
Scalable Transaction Management with
Snapshot Isolation for NoSQL Data

Storage Systems
Vinit Padhye and Anand Tripathi, Fellow, IEEE

Abstract—We address the problem of building scalable transaction management mechanisms for multi-row transactions on
key-value storage systems, which are commonly termed as NoSQL systems. We develop scalable techniques for transaction
management utilizing the snapshot isolation (SI) model. Because the SI model can lead to non-serializable transaction executions,
we investigate two conflict detection techniques for ensuring serializability. To support scalability, we investigate system
architectures and mechanisms in which the transaction management functions are decoupled from the storage system and
integrated with the application-level processes. We present two system architectures and demonstrate their scalability under the
scale-out model of cloud computing platforms. In the first system architecture all transaction management functions are executed
in a fully decentralized manner by the application processes. The second architecture is based on a hybrid approach in which
the conflict detection functions are performed by a dedicated service. We perform a comparative evaluation of these architectures
using the TPC-C benchmark and demonstrate their scalability.

Index Terms—Transaction management, scalable services, cloud data management systems

Ç

1 INTRODUCTION

THE cloud computing platforms enable building scalable
services through the scale-out model by utilizing the

elastic pool of computing resources provided by such
platforms. Typically, such services require scalable man-
agement of large volumes of data. It has been widely
recognized that the traditional database systems based on
the relational model and SQL do not scale well [1], [2]. The
NoSQL databases based on the key-value model such as
Bigtable [1] and HBase [3], have been shown to be scalable
in large scale applications. However, unlike traditional
relational databases, these systems typically do not provide
multi-row serializable transactions, or provide such trans-
actions with certain limitations. For example, HBase and
Bigtable provide only single-row transactions, whereas
systems such as Google Megastore [4] and G-store [5]
provide transactions only over a particular group of
entities. These two classes of systems, relational and
NoSQL based systems, represent two opposite points in
the scalability versus functionality space. For certain
applications, such as web search, email, and social
networking, such limited support for transactions in key-
value based storage models has been found to be adequate.
However, many applications such as online shopping
stores, online auction services, financial services, while
requiring high scalability and availability, still need certain

strong transactional consistency guarantees. For example,
an online shopping service may require ACID (atomicity,
consistency, isolation, and durability) [6] guarantees for
performing payment operations. Thus, providing ACID
transactions for NoSQL data storage system is an important
problem.

We present here scalable architecture models for
supporting multi-row serializable transactions for key-
value based NoSQL data storage systems. Our approach is
based on decentralized and decoupled transaction man-
agement where transaction management functions are
decoupled from the storage system and performed by the
application-level processes themselves, in decentralized
manner. Fig. 1 illustrates the seminal elements of this
approach. A service hosted in a cloud datacenter environ-
ment is accessed by clients over the Internet. The service
creates application level processes for performing service
functions. These processes belong to the trusted domain of
the deployed service. The application-specific data of the
service is stored in a key-value based storage system in the
datacenter. In our approach, all transaction management
functionsVsuch as concurrency control, conflict detection
and atomically committing the transaction updatesVare
performed by the application processes themselves in
decentralized manner. These functions are provided to
the application in the form of library functions. The
metadata necessary for transaction management is stored
in the underlying key-value based storage.

In realizing the transaction management model de-
scribed above, the following issues need to be addressed.
These issues are related to the correctness and robustness
of the decentralized transaction management protocol. In
our approach, the commit protocol is performed in various
steps by individual application processes, and the entire

. The authors are with the Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455 USA.

Manuscript received 19 June 2013; revised 31 Aug. 2013; accepted 11 Sept.
2013. Date of publication 30 Sept. 2013; date of current version 6 Feb. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2013.47

1939-1374 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015 121

sequence of steps is not performed as a single atomic
action. Not performing all steps of the commit protocol as
one atomic action raises a number of issues. The transaction
management protocol should ensure the transactional
consistency when multiple processes execute the protocol
steps concurrently. Any of these steps may get interrupted
due to process crashes or delayed due to slow execution. To
address this problem, the transaction management proto-
col should support a model of cooperative recovery; any
process should be able to complete any partially executed
sequence of commit/abort actions on behalf of another
process that is suspected to be failed. Any number of
processes may initiate the recovery of a failed transaction,
and such concurrent recovery actions should not cause any
inconsistencies.

Based on the decoupled and decentralized transaction
management model, we develop two system architectures
and demonstrate their scalability using the TPC-C bench-
mark [7]. The first architecture is fully decentralized, in
which all the transaction management functions are
performed in decentralized manner. The second architec-
ture is a hybrid model in which only the conflict detection
functions are performed using a dedicated service and all
other transaction management functions are performed in
decentralized manner. We refer to this as service-based
architecture. In developing these architectures we utilize the
snapshot isolation (SI) [8] model. The SI model is attractive
for scalability, as noted in [8], since transactions read from a
snapshot, the reads are never blocked due to write locks,
thereby providing more concurrency. However, the snap-
shot isolation model does not guarantee serializability [8],
[9]. Our work addresses this issue and develops techniques
for ensuring serializability of SI-based transactions for
NoSQL data storage systems.

Various approaches [10], [11], [12] have been proposed
in the past, in the context of relational database manage-
ment systems (RDBMS), to ensure transaction serializabil-
ity under the SI model. Some of these approaches [10], [11]
are preventive in nature as they prevent potential conflict

dependency cycles by aborting certain transactions, but they
may abort transactions that may not necessarily lead to
serialization anomalies. On the other hand, the approach
presented in [12] detects dependency cycles and aborts
only the transactions necessary to eliminate a cycle.
However this approach requires tracking of conflict
dependencies among all transactions and checking for
dependency cycles, and hence it can be expensive. We
present here results of our investigation of these ap-
proaches in the context of key-value based NoSQL data
storage systems.

The major contributions of our work are the following.
We present and evaluate two system architectures for
providing multi-row transactions using snapshot isolation
(SI) on NoSQL databases. Furthermore, we extend the SI
based transaction model to support serializable transac-
tions. We demonstrate the scalability of our approach using
the TPC-C benchmark. Our work demonstrates that
transaction serializability guarantees can be supported in
a scalable manner on key-value based storage systems.
Using the transaction management techniques presented
here, the utility of key-value based cloud data management
systems can be extended to applications requiring strong
transactional consistency.

