated by the runtime system. An
event-based predicate is expressed using logical expressions involving event counts
and event attributes.

4.5 Shared Objects

Shared objects are represented in our model by their types and method signatures.
For an object, access control policies are derived from the various roles’ operations
involving that object. These are used by the object servers to control access to
their objects [Tripathi et al. 2002].

4.6 Nested Activities

An activity can create child activities to perform certain subtasks. A child activity
must be defined within the scope of its parent activity. Each child activity defines
its own namespace. The nesting of activities results in creation of a hierarchically
structured namespace. A nested activity may need to have access to the objects in
the scope of its parent activity. For this, objects in the parent activity’s namespace
can be passed as reference parameters to a child activity. A nested activity definition
includes list of the parameter types.

When creating a child activity one may need to assign members to its roles
from the participants present in various role of the parent activity. There are two

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

mechanisms to assign members to a role in a child activity. The first mechanism
is static role assignment or role reflection. In role reflection, all members of the
specified roles in the parent activity become members of a role in the child activity
when that activity is created, subject to the role’s admission constraints. Thus, a
role in the parent activity is reflected into a role in a child activity. Removal of a
member from the reflected role (i.e. the role in the parent activity) also implies
removal from the role in the child activity. The second mechanism is dynamic role
assignment in which the participants of the parent activity to be admitted in a
child activity’s role are specified at the time of activity instantiation.

4.7 Meta Roles: Creator and Owner

In our specification model, associated with every entity — activity, role, and object
— there are two system-defined meta roles called Qwner and Creator. These roles
are used by the underlying middleware system for administrative purpose.

The user who instantiates an activity or creates an object is the one and the only
member of the Creator role for that entity. This role membership is implicit and
immutable. This role has no permissions associated with it. We call it a pseudo
role.

An Owner role represents meta-level administrative privileges. An activity speci-
fication can specify only one of the roles as the Owner role of an entity. This results
in assignment of entity specific ownership privileges to the role. In the implemen-
tation model, there is no concrete representation of the Qwner roles. We also call
it a pseudo role.

The members of the role assigned as the Owner role of an entity possess the
privilege of executing the reference monitor for that entity to enforce its policies.
They are responsible for correctly managing and enforcing the policies pertaining
to that entity. The reference monitor is a manager object which is constructed
by the underlying system, containing the entity-specific policies derived from the
activity specification. For a role manager, the policies are related to the operation
preconditions and role admission and activation constraints. An object manager
contains policies for dynamic access control. For an activity, the manager contains
the policies for creating nested child activities.

5. A SPECIFICATION MODEL FOR DECENTRALIZED CSCW SYSTEMS

An activity is specified in XML, and it is instantiated by a middleware [Tripathi
et al. 2002] to generate the runtime environment for the target system. Before
realizing a system from its XML specification, its security properties are verified
using model checking. We illustrate the specification model and the verification
methodology using an example case-study. Here, rather than using XML, we use a
notation that is easy to read and conceptually simple to follow.

5.1 Example Case Study

Using Figure 1, we illustrate three main concepts of the specification model: (1)
hierarchical structuring of activities, (2) scope rules for objects and roles, and (3)
assignment of role members and passing of objects as parameters to nested activ-
ities. In Figure 1, an activity template Course is presented that has three roles —
Instructor, Assistant, and Student. In the Course, a nested FEzamination activity

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

10 . Tanvir Ahmed and Anand R. Tripathi

ActivityTemplate Course LEGEND

[Role Assistanﬂ)Role Instructor] [Role Student] Bulletin Board| | —p Role Reflection

i ---> Dynamic Role Assignmer
ActivityTemplate Examination — ~ Parameter Objects

4 Y
[Role Grader} [Role Examinea [Role Examine% [Role Approvea

1 1
ActivityTemplate ExamSessior[Exampape} |

Role Checker AREETEE Role Candidate

Fig. 1. Role member assignment and object passing in hierarchical structuring of activities

ExamSessio

I
i#member(Examinee) Examination.finish

Examination.start ——= SetPape———= ApprovePapes—= StartEx

'(Role E 'a:‘[RIA]:‘[FHE }_x :
((Rolexamines | (Rale Approver) {(Role Examinge /

LEGEND ‘ Activity ‘ [Role] — task-flow dependency

Fig. 2. Task flow requirements in an Ezamination activity

template is defined with four roles: Grader, Examiner, Examinee, and Approver.
An instance of the Course activity template is created for a specific course such as
Chemistry or Physics. Within each such activity instance, any number of Ezami-
nation activity instances may be created, such as midterm and final_exam. In an
examination activity, each member of the Fxaminee role takes the exam by instan-
tiating the nested EzamSession activity, which contains the roles: Candidate and
Checker.

The Instructor role initiates an Fxamination activity and assigns members to the
Examiner role. Using role reflection, members of the Instructor and the Assistant
roles are admitted to the Grader role in an Ezxamination activity, and all members
of the Student role are admitted to the Ezaminee role. Each examinee creates an
EzamSession activity and he is automatically admitted into the Candidate role. A
member of the Grader role joins the Checker role after an exam-session instance is
created.

Within an Ezamination activity, there are several tasks that are performed by
role members. For example, a member of the Fxaminer role sets the exam-paper,
an Approver role member approves it, and the members of the Ezaminee role take
exam by creating instances of FramSession. These tasks are represented as role
operations and nested activities in the specification model as illustrated in Figure
2. The arrows in this figure show the dependency among these operations and
activities. For example, the Approver role can approve an exam-paper only after
the Ezaminer role sets the paper, an Fzraminee role member can start an exam-
session only after the ApprovePaper operation, and an examination terminates when

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

ActivityTemplateDef — ActivityTemplate templateld [Owner roleld]
{Object codebase objld} {AssignedRoles roleld}
[TerminationCondition Condition]

RoleDef { RoleDef} { ActivityTemplateDef}

Fig. 3. Syntax for activity template definition

1 ActivityTemplate Course AssignedRoles Assistant, Instructor, Student, Adm2 {

2 Role Assistant{....}

3 Role Instructor {....}

4 Role Student {....}

5 ActivityTemplate Examination Owner Instructor AssignedRoles Examiner, Adm2 {
6 Role Examiner { }

7 Role Approver {

8 Role Examinee Reflect parentActivity.Student { }

9 Role Grader Reflect parentActivity.Assistant, parentActivity.Instructor{....}
10 ActivityTemplate ExamSession Owner Creator Object ExamPaper exam

11 AssignedRoles Candidate {

12 Role Candidate { }

13 Role Checker { }

4})}

Fig. 4. Skeleton specification of Course activity template

the exam-sessions of all of the examinees terminate.

In Figure 1, within a Course activity, a member of the Instructor role can create
a BulletinBoard object. Only members of the Instructor, Assistant, and Student
roles within this activity, if permitted, can access the BulletinBoard. The Bullet-
inBoard cannot be accessed by roles in any child activity instances, if not passed
as a parameter. In Figure 1, in an Examination activity, a reference to the Ezam-
Paper object is passed as a parameter to nested EramSession activities. A single
EzamPaper object is shared by all the exam-sessions. On the other hand, a new
AnswerBook object is created in each exam-session.

5.2 Activity Template Specification

In Figure 3, the syntax for the XML schema for activity template definition is
shown, where [] represents optional terms, { } represents zero or more terms, |
represents choice, and boldface terms represent tags in XML schema. An activity
template can specify owner assignment, parameter objects and their types as Java
classes, and a termination condition. Moreover, the declaration may list some of
the roles that must be assigned members when the activity is instantiated.

In Figure 4, a partial specification of the Course activity template of Figure 1 is
presented. The activity templates for Examination and ExamSession are presented
in Figure 9 and Figure 10, respectively, and discussed in the following section to
illustrate specification of various coordination and security requirements.