The rest of the paper is organized as follows. In the next
section we discuss the related work to present the context
and significance of our contributions. In Section 3, we
provide an overview of the snapshot isolation model.
Section 4 presents the framework that we have developed
for transaction management and highlight the various
design issues in this framework. Section 5 presents our
decentralized design for supporting the basic SI based
transactions. In Section 6, we discuss how the basic SI model
is extended to provide serializability. Section 7 discusses
the service-based architecture. Section 8 presents the
evaluations of the scalability of the proposed techniques.
Section 9 evaluates the performance of the cooperative
recovery mechanisms. The conclusions are presented in the
last section.

Fig. 1. Decentralized and decoupled transaction management model.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015122

2 RELATED WORK

In recent years, researchers have recognized the scalability
limitations of relational databases, and to address the
scalability and availability requirements, various systems
based on the key-value data model have been developed
[1], [13], [14], [4]. Systems such as SimpleDB [14] and
Cassandra [15] provide weak consistency. Bigtable [1] and
its open-source counterpart HBase [3] provide strong data
consistency but provide only single-row transactions.
Other systems provide transactions over multiple rows
with certain constraints. For example, Megastore [4], and
G-store [5] provide transactions over a group of entities. In
ElasTraS [16] and VoltDB [17] ACID transactions are
supported only over a single partition. Sinfonia [18] and
Granola [19] systems provide restricted forms of storage
level multi-item transactions. The Calvin system [20]
supports ACID transactions by using deterministic order-
ing of transactions, but this approach requires prior
knowledge of a transaction’s read/write sets and it is
mainly aimed for in-memory databases. CloudTPS [21]
provides a design based on a replicated transaction
management layer which provides ACID transactions
over multiple partitions. An approach based on decoupling
transaction management from data storage using a central
transaction component is proposed in [22]. In contrast to
these approaches, our design presents a decentralized
transaction management protocol, wherein the transaction
management functions are performed by the application
process itself.

Other researchers have proposed techniques for pro-
viding multi-row snapshot isolation transactions [23], [24].
The Percolator system [23] addresses the problem of
providing SI-based transaction for Bigtable [1]. However,
it does not address the problem of ensuring serializability
of transactions. Moreover, it is intended for offline
processing of data. The work presented in [24] does not
adequately address issues related to recovery and robust-
ness when some transaction fails.

The problem of transaction serializability in snapshot-
isolation model has been extensively studied [9], [10], [11],
[12], [25]. The work in [9] characterizes the conditions
necessary for non-serializable transaction executions in the
SI model. Based on this theory, many approaches have
been suggested to avoid serialization anomalies in SI.
These approaches include static analysis of programs [26]
as well as runtime detection of anomalies [10], [11], [12],
[25]. Technique presented in [10], [11], [25] tend to be
pessimistic and can lead to unnecessary aborts. PSSI

approach [12] avoids such problems and aborts only the
transactions that lead to serialization anomalies. However,
these approaches were developed in the context of
traditional relational databases and, except in the case of
[25], provided solutions only for centralized databases.

3 BACKGROUND: SNAPSHOT ISOLATION MODEL
AND SERIALIZABILITY ISSUES

Snapshot isolation (SI) based transaction execution model
is a multi-version based approach utilizing optimistic
concurrency control [27]. In this model, when a transaction
Ti commits, it is assigned a commit timestamp TSic, which is
a monotonically increasing sequence number. The commit
timestamps of transactions represent the logical order of
their commit points. For each data item modified by a
committed transaction, a new version is created with the
timestamp value equal to the commit timestamp of the
transaction.

When a transaction Ti’s execution starts, it obtains the
timestamp of the most recently committed transaction. This
represents the snapshot timestampTSis of the transaction. A
read operation by the transaction returns the most recent
committed version up to this snapshot timestamp, there-
fore, a transaction never gets blocked due to any write
locks.

A transaction Ti commits only if there exists no
committed transaction concurrent with Ti which has
modified any of the items in Ti’s write-set. That means
there exists no committed transaction Tj such that
TSis G TS

j
c G TS

i
c and Tj has modified any of the items in

Ti’s write-set. Thus, if two or more concurrent transactions
have a write-write conflict, then only one of them is
allowed to commit. It is possible that a data item in the
read-set of a transaction is modified by another concurrent
transaction, and both are able to commit. An anti-
dependency [28] between two concurrent transactions Ti
and Tj is a read-write (rw) dependency, denoted by Ti !

rw
Tj,

implying that some item in the read-set of Ti is modified by
Tj. This dependency can be considered as an incoming
dependency for Tj and an outgoing dependency for Ti. This
is the only kind of dependency that can arise in the SI
model between two concurrent transactions. There are
other kinds of dependencies, namely write-read (wr) and
write-write (ww), that can exist between two non-concurrent
transactions.

Fekete et al. [9] have shown that a non-serializable
execution must always involve a cycle in which there are
two consecutive anti-dependency edges of the form
Ti !

rw
Tj !

rw
Tk. In such situations, there exists a pivot

transaction [9] with both incoming and outgoing anti-
dependencies. Fig. 2 shows an example of a pivot
transaction. In this example, T2 is the pivot transaction. In
the context of traditional RDBMS, several techniques [10],
[11], [12], [25] have been developed utilizing this fact to
ensure serializability. We investigated the following two
approaches for implementing serializable transactions on
key-value based storage systems.

. Cycle Prevention Approach: When two concurrent
transactions Ti and Tj have an anti-dependency, one

Fig. 2. Pivot transaction.

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 123

of them is aborted. This ensures that there can never
be a pivot transaction, thus guaranteeing serial-
izability. In the context of RDBMS, this approach
was investigated in [10].

. Cycle Detection Approach: A transaction is aborted
only when a dependency cycle is detected involving
that transaction during its commit protocol. This
approach is conceptually similar to the technique
[12] investigated in the context of RDBMS.

The conflict dependency checks in the above two ap-
proaches are performed in addition to the check for write-
write conflicts required for the basic SI model. We
implemented and evaluated the above approaches in
both the fully decentralized model and the service-based
model. The cycle prevention approach can sometimes abort
transactions that may not lead to serialization anomalies.
The cycle detection approach aborts only the transactions
that can cause serialization anomalies but it requires
tracking of all dependencies for every transaction and
maintaining a dependency graph to check for cycles.

4 A FRAMEWORK FOR DECENTRALIZED
TRANSACTION MANAGEMENT

We present here a framework for decentralized transaction
management using snapshot isolation in key-value based
data storage systems. Implementing SI based transactions
requires mechanisms for performing the following actions:

1. reading from a consistent committed snapshot;
2. allocating commit timestamps using a global se-

quencer for ordering of transactions;
3. detecting write-write conflicts among concurrent

transactions; and
4. committing the updates atomically and making

them durable. Additionally, to ensure serializability
we also need to detect or prevent serialization
anomalies as discussed above.