In the specification model, the user executing an operation is specified by the
pseudo variable thisUser. Within an activity, one can refer to its current instance
using thisActivity and its parent activity instance by parentActivity. In Figure 4
(line 9), the Grader role refers to the Assistant role of its parent activity using

3

parentActivity.Assistant. Within a role, one can refer to it by thisRole.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

11

12 . Tanvir Ahmed and Anand R. Tripathi

5.3 Condition Specification

There are three kinds of of conditions in the specification model: role membership
related, event history based, and temporal, as defined in Figure 5. For temporal
condition specification, we use a function tzme that returns the current time.

Condition — RoleCondition | OperationCondition | TemporalCondition

| Condition LogicOp Condition | !Condition
RoleCondition — # RoleMemberList Relation Count | member(userld, roleld)
RoleMemberList —» members(roleld) | RoleMemberList SetOp RoleMemberList
TemporalCondition — time Relation String
SetOp — N | U |\ LogicOp — A | V
Relation — > | < | = | <=|>=| # String — { XML CDATA }

Fig. 5. Syntax for condition definition: time and role membership based predicates

5.3.1 Role Membership Functions. A boolean function member (thisUser, roleld)
checks if the user executing this function is present in the given role; the role mem-
ber list is given by the function members(roleId). Set operations can be performed
on role member lists. A count operator, #, can be applied on a member list. The
count of the members in a role is given by #(members(roleId)).

5.3.2 Ewvent Based Predicates. The start and finish events for role operations
and activities are implicitly generated by the runtime environment. When an oper-
ation is invoked and the operation’s precondition is satisfied, the operation’s start
event is generated and the execution of the action part of the operation begins.
The precondition-check for an operation and the generation of the corresponding
start event is atomic. An operation’s finish event is generated at the end of the
operation’s actions.

Multiple occurrences of a given event type, such as the start events for multiple
executions of an operation, are represented by a list. A list operator, (), represents
the sequence of all events of the specified type. E.g., (EventName) represents all the
event of type EventName. The count operator on the list, e.g., #(EventName), returns
the number of occurrence of the given event type EventName. An index i in the
event-list, expressed as EventName[i], represents the i'th element in the history of
the specified event type. The variables first and last are used to index the oldest
and the most recent elements, respectively, in an event list.

OperationCondition — EventCount Relation Count
| EventName ‘[’ Indez!]‘.’ AttributeName Relation Attribute Value

EventCount — #eventName [Attribute Name Relation AttributeValue]

| EventCount IntegerOp FEventCount | EventCount IntegerOp Count
EventName — opld.start | opld.finish | activityld.start | activityld.finish
Index — Count | EventCount | first | last
AttributeName — invoker | time | String Attribute Value — thisUser | String
IntegerOp — + | - | mod | div | * Count — Integer

Fig. 6. Syntax for condition definition: event based predicates

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

RoleDef — Role roleld [Owner roleld] {Reflect roleld}
[AdmissionConstraints Condition| [ValidationConstraints Role Condition|
[ActivationConstraints Condition] { OperationDef}

Fig. 7. Syntax for role definition

OperationDef — Operation opld [Precondition Condition] [Action actionDef]

ActionDef — {Grant Permission} { NewObjectDef} [NewActivityDef]
[InvokeMethod objld methodSignature methodParameter |
{ChangeOwner objld Roleld}

Permission —> objld methodSignature

NewObjectDef — objld = new Object codebase

NewActivityDef — activityld = new Activity templateld {PassedObject objld}

{MemberAssignment roleld = userld {userld} }

Fig. 8. Syntax for role operation definition

For each event, there are two predefined attributes: invoker and time. A sub-
set of an event-list can be derived by filtering it based on some predicate on the
event’s attributes. The expression opId.start(invoker=thisUser) defines a filter
based on the operation invoker’s identity. Using the count operator, the expres-
sion #(opId.start(invoker=thisUser)) counts the number of times the currently
executing user has invoked this operation.

Event-based predicates are expressed in two ways: count based or attribute based,
as shown in Figure 6. For example,

(1) The predicate, #opl.start—#op2.start=0, is true when the operations opl
and op2 have started equal number of times.

(2) The predicate, opId.start[last].invoker#thisUser, is true if the invoker
who initiated the last opld invocation is not the same as the current invoker.

5.4 Role Specification

A role specification, as shown in Figure 7, contains the role name, specification
for the operations within the role, and three types of role constraints: role admis-
sion, validation, and activation constraints. Optionally, it can specify the name
of another role that is to be given owner privileges for this role, and it can also
specify the roles reflected into this role. The structure for role operation definition
is shown in Figure 8. In the following subsections we illustrate how various kinds
of dynamic security requirements can be expressed through role constraints and
operation preconditions.

5.4.1 Role Admission on Activity Creation. The specification model provides
two mechanisms for assigning members to roles. First, using the Reflect tag, mem-
bers of the roles in the parent activity are statically assigned to a role in a child
activity. Figure 4 presents a partial specification of the Course activity. Lines 8
and 9 in Figure 4 show assignment of members to the Examinee and Grader roles
in the Fxamination activity through role reflection.

Second, the template specification uses the AssignedRoles tag to specify the roles

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

14 . Tanvir Ahmed and Anand R. Tripathi

for which some member must be assigned at the time of activity instantiation. In
Figure 4 (line 1), members of the Instructor, Assistant, and Student roles must be
assigned when instantiating a Course activity. Similarly, in Figure 4 (lines 5 and
11), members of the Ezaminer and Candidate roles must be assigned at the time
of instantiating an Ezamination and an EzamSession activity, respectively.

5.4.2 Role Admission Constraints. These constraints control a user’s admission
to the role to enforce various security requirements including static separation-
of-duties requiring that two given roles should never be assigned to the same user.
The following admission constraints for the Assistant role in the Course activity are
selected to illustrate various aspects of security requirements that can be expressed
using role admission constraints.

—An admission constraint specifying that the member count must be less than one
to admit a new member in this role:
#members (thisRole) < 1

—A role admission pre-requisite constraint requires that a user is admitted to this
role only when at least one member is present in the Instructor role:
#members (Instructor) > 0O

—A static separation-of-duties constraint requires that the same person cannot be
assigned to both the Student and Assistant roles:
'member (thisUser, Student)
To ensure this static separation-of-duties, the following constraint is also specified
in the Student role of the Course activity:
'member (thisUser, Assistant)

5.4.3 Role Validation Condition. The validation condition of a role is used to
check if a participant’s membership in the role needs to be revoked. It is evaluated
whenever a role membership query is executed. Figure 9 illustrates use of role val-
idation constraints in the specification of roles in the Ezxamination activity. In this
example, dynamic separation-of-duties constraints, such as two given roles cannot
be concurrently assigned to the same person, are specified as part of role validation
constraints. In Figure 9 (lines 10 and 19), the Approver and the Grader roles have
validation constraints. The validation constraint for the Approver role specifies that
a user’s membership to the Approver role is revoked if the user becomes a member
of the Assistant or the Student role. The validation constraint for the Grader role
specifies that when a member the Grader role becomes a member of the Approver
role, his/her membership to the Grader role is revoked.

5.4.4 Operation Specification. As shown in Figure 8, an operation specification
includes a name, and may include a precondition and an action. The operation
preconditions allow one to specify coordination constraints and dynamic security
requirements. The action part of an operation can create a new object or a nested
activity, invoke a method on an object, change ownership of an object, or it can be
empty.

The keyword mnew is reserved for specifying creation of an object or an activity.
Roles can create only predefined types of objects, specified with a codebase, as
defined with NewObjectDef in Figure 8.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems . 15

0N O WN -

0N U D WN -

ActivityTemplate Examination Owner Instructor AssignedRoles Examiner, Adm2 {
TerminationCondition #exam_session.finish=#members(Examinee)
Role Examiner {
AdmissionConstraints member (thisUser, parentActivity.Instructor)
Operation SetPaper {
Precondition #(SetPaper.start)=0
Action { exam=new Object (ExamPaper); Grant exam setQuestions }}}
Role Approver Owner Adm2 {
ValidationConstraints
!member (thisUser, parentActivity.Assistant) A !member (thisUser, parentActivity.Student)
Operation ApprovePaper {
Precondition #(SetPaper.finish)=1 A #(SetPaper.finish(invoker=thisUser))=0 }}}
Role Examinee Reflect parentActivity.Student {
Operation StartExam {
Precondition #(ApprovePaper.finish)=1 A #StartExam.start(invoker=thisUser)=0
Action { session=new Activity ExamSession PassedObject exam
MemberAssignment Candidate=thisUser}
Role Grader Reflect parentActivity.Assistant, parentActivity.Instructor{
ValidationConstraints !member(thisUser, Approver) }

Fig. 9. Specification of Examination activity template

ActivityTemplate ExamSession Owner Creator Object ExamPaper exam AssignedRoles Candidate{

TerminationCondition #Checker.Grade.finish>0
Role Candidate {
AdmissionConstraints member (thisUser, parentActivity.Examinee)
A member (thisUser, thisActivity.Creator)
A #members (thisRole) <1
ActivationConstraints time > DATE(May, 10, 2003, 9:00) A time < DATE(May, 10, 2003, 11:00)
Operation OpenExam{
Precondition #(OpenExam.start)=0
Action { ans=new OBJECT AnswerBook; Grant exam readPaper }
Operation Write {
Precondition #(0OpenExam.finish)>0
Action Grant ans writeAnswer }
Operation Submit {
Precondition #(Write.finish)>0
Action ChangeOwner (ans, Checker) }}
Role Checker {
AdmissionConstraints #(members(thisRole))<1 A member(thisUser, parentActivity.Grader)
Operation Grade {
Precondition #(Candidate.Submit.finish)=1
Action Grant ans setGrade }}

Fig. 10. Specification of EzamSession activity template

The operation dependency requirements expressed in Figure 2 are enforced by

the preconditions role operations in the Ezamination activity. In lines 5-7 of Figure
9, the Ezaminer role can perform the SetPaper operation only once as specified by
the operation precondition. This operation results in the creation of an exzam object
of type ExamPaper and granting the operation invoker the setQuestions privilege
on the object.

Preconditions also facilitate specification of coordination constraints, for both

inter-role and intra-role coordination. For example, in Figure 9 (line 15), a student
in the Fxaminee role cannot execute the StartExam operation until the Approver
has approved the exam paper. This represents an inter-role coordination constraint.
Moreover, the precondition for this operation allows each member in the Fxaminee
role to independently start an exam session. This illustrates an intra-role coordi-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

16 . Tanvir Ahmed and Anand R. Tripathi

nation policy of independent participation by the members in the Ezaminee role.

In Figure 9 (line 6), the precondition of the SetPaper operation in the Examiner
specifies that any one of the role members can execute the SetPaper operation. This
illustrates intra-role coordination based on cooperative participation.

An operational separation-of-duties constraint, i.e., no single participant can per-
form all the operations related to a business transaction, is specified for the Ap-
prover role in Figure 9 (lines 11-12). An examiner may prepare an exam-paper and
an approver can approve the paper, but the approver should not be able to approve
an exam-paper that he has prepared.

An activity template specifies the roles that must be assigned members at the
time of its instantiation. In Figure 9 (lines 16-17), when an examinee invokes the
StartExam operation, an instance of the FEramSession activity is created, and the
participant creating the instance is dynamically assigned to the Candidate role. It
also passes the exzam object as a parameter to this activity.

5.4.5 Role Activation Constraints. This constraint for a role specifies the com-
mon preconditions for all operations defined for that role. In Figure 10 (line 7), an
activation constraint, where the candidate can perform an operation only during
the designated time for the exam, is specified.

time >DATE(May, 10, 2003, 9:00) Atime<DATE(May, 10, 2003, 11:00)

A cardinality constraint, which specifies the least number of members that must
be present before any role operation can be performed, is specified as an activa-
tion constraint. In the following example, we present activation constraints for a
CodeReviewer role of a software development team. A minimum of 3 members must
be present for the role members to perform any operation, and at least a member
from both the Developer and the ProjectManager roles must be present during the
role operations.

#members (thisRole) >=3
A #(members (thisRole) N members(Developer)) >0
A #(members(thisRole) N members(ProjectManager)) >0

5.5 Meta Policy Specification

The rules for Qwner assignment for an entity — activity, role, and object — are as
follows:

(1) Static Ownership Assignment: The template specification may indicate which
role would be the owner of an entity. The creator of entity can be specified as
its owner. Only a role defined in the ancestor activities can be specified as an
owner for an activity or a role. This ensures that no circular ownership relation
exists among owners. For an object, a role defined in the encapsulating activity,
or in any of its ancestor activities, can be specified as its owner.

(2) Default Ownership Assignment: If not explicitly specified:

—for an activity, the owner of the parent activity is the owner;

—for a role, owner of the activity in which the role is defined becomes its default
owner; and

—the default owner of an object is the role that creates it.

For the top level activity, the Creator is the owner.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

"\ Owner = Creator = Adml

Course
/_\ Owner = Creator =
Owner = Owner = Creator =
m Instructor l:l I nstructor l:l Instructor
Assistant Instructor gy dent Examintaion ExamPaper BulletinBoard

/,M Owner = Creator = Examinee
Owner = AdmZO O Q
Grader/EXamSession

Approver Examinee Examiner

er = Creator = Candidate
O after Submit: Owner = Checker
Checker Candidate AnswerBook
LEGEND: A Activity Template O Role |:| Object Type

Fig. 11. Owner-assignments in the nested Course activity template specification

(3) Dynamic Ouwnership Assignment: To handle aspects of dynamic ownership of
an object, the Change OQwner primitive is supported. The ownership of an object
can only be changed by its current owner.

Figure 10 presents the EzamSession activity template with owner assignments.
In Figure 10 (line 1), Creator is specified as the owner of an EzamSession activity
instance, and only the member of the Creator role can join the Candidate role (line
5). Within an exam-session, the candidate creates an AnswerBook object (line 8)
and becomes the owner of the object, by default rules. After the candidate has
taken the exam, he should no longer be trusted to manage the answer-book. In
Figure 10 (lines 14-16), after the Submit operation, the ownership is transferred to
the Checker role.

In a cross-domain collaboration, participants of the domain that initiates an
activity may not be trusted to manage some roles in the activity. For example, in
an auditing activity, members of the auditor role must be managed by the auditing
firm and cannot be managed by the audited firm. In the Course activity example,
a similar requirement is specified, which requires that the Approver role must be
managed by a role in an outside organization.

Suppose that Adm1 represents the Creator of an instance of the Course activity.
In Figure 4, role Adm2 is specified as a parameter for this activity. When instanti-
ating this activity, it may be specified as a role in some outside organization. This
role is assigned as the Qwner of the Approver role in an instance of the Examination
activity.

Figure 11 shows the specification of the owners for the entities nested in a Course
activity template. Figure 12 presents the resulting ownership relations among the
entities in Figure 11, based on the given specification and the default ownership
rules.

In Figure 11, by default rules, as the Adm1 role is the creator, it is the owner of
the top level Course activity instance. For any nested Ezamination instances, the
Instructor role is assigned as the owner. Following the default owner-assignment
rules, Instructor role is the owner of the Examiner, Grader, and Examinee roles.
Moreover, as Creator is assigned as the owner for the FramSession template, the
examinee who initiates an exam-session is the owner of the session. In Figure 12, the

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

17

18 . Tanvir Ahmed and Anand R. Tripathi

O Adm2 OAdml

o6 o =

Assistant Instructor Student Course

“ e aa

ExamPaper Examinee Examiner Grader Examina’cionEm"e“anjlrd
CandidateO A O Checker

V\ExamSessi
LEGEND before Submit after Submit

——= Owned By AnswerBookD

Fig. 12. Owner hierarchies derived from Figure 11

ownership relations form hierarchical structures. There are two owner-hierarchies,
under Adm1 and Adm2, because these two roles are from two different organizations
and do not have any common ancestor role in the owner hierarchy.