In our approach of decoupled and decentralized trans-
action management, the transaction management functions
described above are decoupled from the data storage
systems and performed by the application processes
themselves in decentralized manner. The transaction
management metadata required for performing these
functions is also stored in the key-value storage system.
This is to ensure the reliability of this metadata and
scalability of transaction management functions which
require concurrent access to this metadata.

A transaction execution goes through a series of phases
as shown in Fig. 3. In the active phase, it performs read/

write operations on data items. The subsequent phases are
part of the commit protocol of the transaction. For
scalability, our goal is to design the commit protocol such
that it can be executed in highly concurrent manner by the
application processes. We also want to ensure that after the
commit timestamp is issued to a transaction, the time
required for commit be bounded, since a long commit
phase of the transaction can potentially block the progress
of other conflicting transactions with higher timestamps.
Thus, our goal is to perform as many commit protocol
phases as possible before acquiring the commit timestamp.
We discuss below the various issues that arise in utilizing
this approach.

4.1 Timestamps Management
In the decentralized model the steps in the commit protocol
are executed concurrently by the application processes.
Because these steps cannot be performed as a single atomic
action, a number of design issues arise as discussed below.
There can be situations where several transactions have
acquired commit timestamps but their commitment status
is not yet known. We also need to make sure that even if a
transaction has made its update to the storage system, these
updates should not be made visible to other transactions
until the transaction is committed. Therefore, we need to
maintain two timestamp counters: GTS (global timestamp)
which is the latest commit timestamp assigned to a
transaction, and STS (stable timestamp), which is the
largest timestamp such that all transactions with commit
timestamp up to this value are either committed or aborted
and all the updates of the committed transactions are
written to the global storage. An example shown in Fig. 4
illustrates the notion of GTS and STS. In this example, STS
is advanced only up to sequence number 16 because the
commit status of all the transactions up to sequence
number 16 is known, however, the commit status of the
transaction with sequence number 17 is not yet known.
When a new transaction is started, it uses the current STS
value as its snapshot timestamp. We first experimented
with using the key-value storage itself to store these
counter values. However, we found this approach to be
slow, and therefore we use a dedicated service which we
refer to as TimestampService for maintaining these counter
values.

4.2 Eager vs Lazy Update Model
An important design issue that arises is when should a
transaction write its updates to the global key-value
storage. We find two distinct approaches with different
performance tradeoffs as discussed below. We characterize
them as eager and lazy update models. In the eager update
model, a transaction writes its updates to the global
storage during its active phase, before acquiring its commit

Fig. 3. Transaction protocol phases.
Fig. 4. STS and GTS counters.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015124

timestamp, whereas in the lazy approach all writes are
performed after acquiring the commit timestamp.

In the lazy update approach, the time for executing the
commit protocol can become arbitrarily long depending on
the size of the data-items to be written. A long commit
phase of a transaction would potentially delay the commit
decisions of other concurrent and conflicting transactions
that have higher commit timestamps. This may affect
transaction throughput and system scalability, but it has
the advantage that the writes are performed only when the
transaction is certain to commit.

In the eager update approach the data is written to the
global storage during the active phase, i.e. prior to the
commit protocol execution, thereby reducing the execution
time for the commit protocol. Also, the transactions can
perform their writes overlapped with computation during
the active phase. The eager update scheme is attractive
because its commit protocol execution time does not
significantly depend on the size of the write-set of the
transaction. Also, it facilitates the roll-forward of a
transaction that fails during its commit, since its updates
would be already present in the key-value datastore. Due
to these advantages we choose to adopt the eager update
model instead of the lazy update model.

Implementing the eager update model requires main-
taining uncommitted data versions in the storage. For such
data versions, we cannot use the transaction’s commit
timestamp as the version number because it is not known
during the active phase. Therefore, in the commit protocol
these data versions need to be mapped to the transaction’s
commit timestamp. Moreover, ensuring the isolation
property requires that such uncommitted versions should
not be visible until the transaction commits.

4.3 Transaction Validation
The SI model requires checking for write-write conflicts
among concurrent transactions. This requires a mechanism
to detect such conflicts and a method to resolve conflicts by
allowing only one of the conflicting transactions to commit.
When two or more concurrent transactions conflict, there
are two approaches to decide which transaction should be
allowed to commit. The first approach is called first-
committer-wins (FCW)[27], in which the transaction with the
smallest commit timestamp is allowed to commit. In this
approach, conflict checking can only be performed by a
transaction after acquiring its commit timestamp. This
enforces a sequential ordering on conflict checking based
on the commit timestamps. This would force a younger
transaction to wait for the progress of all the older
transactions, thereby limiting concurrency. In contrast, in
the second approach, which is called first-updater-wins
(FUW) [9], conflict detection is performed by acquiring
locks on write-set items and in case of conflicting
transactions the one that acquires the locks first is allowed
to commit. The FUW approach appears more desirable
because the conflict detection and resolution can be
performed before acquiring the commit timestamp, there-
by reducing any sequential ordering based on commit
timestamps and reducing the time required for executing
the commit protocol. Therefore, we chose to adopt the FUW
approach for conflict detection.

4.4 Cooperative Recovery
There are two problems that arise due to transaction
failures. A failed transaction can block progress of other
conflicting transactions. A failure of a transaction after
acquiring commit timestamp stalls advancement of the STS
counter, thereby forcing the new transactions to use old
snapshot time, which may likely result in greater aborts
due to write-write conflicts. Thus, an appropriate timeout
mechanism is needed to detect stalled or failed transactions
and initiate their recovery. The cooperative recovery
actions for a failed transaction are triggered in two
situations: 1) a conflicting transaction is waiting for the
commit of a failed transaction, and 2) the STS advancement
has stalled due to a failed transaction that has acquired a
commit timestamp. The recovery actions in the first
situation are performed by any of the conflicting transac-
tions, whereas the failures of the second kind are detected
and recovery actions are performed by any application
level process or by a dedicated system level process. If a
transaction fails before acquiring a commit timestamp, then
it is aborted, otherwise the transaction is committed and
rolled-forward to complete its commit protocol.

5 IMPLEMENTATION OF THE BASIC SI MODEL

We first describe the metadata that needs to be maintained
in the global storage for transaction management. We then
describe the various steps in transaction management
protocol performed by the application processes. We also
describe the cooperative recovery protocol for dealing with
transaction failures.