6. DESIGN VERIFICATION GOALS IN MODEL CHECKING

In this section we present different aspects of coordination and security requirements
that a collaboration designer may specify as properties to be verified during the
design process.

6.1 Verification Properties

Verification of a CSCW design has two distinct goals. First, it has to ensure that
the design specification is not inconsistent. Second, it has to ensure that security
and coordination requirements are satisfied by a specified design.

6.1.1 Inconsistent Specification. Due to incorrect operation preconditions and
role membership constraints, an operation can never be executed or a role can never
have a member. Such incorrect specifications result from inconsistent requirements
or wrong specification of requirements. These incorrect specifications relate to the
following two types of properties in our model:

(1) Reachability of Operations: A primary correctness requirement is related to
liveness properties that each of the role operations can be executed, i.e., all
operations are reachable. An operation in our model is unreachable if its pre-
condition can never be satisfied. In the following example, the specification of
two inter-dependent role operations represents a deadlock, where none of the
operations can be performed.

Operation Opl Precondition #(Op2.finish) = 1
Operation Op2 Precondition #(Opl.finish) = 1

(2) Satisfiability of Role Membership Constraints: Incorrect or inconsistent specifi-
cation of role constraints can result in conflicting conditions for admission and
validation. Consider the following example, where a member of role A cannot
be a member of role B. On the other hand, role C’s admission constraints re-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

quire that its member has to be a member of both role A and B when joining
C, which cannot be satisfied.

Role B Validation Constraints !member(A)
Role C Admission Constraints member(A) A member(B)

6.1.2 Task-Flow. The task-flow requirements, i.e, permissible sequence of oper-
ations, are specified through preconditions of role operations. In CSCW systems,
the collaboration designer may want to verify task-flow requirements independently
of other role constraints, with an alternative form of expression. To facilitate such
checks during the design, task-flow requirements can be expressed using path ez-
pression [Campbell and Habermann 1974] constructs, such as sequence (;) and
selection (()) with a count restrictor (:n), where n can be a constant, or
“4” representing one or more and “*” representing unbounded.

The task-flow requirement for the Ezamination activity, as presented in Fig-
ure 2, is given below. It requires that a SetPaper operation is performed before
the ApprovePaper operation, an EzramSession activity can be started only after
an ApprovePaper operation, and the number of the exam-session activity instances
has to be equal to the cardinality of the Fzaminee role before the Fxamination
terminates.

Examination := Examiner.SetPaper; Approver. ApprovePaper;
Examinee.ExamSession:#member(Examinee)

6.1.3 Role-Based Constraints. Four types of separation of duties constraints —
static, dynamic, operational, and object-based — and role cardinality constraints
can be specified in this specification model. Several role related requirements are
specified for the example in Figure 1. To illustrate the verification methodology
in the next sections, we choose the following two role constraints (RC) that are
representative of such requirements.

RC1. A member of the checker role can never be a candidate.

RC2. The student who initiates an exam-session should be the only one who joins
the candidate role.

6.1.4 Information Flow and Confidentiality. We can model information flow
constraints by classifying roles with disjoint members with implicit security labels.
By doing so, a collaboration designer may like to verify if such constraints can be
satisfied. Constraints can be specified that certain information can flow to a given
role only after some specified conditions are satisfied, or certain information cannot
flow to some specific roles. In our case study example, the designer intends to
enforce and verify the following two information flow (IF) requirements.

IF1. A member of the examinee role cannot access the content of the exam paper
before the start of his/her own exam session.

IF2. Before the submission of the grades, identity of a candidate should not be
known to the member of the assistant role who grades that candidate’s answer book.

6.1.5 Access Leakage. In the role-based collaboration model, access rights can
only be leaked if unauthorized users can join a role. Unauthorized users may be able
to join a role due to incorrect specification of role admission related constraints. In

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

19

20 . Tanvir Ahmed and Anand R. Tripathi

our example, the collaboration designer specifies the following integrity requirement
as an access leakage (AL) property.

AL1. A participant of the examinee role can modify his/her answer book only
before the end of his/her exam-session.

6.2 Verification Problem with Decentralized Policy Enforcement

In a centralized system, with the reference monitor correctly enforcing all specified
constraints, the goal of the verification process is essentially to check that the
security requirements are not violated due to an incorrect specification. However,
in a decentralized CSCW system, where policy enforcement functions are assigned
to different participants in the system, the verification goal is also to ensure that
a given assignment of owners is safe, i.e., it would not result in violation of any
sensitive requirements.

In decentralized policy enforcement, when a role is assigned the ownership of an
entity, the members of that role are trusted by the designer to correctly enforce the
entity-specific policies. Specifically, the owner of a role is trusted with the enforce-
ment of operation preconditions and role membership policies, and an object owner
is trusted with the enforcement of object access policies. In this case, there still
exists a possibility of security requirement violation due to the extended privileges
that are acquired by the members in the OQwner role of an entity. Specifically, these
privileges are: (1) the owner of a role can view identities of the role members; and
(2) the owner of an object can read/modify it without any restriction. Incorrect
assignment of these owner privileges can thus result in violation of confidentiality,
information flow, and access leakage constraints.

On the other hand, if all participants cannot be fully trusted for policy enforce-
ment functions, an incorrect ownership assignment may lead to a situation where
an “untrusted” participant joins the owner role and may deliberately violate the
specified policies for the entity under its ownership. Thus an additional goal of the
verification process is to ensure that sensitive security requirements are not violated
by untrusted owners.

Consequently, there are two distinctly different assumptions and conditions under
which a design can be verified. In the first case, the designer trusts all participants
to correctly enforce the security policies for the entities under their ownership con-
trol. This means that the specified policies will not be deliberately violated by the
owners. We refer to this as the Verification Model with Trusted OQwners.

In the second case, the designer may trust only a subset of the roles for policy
enforcement functions. Thus the verification process is required to ensure that an
untrusted participant does not acquire ownership privileges for an entity with some
sensitive requirements. This requires the verification model to include the behavior
of untrusted participants when they are present in some owner role. We refer to
this as the Verification Model with Untrusted Owners.

7. VERIFICATION MODEL

Our verification methodology is based on SPIN [Holzmann 2003], which is a model
checker with an automata theoretic approach. In SPIN, a model of a system to be
verified is specified in PROMELA (a Process Meta Language), which is a C like

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

language with support for inter-process communication primitives. The desired
system property can be expressed in LTL (Linear Temporal Logic) using temporal
operators always (0), eventually (<), and until (U). Given the model of a
system and a desired property of the system, SPIN converts the model of a system
and the negation of a desired system property to finite Buchi automata. Next,
SPIN generates a language intersection of these two automata and finds a trace of
the counter-example for the desired property.

The well-known challenge in model checking is the state space explosion prob-
lem. The search space of the PROMELA model for a small collaboration can be
very large. We address here several important issues in applying model checking
techniques to our problem domain.

7.1 Model Extraction

In our current work, the collaboration specification in XML is manually converted
to PROMELA. Our XML specification only contains the coordination and security
properties, thus requiring additional components for runtime control structures to
be added to the executable PROMELA specification. In addition to components
that manage activities, roles, operations, and events, components are added to the
PROMELA specification to verify properties related to information flow, access
leakage, and owner assignments. Similarly, the given requirements are converted to
LTL expressions that refer to variables in the verification model.

To express various properties in LTL, several primitive predicates are defined.
These the predicates include:

—member (user, role): the user is a member of the role.
—event(event-type, user): the user has triggered the specified type of event.
—member (user, role, activity): the user is a member of the role within the activity.

—event(event-type, user, activity): the user has triggered the specified type of event
within the activity.

—-count(event-type, n): the number of occurrences of event-type is equal to n.

—access(permission, object_type, user): the user has the permission on an instance
of the object_type.

In developing the verification models, the search space can be reduced by tailoring
property-specific information. For example, if verification of a property is related
to any user’s invocation of a method, it is not required for the model to maintain
the identities of all the users, but rather maintain a bit variable signifying the fact
that some user has invoked the method.