5.1 Storage System Requirements
We first identify the features of the key-value data storage
system that are required for realizing the transaction
management mechanisms presented here. The storage
system should provide support for tables and multiple
columns per data item (row), and primitives for managing
multiple versions of data items with application-defined
timestamps. It should provide strong consistency for
updates [29], i.e., when a data item is updated, any
subsequent reads should see the updated value. Moreover,
for the decentralized architecture, we require mechanisms
for performing row-level transactions involving any num-
ber of columns. Our implementation is based on HBase [3],
which meets these requirements.

5.2 Transaction Data Management Model
For each transaction, we maintain in the global storage the
following information: transaction-id ðtidÞ, snapshot time-
stamp ðTSsÞ, commit timestamps TSc, write-set informa-
tion, and current status. This information is maintained in a
table named TransactionTable in the global storage, as
shown in Fig. 5. In this table, tid is the row-key of the table
and other items are maintained as columns. The column
‘out-edges’ is used to record information related to
outgoing dependency edges, which is required only in
the cycle detection approach. To ensure that the Transac-
tionTable does not become the bottleneck, we set the table
configuration to partition it across all the HBase servers.
The data distribution scheme for HBase is based on

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 125

sequential range partitioning. Therefore, if we generate
transaction ids sequentially it creates a load balancing
problem since all the rows in TransactionTable
corresponding the currently running transactions will be
stored only at one or few HBase servers. Therefore, to avoid
this problem we generate transaction ids randomly.

For each application data table, hereby referred as
StorageTable, we maintain the information related to the
committed versions of application data items and lock
information, as shown in Fig. 6. An application may have
multiple such storage tables. Since we adopt the eager
update model, uncommitted versions of data items also
need to be maintained in the global storage. A transaction
writes a new version of a data item with its tid as the
version timestamp. These version timestamps then need to
be mapped to the transaction commit timestamp TSc when
transaction commits. This mapping is stored by writing tid
in a column named committed-version with version time-
stamp as TSc. The column ‘wlock’ in the StorageTable is
used to detect write-write conflicts, whereas columns
‘rlock,’ ‘read-ts,’ and ‘readers’ are used in detecting read-
write conflicts for serializability, as discussed in the next
section.

5.3 Transaction Management Protocol for Basic
SI Model

A transaction Ti begins with the execution of the start
phase protocol shown in Algorithm 1. It obtains its
transaction-id ðtidÞ and snapshot timestamp ðTSsÞ from
TimestampService. It then inserts in the TransactionTable an
entry: htid; TSs; status ¼ activei and proceeds to the active
phase. For a write operation on an item (specified by row
and column keys), following the eager update model, the
transaction creates a new version in the StorageTable using
tid as the version timestamp. The transaction also main-
tains its own writes in a local buffer to support read-your-

own-writes consistency. A read operation for the data items
not contained in the write-set is performed by first
obtaining, for that data item, the latest version of the
committed-version column in the range ½0; TSs�. This gives
the tid of the transaction that wrote the latest version of the
data item according to the transaction’s snapshot. The
transaction then reads data specific columns using this tid
as the version timestamp.

Algorithm 1 Execution Phase for transaction Ti:

Start Phase:
1: tidi get a unique tid from TimestampService
2: TSis get current STS value from TimestampService
3: insert tid, TSis information in TransactionTable.

Active Phase:
Read item:/� item is a row-key �/

1: tidR read value of the latest version in the range
½0; TSis�) of the ‘‘committed version’’ column for item

2: read item data with version tidR
3: add item to the read-set of Ti

Write item:
1: write item to StorageTable with version timestamp ¼ tidi
2: add item to the write-set of Ti

A transaction executes the commit protocol as shown in
Algorithm 2. At the start of each phase in the commit
protocol it updates its status in the TransactionTable to
indicate its progress. All status change operations are
performed atomically and conditionally, i.e., permitting
only the state transitions shown in Fig. 3. The transaction
first updates its status in the TransactionTable to validation
and records its write-set information, i.e. only the item-
identifiers (row keys) for items in its write-set. This
information is recorded for facilitating the roll-forward of
a failed transaction during its recovery. The transaction
performs conflict checking by attempting to acquire write
locks on items in its write-set as described below. If a
committed newer version of the data item is already
present, then it aborts immediately. If some transaction Tj
has already acquired a write lock on the item, then Ti aborts
if tidj G tidi, else it waits for Tj to either commit or abort.
This wait/die scheme is used to avoid deadlocks and
livelocks. The conflict checking operations for a single
item, shown by lines 7-12 in the algorithm, are performed
as a single atomic action using the row level transaction

Fig. 6. StorageTable structure.

Fig. 5. TransactionTable structure.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015126

feature provided by HBase. On acquiring all locks, the
transaction proceeds to the commit-incomplete phase.

Algorithm 2 Commit protocol executed by transaction Ti
for Basic SI model.

Validation phase:
1: if status ¼ active then
2: status validation
3: end if
4: insert write-set information in TransactionTable
5: for all item 2 write-set of Ti do
6: [begin row level transaction:
7: if any committed newer version for item is created

then abort
8: if item is locked then
9: if lock-holder’s tid G tidi, then abort else wait

10: else
11: acquire lock on item by writing tidi in lock column
12: end if
13: :end row level transaction]
14: end for

Commit-Incomplete phase:
1: if status ¼ validation then
2: status commit-incomplete
3: else abort
4: TSic get commit timestamp from TimestampService
5: for all item 2 write-set of Ti do
6: insert TSic ! tidi mapping in the StorageTable and

release lock on item
7: end for
8: status commit-complete
9: notify completion and provide TSic to TimestampService

to advance STS
Abort phase:

1: for all item2 write-set of Ti do
2: if Ti has acquired lock on item, then release the lock.
3: delete the temporary version created for item by Ti
4: end for

Once Ti updates its status to commit-incomplete, any
failure after that point would result in its roll-forward. The
transaction now inserts the ts! tid mappings in the
committed-version column in the StorageTable for the items
in its write-set and changes its status to commit-complete. At
this point the transaction is committed. It then notifies its
completion to TimestampService and provides its commit
timestamp TSic to advance the STS counter. The updates
made by Ti become visible to any subsequent transaction,
after the STS counter is advanced up to TSic. If the
transaction is aborted, then it releases all the acquired
locks and deletes the versions it has created.

5.4 Cooperative Recovery Protocol
When a transaction Ti is waiting for the resolution of the
commit status of some other transaction Tj, it periodically
checks Tj’s progress. If the status of Tj is not changed
within a specific timeout value, Ti suspects Tj has failed. If
Tj has reached commit-incomplete phase, then Ti performs
roll-forward of Tj by completing the commit-incomplete
phase of Tj using the write-set information recorded by Tj.

Otherwise, Ti marks Tj as aborted, acquires the conflicting
lock, and proceeds further with the next step in its own
commit protocol. In this case, the cleanup actions, such as
releasing other locks held by the aborted transaction and
deletion of temporary versions created by the transactions,
can be performed lazily if if does not block any other
transaction. The cooperative recovery actions are also
triggered when the STS counter cannot be advanced
because of a gap created due to a failed transaction. In
this case, the recovery is triggered if the gap between STS
and GTS exceeds beyond some limit. These recovery
actions are triggered by the TimestampService itself based
on the gap between STS and GTS.

In the above mechanism, setting the proper timeout
value is crucial. Setting a high timeout value will cause
delays in detecting failures and thus potentially blocking
conflicting transactions for a long time. When a transaction
fails after acquiring commit timestamp, its timely recovery
is crucial since it can block the advancement of STS. On the
other hand, setting a low timeout value is also not
desirable, since it can cause aborts of transactions that
have not actually failed. We refer to these as false aborts. The
appropriate timeout value depends on the average time
taken by a transaction to complete its commit protocol. In
Section 9, we present detailed evaluation of this aspect.

6 DECENTRALIZED MODEL FOR SERIALIZABLE
SI TRANSACTIONS

We now describe how the decentralized model for the basic
snapshot isolation is extended to support serializable
transaction execution using the cycle prevention and cycle
detection approaches discussed in Section 3.

6.1 Implementation of the Cycle
Prevention Approach

The cycle prevention approach aborts a transaction when
an anti-dependency among two concurrent transactions is
observed. This prevents a transaction from becoming a
pivot. One way of doing this is to record for each item
version the tids of the transactions that read that version
and track the read-write dependencies. However, this can be
expensive as we need to maintain a list of tids per item and
detect anti-dependencies for all such transactions. To avoid
this, we detect the read-write conflicts using a locking
approach. During the validation phase, a transaction
acquires a read lock for each item in its read-set. Read locks
on an item are acquired in shared mode. A transaction
acquires (releases) a read lock by incrementing (decrement-
ing) the value in a column named rlock in the StorageTable.

The commit protocol algorithm for the cycle-prevention
approach is presented in Algorithm 3. An anti-dependency
between two concurrent transactions can be detected either
by the writer transaction or the reader transaction. We first
describe how a writer transaction can detect a read-write
conflict with any other concurrent reader transaction.
During the validation phase, a writer transaction checks
for the presence of a read lock for an item in its write-set at
the time of attempting to acquire a write lock on that item.
The transaction is aborted if the item is already read locked.
Note that we need to detect read-write conflicts only among

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 127

concurrent transactions to detect anti-dependencies. This
raises an issue that a concurrent writer may miss detecting
a read-write conflict if it attempts to acquire a write lock
after the conflicting reader transaction has committed and
its read lock has been released. To avoid this problem, a
reader transaction records its commit timestamp, in a
column named ‘read-ts’ in the StorageTable, while releasing
a read lock acquired on an item. A writer checks whether
the timestamp value written in the ‘read-ts’ column is
greater than its snapshot timestamp, which indicates that
the writer is concurrent with a committed reader transac-
tion. A reader transaction checks for the presence of a write
lock or a newer committed version for an item in its read-
set to detect read-write conflicts. Otherwise, it acquires a
read lock on the item.

Algorithm 3 Commit protocol for cycle prevention approach.

Validation phase:
1: for all item 2 write-set of Ti do
2: [begin row-level transaction:
3: read the ‘committed version,’ ‘wlock,’ ‘rlock,’ and

‘read-ts’ columns for item
4: if any committed newer version is present, then abort
5: else if item is already locked in read or write mode,

then abort
6: else if ‘read-ts’ value is greater than TSis, then abort.
7: else acquire write lock on item
8: :end row-level transaction]
9: end for

10: for all item 2 read-set of Ti do
11: [begin row-level transaction:
12: read the ‘committed version’ and ‘wlock’ columns for

item
13: if any committed newer version is created, then abort
14: if item is already locked in write mode, then abort.
15: else acquire read lock by incrementing ‘rlock’ column

for item.
16: :end row-level transaction]
17: end for
18: execute commit-incomplete phase shown in Algorithm 2
19: for all item 2 read-set of Ti do
20: [begin row-level transaction:
21: release read lock on item by decrementing ‘rlock’

column
22: if read-ts G TSic then
23: read-ts TSic
24: end if
25: :end row-level transaction]
26: end for
27: status commit-complete
28: notify completion and provide TSic to TimestampService

to advance STS

During the commit-incomplete phase, Ti releases the
acquired read locks and records its commit timestamps in
the ‘read-ts’ column for the items in its read-set. Since there
can be more than one reader transactions for a particular
data item version, it is possible that some transaction has
already recorded a value in the ‘read-ts’ column. In this

case, Ti updates the currently recorded value only if it is
less than TSic. The rationale behind the logic for updating
the ‘read-ts’ value is as follows. For committed transactions
T1; T2; . . . ; Tn that have read a particular data item version,
the ‘read-ts’ column value for that item version would
contain the commit timestamp of transaction Tk ðk � nÞ,
such that Tk is the transaction with the largest commit
timestamp in this set of transactions. An uncommitted
writer transaction Tj that is concurrent with any transaction
in the set T1; T2; . . . ; Tn must also be concurrent with Tk i.e.,
TSjs G TS

k
c , since Tk has the largest commit timestamp. Thus

Tj will detect the read-write conflict by observing that the
‘read-ts’ value is larger than its snapshot timestamp.

6.2 Implementation of the Cycle
Detection Approach

The cycle detection approach requires tracking all depen-
dencies among transactions, i.e., anti-dependencies (both
incoming and outgoing) among concurrent transactions,
and write-read and write-write dependencies among non-
concurrent transactions. We maintain this information in
the form of a dependency serialization graph (DSG) [9], in the
global storage. Since an active transaction may form depen-
dencies with a certain committed transaction, we need to
retain information about such transactions in the DSG.