To reduce state space, internal data structures also require abstraction. For
example, in the Course activity, if some user C is an initial assignment to the
Assistant role, C will eventually be able to join the Grader role. It can be expressed
as a correctness requirement for the Grader role as the following expression using
LTL.

< member (C, Grader)

In our implementation, the verification model maintains a bit vector for users,
where a bit signifies presence of a user in a role. With member_present being

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

21

22 . Tanvir Ahmed and Anand R. Tripathi

the bit vector, SPIN LTL property verifier converts the above requirement to the
following expression, where j represents the bit corresponding to C’s presence in
the Grader role.

<& member _present [j]

In SPIN, a variable used in the LTL property to be verified, must be defined in
the global scope of the PROMELA specification. Global variables result in a larger
number of states. Hence, based on the LTL expression, only the variables that
require tracking are defined in the global scope of the PROMELA specification.

7.2 Initial Assignment of Participants

A design is verified with a specified number for initial assignment of participants to
various roles. If this number of participants is lower than the number required to
verify all the properties, the model checker either provides a trace pointing that the
lack of participants resulted in a counter example for a safety property or points
the operations that cannot be reached. On the other hand, if the verification is
successful with the specified number of participants, it does not ensure that all the
verified properties will hold for a larger number of participants. In our research,
we have developed a procedure to find a lower bound for the number of initial
assignment of participants for a given design. This bound ensures that a larger
number of participants will not result in violation of a property that is satisfied
with this assignment [Ahmed 2004]. The focus of this paper is on the verification
methodology, assuming that an initial assignment of participants is given.

7.3 Aspect-Specific Verification Models

To overcome the state space problem, we exploited various abstraction techniques
in the verification model. A system model with all its properties intact produces a
large search space. Some of the properties that are not of concern when verifying
a specific property can be excluded from the verification model and independently
verified. For example, in our verification model for role constraints, to verify users’
admission to roles, modeling of role operations that cannot affect users’ movement
among roles is not required. We have developed the following five classes of verifi-
cation models based on the different aspects of the requirements to be checked.

Model for Task-Flow Requirements: It is used for verifying reachability of opera-
tions and task-flow constraints, without taking into account the role constraints.
It is applicable in cases where the operation precedence constraints do not de-
pend on role membership properties.

Model for Role Constraints: It is used for verifying requirements related to role
constraints that do not depend on operation execution history.

Model for Information Flow: This is used to verify properties related to informa-
tion flow. It is derived by combining some of the aspects of the task-flow and
role-constraint models, and it additionally includes control structures to model
information flow paths.

Model with Trusted Owners: It is developed by extending the information flow
model to verify the safety of the owner assignments in regard to information
flow and access leakage due to the “extended privileges” of an owner.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

Model with Untrusted Owner: It is used to verify the safety of owner assignments
given that a subset of roles may not be trusted for policy enforcement functions.
It is derived from the above model with trusted owners.

8. VERIFICATION METHODOLOGY

During the verification process, the designer may find the specification either incon-
sistent (e.g a specified operation can never be executed or a role can never have a
member) or incorrect (e.g. some requirement is violated). In the first case, the de-
sign has to be modified, and in the second case either the design or the requirements
have to be modified. Due to inter-dependency of the requirements, a modification
of the specification may lead to violation of any of the previously verified properties,
which would have to be reverified. This can result in a large number of iterations
of the verification steps [Kotonya and Sommerville 1998]. To reduce the iterations,
our verification methodology follows precedence among the properties it checks. It
first checks a design for role and operation related requirements before verifying
information flow, access leakage, and ownership related properties. This ordering is
motivated by the goal of modeling of primary entities of a specification — activities,
roles, and operations — before modifying the design to satisfy higher level security
requirements.

The aspect-specific models described above are developed incrementally by adding
and removing components that maintain state needed to verify a specific property.
In this section, each of the five models is discussed in details including the as-
pects of a specification that are abstracted in the model and the expressions of the
corresponding properties in LTL for verification.

In the first step, the Task-Flow Model and the Role Constraint Model are applied
separately, in any order, for the requirements that are related to the independent
aspects of these models. These two models support preliminary verification of task-
flow and role constraints that are independent of each other. The requirements that
cover the aspects of both these models cannot be verified separately. An example of
such a requirement is when admission to a role depends on an operation execution,
or when the execution of an operation depends on a role’s member count. Such
requirements must be verified combining aspects of both these models. Such a
combined model also forms the basis for the information flow model.

Next, verification is performed using the Information Flow Model to check if any
confidentiality properties are violated. It does not consider any extended privileges
of the owners. The Model with Trusted Owners verifies requirements, such as in-
formation flow and access leakage, are not, violated due to incorrect assignment of
owners. This model is derived from the information flow model by adding appro-
priate components to represent owners’ extended privileges. In the final step, the
Model with Untrusted Owners is used if any of the roles are designated as untrusted.
This model is derived from the trusted owner model by adding components defining
the behavior of untrusted owners.

8.1 Verification Model for Task-Flow Requirements

This model is designed to verify aspects related to coordination requirements, such
as reachability of operations and task-flow. This model includes components related
to activity creation, operations, and preconditions. This model does not include

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

23

24 . Tanvir Ahmed and Anand R. Tripathi

1 proctype ExamSession Activity() {

2 bit Candidate Write finish=0, Candidate_OpenExam_start=0, Candidate_OpenExam_finish=0,
3 Candidate_Submit_finish=0, Grader_Grade finish=0;

4 do

5 ::Grader_Grade_finish == ->

6 if

7 /* Candidate OpenExam */

8 atomic { Candidate_OpenExam_start == 0 -> Candidate_OpenExam start = 1; }
9 Candidate_OpenExam finish = 1;
10 /* Candidate Write */

11 :: Candidate OpenExam finish != 0 -> Candidate Write finish = 1;

12 /* Candidate Submit */

13 :: Candidate Write_finish != 0 -> Candidate_Submit finish = 1;

14 /* Grader Grade */

15 ::Candidate_Submit_finish == 1 -> Grader_Grade _finish = 1;

16 fi

17 i1 Grader_Grade_finish != 0 -> ExamSession_finish++; break;

18 od }

Fig. 13. Task Model in PROMELA for EzamSession activity in Figure 9

properties related to users’ membership in roles. For any operation preconditions
that depend on any role membership constraints, such constraints are assumed to
be satisfied. Such requirements are to be verified combining this model with the
Model for Role Constraints. An exhaustive verification run on this model reports
unreachable code, pointing out the operations, which are unreachable.

Figure 13 shows the Task Modelin PROMELA of the EzamSession activity spec-
ification, as presented in Figure 10. This model only includes the components that
are required to verify operation precedence related properties. In this verification
model, each activity is modeled as a process (line 1) and multiple instances of
the process can be created. Within such a process, each operation’s precondition
is modeled as a guarded statement (lines 8, 11, 13, and 15). When the guard
becomes true, the statement that follows after the arrow (- >) is executed in a
non-deterministic step. The atomic statement (line 8) ensures that the precon-
dition check and generation of corresponding Candidate_OpenFExam_start event is
performed in a single step. The process of the EzamSession loops till the termi-
nation condition is satisfied (line 17). When the condition is satisfied the global
variable EzxamSession_finish is incremented.

In addition, the path expressions for the task-flow requirements are converted to
LTL expressions. In the following, only the response properties of the Fxamination
activity, as discussed in Section 6.1.2; are presented in LTL.

O(Examination_start — < Examiner_SetPaper_start)

O(Examiner_SetPaper_finish — < Approver_ApprovePaper_start)

O(Approver_ApprovePaper finish — < ExamSession_start)

O(count(ExamSession_finish, #member (Examinee)) — < Examination_finish)

In the verification run, if any of these properties related to operation precedence is
not satisfied, a trace of the counter-example is provided by the model checker.

8.2 Verification Model for Role Constraints

This model is developed to ensure that all roles can have members, role membership
constraints can be satisfied, and separation-of-duties properties are not violated. It
includes only components related to the role membership management aspects,

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

such as static and dynamic role member assignment, role admission and validation
constraints.

Within an activity specification, some roles may not have any prerequisite mem-
bership constraints for admission. Only the users assigned to these roles can join or
be admitted to other roles in that activity. We verify a CSCW design specification
based on some given initial assignment of participants to these roles. This initial
assignment is important as noted in Section 7.2. In the example Course specifica-
tion, Student, Assistant, Instructor, and Approver are initial assignment roles. For
the verification process presented in this paper, the initial assignment of partici-
pants for a Course activity is 5, identified as users A through E in the following
assignment: A and B to Student, C to Assistant, and D and E to Approver and
Instructor roles. These assignments were determined using the procedure presented
in [Ahmed 2004].

Based on the initial members assigned, the model checker reports unreachable
code, pointing to the roles that cannot have a member. To facilitate the designer to
express various types of role constraints, conversion functions for role constraints
to LTL expressions are provided. For example, the static separation of duties that
a user z cannot be a member of two roles r1 and r2 is expressed with the following
LTL expression using the primitive predicates. In the verification run, x is replaced
by user identities, and r1 and r2 are replaced with role names.

Ssap(r1, r2) := 'O (member(z, r1) && member(z, 72))

Case Study Verification of RC1: RC1 is a static separation of duties requirement,
i.e., a member of a Checker role cannot be a member of Candidate role. An opti-
mization of this process is to verify the property based on the only possible member
in the Checker role, i.e., C. The following expression specifies that eventually there
does not exist a state, where C'is a member of both Checker and Candidate roles.
This requirement was satisfied.

SSOD(Checker, Candidate):= !< (member(C, Checker) && member(C, Candidate))

Case Study — Verification of RC2: Knowing that users A and B are initial members
of the Student role, the requirement RC2 is expressed as below.

& (member (A, Candidate, esl) &% !'event(ExamSession_start, A, esl))

The requirement is specified by negating the fact that eventually user A is a mem-
ber of the Candidate role without starting the EzamSession instance esI. In this
expression an activity es! is added to imply that the EzamSession_start event and
the Candidate role are in the same activity instance scope. As users A and B are
added to the Student role in non-deterministic steps, checking for either of their
identities is sufficient for this verification. This requirement was satisfied.

8.3 Verification Model for Information Flow

Several confidentiality properties, such as noninterference, noninference, and non-
deducible, have been formalized [Zakinthinos and Lee 1997]. However, in our veri-
fication model only explicit information flow is captured, which can be summarized
by the following two rules:

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

25

26 . Tanvir Ahmed and Anand R. Tripathi

(1) Given objects o1, 02 and subject s, which has read permission for o1 at time
t1 and write permission for 02 at time t2 with t2 > t1, then information can
flow from o1 to 02, i.e., 01 — 02.

(2) Similarly, given o is an object and subject s1 has write permission for o at time
t1 and subject s2 has read permission for o at time t2 with t2 > t1, then
information can flow from s1 to s2, i.e.,, s1 — s2.

01 | read @tl @ write @t2 02 o1 02
2>=t1
@wnte @t o |read @2 @ 1 52
2>=t1

Fig. 14. Information flow: object to object, subject to subject

To incorporate the above two rules in the model, components related to users’
knowledge and objects’ internal information are added. In the model, read of infor-
mation is assumed when a method returns any values, and write is assumed when
any values are passed as parameters to method invocations or object creations. One
can also rely on explicit declaration of methods in these two categories, read and
write, by object designers. To express properties related to information flow, the
verification model supports additional predicates. The predicate knows(subject,
object) signifies that the object content has passed to the subject. Similarly, the
predicate knows(subject,members(role, activity)) signifies that the subject knows
the identities of the members of the role in the activity.

This verification model is extended from the Task Model. As oppose to the Role

Model, which includes components representing role membership related operation
such as join and admit, the information flow model abstracts only possible mem-
bership in each role using global data structures.
Case Study — Verification of IF1: Knowing that users A and B are initial members of
the Student role, we express the information flow requirement IF'1, in Section 6.1.4,
as “user A of the examinee role cannot access the content of the exam paper before
start of his own exam session”. This requirement is expressed as below,

1O (knows (A, ExamPaper) && !event(ExamSession_start, A))

It is specified by negating the fact that eventually user A knows the content of the
EzamPaper without starting his ExamSession. Steps through which the original
specification was modified to comply with this requirement are discussed below.

Activity Examination Activity Course

Exam read /e \ Write Bulletin read User
Paper SetPaper \\D/AOOM()ard Board | AccessBoard A

Role Examiner Role Instructor Role Student

Fig. 15. Trace of a counter-example: Ezaminer leaked EzamPaper

e In our initial run, with the assignment of users A and B to Student, C to
Assistant, and D and E to Instructor and Approver, a counter-example was found,

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

as presented in Figure 15. In the trace, D being a member of the Ezaminer had
access to the FEzxamPaper. However, D also being a member of the Instructor
within the Course activity wrote the ExamPaper to the BulletinBoard. User A,
a member of the Examinee and the Student roles, accessed this content through the
BulletinBoard before starting his exam-session. That is the Instructor leaked the
EzamPaper to the examinees before the start of their exam-sessions. To encode
that such an act would not be performed by the Instructor, we provided this fact to
the model as a tuple 'write(Instructor, ExamPaper, BulletinBoard), which meant
that Instructor would not write ExamPaper content to the BulletinBoard.

Activity B's ExamSession Activity B's ExamSession Activity Course

Exam read @ write Answer read User write (Bulletin read User
Paper OpenExam _BJ Write Book Grade C JAccessBoard | B02rd | AccessBoard A
Role Candidate Role Candidate Role Checker Role Assistant Role Student

Fig. 16. Trace of a counter-example: Checker leaked FExamPaper

e In the second run, as shown in Figure 16, candidate B initiated his own FEz-
amSession and wrote the content of the EzamPaper to the AnswerBook. Checker
C, who had no direct access to the FEzamPaper, accessed it from B’s AnswerBook.
Checker C leaked this content through the BulletinBoard to examinee A, who had
not initiated his exam-session. A fact that Checker would not transfer AnswerBook
content to the BulletinBoard was provided to the model.

Activity B's ExamSession Activity Course
Exam read @ write [Bulletin | read _
Paper OpenExam Acc&esBoard Board | accessBoard

Role Candidate Role Student Role Student

Fig. 17. Trace of a counter-example: Candidate leaked ExamPaper

e The next verification run, as shown in Figure 17, found another counter-example
where candidate B was able to leak the content of the EzxamPaper through the
BulletinBoard before user A had started his own FEzamSession. To preserve this
property of information flow, the Student role’s privileges on the BulletinBoard
were revoked during the Ezamination activity. This was accomplished by adding a
dynamic access control constraint on the operations of the Student role accessing
the board.

Case Study — Verification of IF2: The confidentiality requirement [F2, with user
C being a member of the Assistant role, is expressed as below.

1O ('event (Grader_Grade_finish, C, esl) && member (A, Candidate, esl)
%& member (C, Checker, esl) && knows(C, members(Candidate, es1)))

The requirement is expressed as a negation of the error behavior, that is A4 is a
member of the Candidate role and C'is a member of the Checker role in the same
exam-session, and Candidate role member’s identity, i.e., A’s identity is known to
C before the Grade operation is finished by C. A counter example was found where
the candidate leaked his identity through the AnswerBook object, and the checker
was able to access the identity during grading. The fact that Candidate would not
perform such an action was provided to the model. Hence, IF2 was satisfied.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

27

28 . Tanvir Ahmed and Anand R. Tripathi

8.4 Verification Models with Trusted Owners

The primary goal in developing these models is to verify that security requirements
cannot be violated due to the extended privileges that are acquired by participants
in any owner roles. There are two kinds of models developed in this class: (1)
to verify information flow requirements the Information Flow Model is extended
with owner privileges on role membership information; (2) to verify access leakage
properties, the components for information flow are augmented with components
representing object access including unrestricted access by owners.