A challenge in this approach is to maintain the
dependency graph as small as possible by frequently
pruning to remove those committed transactions that can
never lead to any cycle in the future. For detecting
dependencies, we record in StorageTable (in a column
named ‘readers’), for each version of an item, a list of
transaction-ids that have read that item version. Moreover,
for each transaction Ti, we maintain its outgoing depen-
dency edges as the list of tids of the transactions for which
Ti has an outgoing dependency edge. This information
captures the DSG structure.

In the transaction protocol, we include an additional
phase called DSGupdate, which is performed before the
validation phase. In the DSGupdate phase, along with the
basic write-write conflict check using the locking technique
discussed in Section 5, a transaction also detects depen-
dencies with other transactions based on its read-write sets.
If a transaction Ti has outgoing dependency of any kind
with transaction Tj, it records Tj’s transaction-id in the ‘out-
edges’ column in its TransactionTable entry. In the
validation phase, the transaction checks for a dependency
cycle involving itself, by traversing the outgoing edges
starting from itself. If a cycle is detected, then the
transaction aborts itself to break the cycle.

7 SERVICE-BASED MODEL

We observed that the decentralized approach induces
performance overheads due to the additional read and
write requests to the global storage for acquiring and
releasing locks. Therefore, we evaluated an alternative
approach of using a dedicated service for conflict detection.
In the service-based approach, the conflict detection service
maintains in its primary memory the information required
for conflict detection. A transaction in its commit phase sends
its read/write sets information and snapshot timestamp

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015128

value to the conflict detection service. We designed this
service to support conflict detection for the basic-SI model
and the cycle prevention/detection approaches for serial-
izable transaction. Based on the particular conflict detection
approach, the service checks if the requesting transaction
conflicts with any previously committed transaction or not. If
no conflict is found, the service obtains a commit timestamp
for the transaction and sends a ‘commit’ response to the
transaction process along with the commit timestamp,
otherwise it sends ‘abort’. Before sending the response, the
service updates the transaction’s commit status in the
TransactionTable in the global storage.

The transaction commit phase executed using this
approach is presented below in Algorithm 4. Note that
this dedicated service is used only for the purpose of
conflict detection and not for the entire transaction
management, as done in [21], [22]. The other transaction
management functions, such as getting the appropriate
snapshot, maintaining uncommitted versions, and ensur-
ing the atomicity and durability of updates when a
transaction commits are performed by the application level
processes. For scalability and availability, we designed this
service as a replicated service as described below.

Algorithm 4 Commit algorithm executed by Ti in Service-
Based approach.

1: update status to Validation in TransactionTable provided
status ¼ Active

2: insert write-set information in TransactionTable
3: send request to conflict detection service with write-set

information and TSis
4: if response ¼ commit then
5: TSic commit timestamp returned by the service
6: execute CommitIncomplete phase as in Algorithm 2

except for step 2
7: else
8: execute Abort phase as in Algorithm 2
9: end if

7.1 Replicated Service Design
The conflict detection service is implemented as a group of
processes. The data item space is partitioned across the
replicas using a hashing based partitioning scheme. Thus, a
service replica is responsible for detecting conflicts for a set
of data items. A service replica stores, for each data item it is
responsible for, the information necessary to detect conflicts
for that data item. For conflict detection, each replica
maintains an in-memory table called as ConflictTable, which
contains following information for each data item:

1. commit timestamp of the latest committed transac-
tion that has modified the item (write-ts),

2. commit timestamp of the latest committed transac-
tion that has read the item (read-ts),

3. lock-mode (read-mode, write-mode, or unlocked),
and

4. writer-tid (in case of write lock) and list of reader-
tids (in case of read lock).

The validation for a transaction is performed by
replica(s) responsible for the data items in the transaction’s
read/write sets. When a transaction’s read/write sets span
across more than one replica, the validation is performed
by coordinating with other replicas, as described below. A
client, i.e., the application process executing a transaction,
contacts any of the service replicas to validate the
transaction by providing its read-write set and snapshot
timestamp information. The contacted service replica then
acts as the coordinator in executing the protocol for
transaction validation. The coordinator determines the
replicas, called participants, that are responsible for the data
items in the transaction’s read/write sets. It is possible that
the coordinator itself is one of the participants. It then
performs a two-phase coordination protocol with the
participants, as described below.

In the first phase, the coordinator sends acquire-locks
request to all the participants. Each participant then checks
read-write and write-write conflicts for the items it is
responsible for in the following way. For a write-set item,
if the write-ts value is greater than the transaction’s
snapshot timestamp then it indicates a write-write conflict.
Similarly, if the read-ts value is greater than the snapshot
timestamp then it indicates a read-write conflict. For a read-
set item, there is a read-write conflict if the write-ts value is
greater than transaction’s snapshot timestamp. If any
conflict is found, the participant sends ‘failed’ response to
the coordinator. If there are no conflicts, then an attempt is
made to acquire read/write locks on the items. We use a
deadlock-prevention scheme very similar to the one used
in [30]. If the participant acquires all the locks, it sends a
‘success’ response to the coordinator.

In the second phase, if the coordinator has received a
‘success’ response from all the participants, then the
transaction is committed, otherwise it is aborted. The status
of the transaction is updated in the TransactionTable. In case of
transaction commit the coordinator obtains a commit time-
stamp from the TimestampService and sends a ‘commit’
message to all participants along with the commit timestamp.
Each participant then updates the write-ts and read-ts values
for the corresponding items and releases the locks. Any
conflicting transaction waiting for the commit decision of this
transaction is aborted. In case of abort, each participant
releases the locks acquired by the aborted transaction.

For tracking the validation requests, each replica
maintains two in-memory tables: a ParticipantTable to store
information related to the validation requests for which the
replica is a participant, and CoordinatorTable to store
information for the validation requests for which the
replica is the coordinator. The ParticipantTable maintains,
for each validation request, the transaction-id, the part of
the transaction’s read/write sets pertaining to this partic-
ipant, and lock status of each item in this set. The
CoordinatorTable contains, for each request, the participant
replicas, the read/write sets of the transaction and lock
status of each item in the set, and responses received from
different participants.

7.2 Service Fault Tolerance
The failure-detection and the group membership manage-
ment is performed by the service replicas in decentralized

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 129

manner. Failure-detection is performed using a heart-beat
based mechanism, and for group membership manage-
ment we use the protocol we developed in [31]. When a
replica crashes, a new replica is started which takes over
the role of the failed replica. The new replica then performs
the recovery protocol as described below.