Case Study — Verification of IF1, IF2: In the next step, the information flow
properties IF1, IF2 were satisfied with the current owner assignments.

Case Study — Verification of ALI: The requirement ALI is related to access leakage
that the write privilege to the AnswerBook must be revoked when FEzamSession
terminates, which is expressed as:

1O (event (ExamSession_finish, A) && access(write,Answer_Book, A))

The requirement is specified by negating the fact that eventually there is a state
where A’s ExamSession activity has been terminated and A has write access to an
Answer_Book. This requirement was satisfied.

8.5 Verification with Untrusted Owners

The designer designates a subset of the roles that cannot be trusted for policy
enforcement. The basic problem in verification of a system with some untrusted
roles is to ensure that any specified or potential assignments of untrusted roles as
owners for some entities are safe, i.e. they would not result in violation of any
sensitive security requirements. Once the untrusted roles have been specified, the
next step is to find all the other roles that these untrusted participants would be
able to join. Among these roles, a subset may be owners of certain entities. Such
an entity is called potentially misbehaving as it can be owned by an untrusted par-
ticipant, who can potentially violate policies associated with it. When verified, if
this misbehaving entity violates a given security requirement, it is called a conse-
quently misbehaving entity. The goal of our verification process is to identify the
consequently misbehaving subset of the potentially misbehaving entities.

We model the following aspects of the potential misbehavior of an entity owned
by an untrusted owner:

1. Violation of role constraints: An untrusted owner of a role may not enforce the
role admission and validation constraints and it may admit any user into the role.
Additionally, for a role membership related query it may return invalid information.
These two behaviors are implemented by removing the role constraints for a role
thus resulting in admission of all possible participants in a role and generation of
all possible invalid query results.

2. Violation of operation preconditions: A misbehaving owner of a role may
not enforce the preconditions associated with the role operations, thus resulting in
violation of coordination and dynamic access control policies. It may thus influ-
ence other entities by manipulating the causal dependency of the policies under its
control. If a misbehaving owner is the notifier of coordination events (e.g. start
or finish), it is modeled either as falsely generating such events or omitting the
event notifications. These behaviors are implemented by removing operation pre-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

A

[] m
Adm2 (ﬁ{w ﬁﬁ
=N -
Assistant Instructor Student ~qyrse

ExamPaper ~ Examinee Examiner Grader ExaminationBulletinBoard

LEGEND S N <N
—= Owned By

. Initial role marked as untrusted O\ 77777 .
before Submit s _ < . after Submit

Fig. 18. Potentially misbehaving entities derived based on a trust assignment in Figure 12

conditions, and thus resulting in non-deterministic generation of operation related
events. For each subscriber of the operation event, an individual event variable
is maintained. These variables are updated in non-deterministic steps to model
omission of event notifications.

In verifying requirements with this model, the following steps are performed by
the designer:

Step 1: Identify the potentially misbehaving entities to be verified.

Step 2: Among the potentially misbehaving entities, an entity in the scope of the
inner most activity template is selected and modeled as misbehaving. As men-
tioned earlier, an entity misbehaves by either (1) violating role constraints or
(2) violating operation preconditions.

Step 3: If the presence of this misbehaving entity results in violation of a sensitive
security requirement, it is marked as consequently misbehaving entity. It is then
either assigned to be managed by a trusted role or the specification is modified
to ensure that such a requirement cannot be violated.

Step 4: If the requirement is not violated, this potentially misbehaving entity may
violate the requirement in conjunction with some other potentially misbehaving
entities. In this step, the next inner most potentially misbehaving entity is se-
lected and added to the model with the previous potentially misbehaving entity
or entities. Steps 2, 3, and 4 are repeated until all the potentially misbehaving
entities are selected or all the requirements are verified.

A misbehaving role may generate false coordination events by not enforcing its
operation preconditions. This can result in incorrect enabling the preconditions
of other role operations. Any such resulting violation of requirements can be pre-
vented by adding the precondition of the misbehaving operation as a part of the
preconditions for the affected operations. Any violation of requirements resulting
from omission of events cannot be corrected by adding additional preconditions. In
such cases, we require that the misbehaving entity be managed by a trusted role.

Case Study Verification with Untrusted Owner: In our case study example,
the designer designated members of the Adm2 and Student roles as untrusted for
enforcing policies. These untrusted role are shown by black circles in Figure 18. As

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

29

30 . Tanvir Ahmed and Anand R. Tripathi

members of the Student role can join the Ezaminee and Candidate roles, untrusted
users can become members of these roles. Based on the owner privileges assigned to
these roles, the potentially misbehaving entities were found to be Approver, Exam-
Session, Candidate, Checker, and AnswerBook. Among the entities, the Checker,
Candidate, and AnswerBook are defined in the inner most ExamSession activity.
We chose the Checker role as our first potentially misbehaving entity and found
that the requirement RC1! was violated as the role constraints for the Checker role
were not enforced. Next, the Candidate role was selected and the requirement RC2
was violated as the Candidate role, being misbehaving, admitted any user to the
role. Next, the AnswerBook was selected, and the sensitive requirement, ALI failed
as the Candidate’s access to the AnswerBook was not revoked by the misbehaving
AnswerBook object after the end of the exam-session.

Next, we assigned a trusted role Grader instead of Ezaminee as the owner of
the FramSession. Based on the owner rules, the Grader becomes the owner of
the nested Checker and Candidate roles. As owner assignments had changed, all
the security requirements were re-verified. With the Grader being the owner, the
requirement IF'2 that the Checker role must not know participants’ identities of
the Candidate role was violated as C in the Checker, being a member of the owner
Grader, had access to the Candidate role’s membership information. Finally, we as-
signed the FExaminer as the owner of the Candidate role to ensure that all properties
were satisfied.

9. CONCLUSIONS

The work presented in this paper has been driven by the goal of building a pro-
gramming framework for constructing secure distributed CSCW systems from their
high level specification. We have presented here a role based specification model to
express dynamic security and coordination requirements, including administrative
security requirements, in distributed CSCW systems. We have also developed a
methodology, based on finite-state model checking techniques, to verify the cor-
rectness and consistency of a design specification for a given set of security and
coordination requirements. Based on the different aspects of the requirements to
be verified, we have described development of five classes of models to address prob-
lems related to state space explosion and inter dependency of the requirements. An
important aspect of this methodology is to verify that the ownership privilege as-
signments in a design do not result in violation of any critical requirements, when
some of the roles cannot be trusted to correctly enforce any policy management
functions.

REFERENCES

AHMED, T. 2004. Policy-Based Design of Secure Distributed Collaboration Systems. Ph.D. thesis,
University of Minnesota. Available at http://www.cs.umn.edu/Ajanta/publications.html.

AnuMED, T. AND TripATHI, A. R. 2003. Static Verification of Security Requirements in Role
Based CSCW Systems. In Proceedings of 8th ACM Symposium on Access Control Models and
Technologies (SACMAT 2003). ACM, New York, 196-203.

AHN, G.-J. AND SANDHU, R. 2000. Role-based authorization constraints specification. ACM
Transactions on Information and System Security 3, 4 (November), 207 — 226.

ATLURI, V. AND HuaNGg, W.-K. 1996. An Authorization Model for Workflows. In Proceedings

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Specification and Verification of Security Requirements in Decentralized CSCW Systems

of the Fourth Furopean Symposium on Research in Computer Security. Springer-Verlag LNCS
Volume 1146, London, UK, 44-64.

Bacon, J., Moobpy, K., AND Yao, W. 2002. A Model of OASIS Role-Based Access Control and
its Support for Active Security. ACM Transactions on Information and System Security 5, 4
(November), 492 — 540.

BERTINO, E., BONATTI, P. A., AND FERRARI, E. 2001. TRBAC: A Temporal Role-Based Acces
Control Model. ACM Transactions on Information and System Security 4, 3 (August), 191 —
223.