7.2.1 Recovering Service State
When a replica fails, there may be uncompleted validation
requests for which the replica is either a coordinator or a
participant. The new replica needs to recover the informa-
tion maintained in the CoordinatorTable and ParticpantTable.
This information is soft-state and can be recovered from
other replicas. The new replica contacts all other existing
replicas in the group and obtains information regarding the
pending requests for which it was either a coordinator or a
participant and the lock status for the items involved in
these requests. The reconstruction of ConflictTable is done
using the read/write sets information stored in the
TransactionTable. However, scanning the entire Transaction-
Table can become expensive, and hence to reduce this
overhead the ConflictTable is periodically checkpointed in
stable storage. Thus, only the transactions committed after
the checkpoint start time need to be scanned.

7.2.2 Failure Cases
Ensuring the correctness of the two-phase coordination
protocol under replica crashes is crucial. With respect to a
particular validation request, the crashed replica can either
be a coordinator or a participant. In case of the coordinator
crash, the client will timeout and retry the request by
contacting the new replica or any other replica. There are
three failure cases to consider: 1) failure before initiating
the first phase, 2) failure before recording the commit
status, and 3) failure after recording the commit status. In
the first failure case, the client will timeout and retry the
request, since none of the replicas would have any
information for this request. In the second case, the new
coordinator will resend the lock requests. It may happen
that some locks have been already acquired, however, lock
operations are idempotent, so resending the lock requests
does not cause any inconsistencies. When failure occurs
after recording the commit status, the new coordinator will
first check the commit status and send commit or abort
requests to participants accordingly. In case of the partic-
ipant crash, the validation request cannot be processed
until the recovery of the crashed participant is complete.

8 SCALABILITY EVALUATIONS

In our evaluations of the proposed approaches the focus
was on evaluating the following aspects:

1. the scalability of different approaches under the
scale-out model,

2. comparison of the service-based model and the
decentralized model in terms of transaction
throughput and scalability,

3. comparison of the basic SI and the transaction serial-
izability approaches based on the cycle-prevention
and the cycle-detection techniques,

4. transaction response times for various approaches,
and

5. execution times of different protocol phases.

During the initial phase of our work, we performed a
preliminary evaluation of the proposed approaches to
determine which approaches are more scalable and which
of these need to be investigated further on a large scale
cluster. This evaluation was done using a testbed cluster of
40 nodes on which the number of cores on the cluster nodes
varied from 2 to 8 cores, each with 2.3 GHz, and the
memory capacity ranged from 4 GB to 8 GB. The final
evaluations in the later phase were conducted using a
much larger cluster provided by the Minnesota Super-
computing Institute (MSI). Each node in this cluster had
8 CPU cores with 2.8 GHz capacity, and 22 GB main
memory.

8.1 TPC-C Benchmark
We used TPC-C benchmark to perform evaluations under a
realistic workload. However, our implementation of the
benchmark workload differs from TPC-C specifications in
the following ways. Since our primary purpose is to
measure the transaction throughput we did not emulate
terminal I/O. Since HBase does not support composite
primary keys, we created the row-keys as concatenation of
the specified primary keys. This eliminated the need of join
operations, typically required in SQL-based implementa-
tion of TPC-C. Predicate reads were implemented using
scan and filtering operations provided by HBase. Since the
transactions specified in TPC-C benchmark do not create
serialization anomalies under SI, as observed in [9], we
implemented the modifications suggested in [11]. In our
experiments we observed that on average a TPC-C
transaction performed 8 read operations and 6 write
operations.

8.2 Preliminary Evaluations
During each experiment, the first phase involved loading
data in HBase servers, which also ensured that the data was
in the memory of HBase servers when the experiment
started. Before starting the measurements, we ran the
system for five minutes with initial transaction rate of
about 1000 transactions per minute. The purpose of this
was to ‘warm-up’ the TransactionTable partitions in
HBase servers’ memory. The measurement period was
set to 30 minutes, in which we gradually increased the
transaction load to measure the maximum throughput. For
different cluster sizes, we measured the maximum trans-
action throughput (in terms of committed transactions per
minute (tpmC)) and response times. In our experiments, we
used one timestamp server and for the service-based model
we used one validation server process.

Fig. 7 shows the maximum throughput achieved for
different transaction management approaches for different
cluster sizes. Since there is significant node heterogeneity
in our testbed cluster, we indicate the cluster size in terms
of the number of cores instead of the number of nodes. This
figure shows the throughput for basic-SI model to under-
stand the cost of supporting serializability. We can observe
from Fig. 7 that scalability of throughput is achieved in

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015130

both the service-based as well as the decentralized model.
However, the service-based approach gives higher trans-
action throughput than the decentralized approach. As
expected, the basic SI model achieves higher throughput
compared to approaches for ensuring serializability. This is
because of the overhead for performing additional checks
required for ensuring serializability. The cycle-prevention
approach provides higher throughput than the cycle-
detection approach. This is because in the decentralized
model the overhead of the cycle-detection approach is
significant due to the overhead of maintaining dependency
information in the global storage. We also compared the
cycle-prevention and the cycle-detection approaches in the
context of the service-based model. However, we did not
observe any significant difference in the transaction
throughput.

Fig. 8 shows the average transaction response times for
various approaches. As expected, the service-based ap-
proach gives smaller response times than other ap-
proaches. The cycle-detection approach has significant
overhead. In the largest configuration, the average re-
sponse time for the cycle-detection approach is more than
double of the same for the cycle-prevention approach.
Also, the cycle-detection approach does not scale well in
terms of response times for large clusters. Therefore, we
conclude that if serializability is required, it is better to use

the cycle-prevention approach than the cycle-detection
approach.

We also measured and compared the time taken to
execute the various phases of the transaction protocol for
different approaches. Fig. 9 shows the average execution
times for different phases. This data is shown for the
evaluations conducted with the largest (96 cores) configu-
ration. The validation phase for the cycle-prevention
approach takes more time (approximately by a factor of
two) than the validation phase for the basic SI approach. In
the cycle-detection approach the DSGupdate phase induces
a significant overhead.

The preliminary evaluations indicated that the service-
based and the decentralized cycle-prevention approaches
are scalable for supporting serializable transactions.
Among these two approaches the service-based approach
performs better. We found that the decentralized cycle-
detection approach does not scale well.

8.3 Scalability Validations on a Large Cluster
Based on the above observations, we selected the service-
based approach and decentralized cycle-prevention ap-
proach for further evaluations over a large scale cluster to
validate their scalability. These evaluations were per-
formed using the MSI cluster resources. Using this cluster,
we measured maximum transaction throughput achieved
for different cluster sizes. The results of these evaluations
are presented in Figs. 10 and 11.