BERTINO, E.; FERRARI, E.; AND ATLURI, V. 1999. The Specification and Enforcement of Autho-
rization Constraints in Workflow Management Systems. ACM Transactions on Information
and System Security 2, 1 (February), 65 — 104.

BHATTI, R., GHAFOOR, A., BERTINO, E., AND JosHI, J. 2005. X-GTRBAC: Am XML-Based
Policy Specification Framework and Architecture for Enterprise-Wide Access Acces Control.
ACM Transactions on Information and System Security 8, 2 (May), 187 — 227.

CAMPBELL, R. H. AND HABERMANN, A. N. 1974. The Specification of Process Synchronization
by Path Expressions. In Operating Systems, International Symposium, Rocquencourt. Lecture
Notes in Computer Science vol.16, Springer Verlag, London, UK.

Corts, M. AND MISHRA, P. 1996. DCWPL: a programming language for describing collaborative
work. In Proceedings of CSCW’96. ACM, New York, 21 — 29.

CRAMPTON, J. 2003. Specifying and Enforcing Constraints in Role-Based Access Control. In
Proceedings of 8th ACM Symposium on Access Control Models and Technologies (SACMAT
2003). ACM, New York, 43 — 50.

CRAMPTON, J. 2004. An Algebraic Approach to the Analysis of Constrained Workflow Systems.
In Proceedings of 3rd Workshop on Foundations of Computer Security. 61-74.

CRAMPTON, J. AND Loizou, G. 2003. Administrative Scope: A Foundation for Role-Based Ad-
ministrative Models. ACM Transactions on Information and System Security 6, 2 (May), 201

231.

DEMURIJIAN, S., TING, T., AND THURAISINGHAM, B. 1993. User-role based security for collaborative
computing environments. Multimedia Review 4, 2 (Summer), 40—47.

Esnuis, R. AND WIERINGA, R. 2002. Verification Support for Workflow Design with UML Activity
Graphs. In Proceedings of International Conference on Software Engineering. ACM, New York,
166 — 176.

Giurl, L. AND IGLiO, P. 1997. Role templates for content-based access control. In Proceedings of
the Second ACM Workshop on Role-Based Access Control. ACM, New York, 153 — 159.

GREIF, I. AND SARIN, S. 1987. Data sharing in group work. ACM Transactions on Information
Systems 5, 2, 187-211.

HANSEN, F. AND OLESHCHUK, V. A. 2005. Conformance Checking of RBAC Policy and its Imple-
mentation. In First Information Security Practice and Ezperience Conference (ISPEC 2005).
144-155.

Horzmann, G. J. 2003. SPIN Model Checker, The: Primer and Reference Manual. Addison
Wesley Professional, New York.

HuanG, W.-K. AND ATLURI, V. 1999. SecureFlow: A Secure Web-enabled Workflow Management
System. In ACM Workshop on Role-based Access Control. ACM, New York, 83 — 94.

JAEGER, T. AND TIDSWELL, J. E. 2001. Practical Safety in Flexible Access Control Models. ACM
Transactions on Information and System Security 4, 2 (May), 158 — 190.

JalopIA, S., SAMARATI, P., AND SUBRAHMANIAN, V. S. 1997. A Logical Language for Expressing
Authorizations. In IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
Los Alamitos, CA, 31 42.

JANSSEN, W.; MATEESCU, R., MAUW, S.;, AND SPRINGINTVELD, J. 1998. Verifying Business Pro-
cesses using Spin. In Proceedings of 4th International SPIN Workshop.

KocH, M., MaNcing, L. V., AND PARISI-PRESICCE, F. 2002. A graph-based formalism for RBAC.
ACM Transactions on Information and System Security 5, 3 (August), 332 — 365.

KoToNYA, G. AND SOMMERVILLE, 1. 1998. Requirements engineering: processes and techniques.
John-Wiley & Sons, Chichester,New York.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

31

32 . Tanvir Ahmed and Anand R. Tripathi

L1, D. AND MunNTZ, R. 1998. COCA: Collaborative Objects Coordination Architecture. In Pro-
ceedings of CSCW’98. ACM, New York, 179-188.

Li, N., MiTtcHELL, J. C., AND WINSBOROUGH, W. H. 2002. Design of a Role-based Trust-
management Framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, Los Alamitos, CA, 114-130.

L1, N., WINSBOROUGH, W. H.; AND MITCHELL, J. 2003. Beyond proof-of-compliance: Safety and
availability analysis in trust management. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, Los Alamitos, CA, 123-139.

Lupu, E. C. AND SLOMAN, M. 1997. Reconciling Role-Based Management and Role-Based Access
Control. In ACM Workshop on Role-based Access Control. ACM, New York, 135-141.

Magal, P. AND SisTo, R. 2002. Using SPIN to Verify Security Protocols. In Proceedings of 9th
Int. SPIN Workshop on Model Checking of Software, LNCS 2318. 187-204.

MYERS, A. C. AND Liskov, B. 2000. Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology 9, 4, 410-442.

NYANCHAMA, M. AND OSBORN, S. 1999. The Role Graph Model and Conflict of Interest. ACM
Transaction on Information System Security 2, 1 (February), 3-33.

OH, S. AND SANDHU, R. 2002. A Model for Role Administration Using Organization Structure.
In ACM Symposium on Access Control Models and Technologies. ACM, New York, 155 -162.

OSBORN, S. L. 2002. Information Flow Analysis of an RBAC System. In ACM Symposium on
Access Control Models and Technologies. ACM, New York, 163 — 168.

REITER, M. AND GONG, L. 1995. Securing Causal Relationships in Distributed Systems. The
Computer Journa 38, 8, 633—642.

RoBERTS, P. AND VERJUS, J.-P. 1977. Towards Autonomous Descriptions of Synchronization
Modules. In Proceedings of IFIP Congress. North-Holland, Amsterdam, 981 986.

SAMPEMANE, G., NALDURG, P., AND CAMPBELL, R. H. 2002. Access Control for Active Spaces.
In Proceedings of the 18th Annual Computer Security Applications Conference. 343-352.

SANDHU, R., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based ad-
ministration of roles. ACM Transactions on Information and System Security 2, 1 (February),
105 — 135.

SanpHU, R., CoynNE, E., FEINSTEIN, H., AND YOouMmAN, C. 1996. Role-Based Access Control
Models. IEEE Computer 29, 2 (February), 38 47.

SANDHU, R., FERRAIOLO, D., AND KUHN, R. 2000. The NIST model for role-based access control:
towards a unified standard. In Proceedings of the Fifth ACM Workshop on Role-based Access
Control. ACM, New York, 47-63.

SANDHU, R. S. 1988. Transaction control expressions for separation of duties. In Fourth Annual
Computer Security Application Conference. 282—286.

SIMON, R. AND ZURKO, M. 1997. Separation of duty in role-based environments. In 10th Computer
Security Foundations Workshop. IEEE Computer Society Press, Los Alamitos, CA, 183 194.

TuaomAs, R. K. 1997. Team-based Access Control (TMAC): A Primitive for Applying Role-based
Access Controls in Collaborative Environments. In ACM Workshop on Role-based Access
Control. ACM, New York, 13 — 19.

TripaTHI, A., AEMED, T., AND KuMAR, R. 2003. Specification of Secure Distributed Collabora-
tion Systems. In IEEE International Symposium on Autonomous Distributed Systems. IEEE
Computer Society Press, Los Alamitos, CA, 149-156.

TRIPATHI, A., AHMED, T., KUMAR, R., AND JAMAN, S. 2002. Design of a Policy-Driven Middleware
for Secure Distributed Collaboration. In Proceedings of International Conference on Distributed
Computing Systems 2002. IEEE Computer Society Press, Los Alamitos, CA, 393 — 400.

ZAKINTHINOS, A. AND LEE, E. 1997. A General Theory of Security Properties. In IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, Los Alamitos, CA, 94 —102.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