Fig. 10 presents the throughput scalability, and Fig. 11
shows average response times for various cluster sizes. The

Fig. 8. Average transaction response times under the scale-out model.

Fig. 9. Execution time for different protocol phases.

Fig. 7. Transaction throughput under the scale-out model.

Fig. 10. Transaction throughput under the scale-out model.

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 131

largest cluster size used in these experiments corresponds
to close to 100 nodes (800 cores). In these evaluations we
enabled the synchronous logging option for HBase to
ensure that the writes are durable even under crashes of
HBase servers. Hence, the response times are generally
higher under this setting compared to the response times
shown in Fig. 8 where synchronous logging was disabled.
We can observe that both the approaches provide incre-
mental scalability for large cluster sizes. The service-based
architecture provides higher transaction throughput and
lower response times compared to the decentralized
model, confirming our earlier observations from the
preliminary evaluations.

8.4 Scalability of Conflict Detection Service
We also evaluated the scalability of the replicated conflict
detection service. In this evaluation, we were mainly
interested in measuring the throughput of validation
requests. For this purpose, we generated a synthetic work-
load as follows. A pool of clients generated validation
requests for randomly selected read/write sets from an
item space of 1 million items. For each request, the size of the
read/write sets was randomly selected between 4 to 20 items,
with half of the items being read items and half being write
items. We measured the throughput as the number of
requests handled by the service per second, irrespective of
the commit/abort decision, since we are mainly interested in
measuring the request handling capacity of the service.
Fig. 12 shows the saturation throughput of the service for
different number of replicas. We can see that increasing the
number of replicas provides sub-linear increase in through-
put, for example, increasing replica size from 4 to 8 provides
throughput increase by a factor of 1.35. An important thing to
note here is that the saturation throughput of the conflict
detection service, even with small number of replicas, is
significantly higher than the overall transaction throughput
of the system. For example, from Figs. 12 and 10, we can see
that the saturation throughput of the service with 8 replicas is
approximately 24,000 requests per second whereas the
saturation transaction throughput with 100 nodes is approx-
imately 5000 transactions per second. Thus, a small number
of replicas for conflict detection service can suffice to handle
the workload requirement of a large cluster.

8.5 Impact of Transaction Size
Another aspect that we were interested in evaluating is the
impact of transaction size, i.e. the number of reads and
writes in a transaction, on various performance measures.
To evaluate this impact, we created a custom benchmark as
follows. We created a single table with 1 million items. The
benchmark included three classes of transactions: small size
transactions accessing 10 items each, medium size transac-
tions accessing 100 items each, and large size transactions
accessing 1000 items each. In all the three classes, half of the
accessed items were read-set items and half were write-set
items. The items to read and write were randomly selected
based on uniform distribution. We performed separate
evaluations for each class of transactions by generating
transaction load for that class and measured the maximum
throughput, average response times, and number of aborts
for that transaction class. Table 1 shows the results of these
evaluations. These evaluations were performed using a
cluster of 24 nodes on the MSI platform and the
decentralized model with cycle prevention approach. No
failures were injected during these evaluations.

From Table 1, we can observe that as we increase the
transaction size the maximum throughput decreases and
the average response time increases. This is expected since
the maximum throughput and the response time are
directly proportion to the number of read/write operations
in a transaction. The percentage of aborts increase with the
increase in transaction size. This is primarily because under
a fixed database size with increase in transaction size the
likelihood of transaction conflicts increases.

9 FAULT TOLERANCE EVALUATIONS

Our goal was to measure the performance of the cooper-
ative recovery model. In these evaluations, our focus was
on observing the following aspects: 1) impact of failure
timeout values, 2) time taken to detect and recover failed

Fig. 11. Average transaction response times under the scale-out model.

Fig. 12. Scalability of the conflict detection service.

TABLE 1
Impact of Transaction Size

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015132

transactions, and 3) impact of failures on abort rate and
STS advancement.

9.1 Experiment Setup
We performed these evaluations on a cluster of 24 nodes on
the MSI platform. We induced a moderate transaction load
of approximately 50,000 transactions per minute, which is
lower than the saturation load observed in Fig. 10 for
cluster size of 24 nodes. The injection of faults was
performed as follows. A transaction randomly stalls during
the commit protocol execution with certain probability
called as failure probability. The failure probability is
calculated based on the desired failure rate. The failure is
injected either in the validation phase or the commit-
incomplete phase (after acquiring commit timestamp). We
experimented with a setting of 50 percent failures in
validation and 50 percent failures in the commit-incomplete
phase as well as an extreme case with all failures in
validation phase. For every injected failure, we measured
the delay in detection of that failed transaction as well as
time required to perform recovery actions. We also
recorded information about the number of transactions
that were wrongly suspected to be failed and aborted due
to timeouts. We refer to such aborts as false aborts. One
would expect that for smaller timeouts the percentage of
such false aborts would be higher. The percentage of valid
timeout-based aborts depends on the number of injected
failures. We performed these experiments for failure rates
of 0.1 percent, 1 percent, and 10 percent and timeout values
of 50, 100, 300, and 500 milliseconds. In these evaluations,
we measured following performance measures:

1. percentage of aborts due to concurrency conflicts
such as read-write and write-write conflicts, referred
to as self aborts,

2. percentage of valid timeout-based aborts and false
aborts,

3. average time for failure detection and recovery, and
4. average gap between STS and GTS under failures.

9.2 Evaluation Results
Fig. 13 shows the abort statistics for various timeout values
and failure rates. This data correspond to the setting of

50 percent failures in the validation and 50 percent failures in
the commit-incomplete phase. We can see that, as expected,
the percentage of false aborts increases as we decrease the
timeout values. The percentage of valid timeout-based
aborts depends on the failure rate. Note that, even though
we decrease the timeout values from 500 ms to 100 ms, the
percentage of total aborts increase only by approximately a
factor of two (from 15 percent to 30 percent). This is because
the transactions that do not conflict with any other transac-
tions are unaffected by the timeout values. If a transaction
does not conflict with any other concurrent transaction, it
would not be aborted by any transaction irrespective of the
timeout values. The only problem that will arise due to
failure of a non-conflicting transaction is the blocking of STS
advancement if it has acquired the commit timestamp.
However, in that case the transaction would be rolled-
forward instead of aborting. We also performed this
evaluation with the setting of all failures in the validation
phase. We observed that under this setting also the false
aborts increase with decrease in timeout values, confirming
our earlier observation. Thus, the appropriate timeout value
must be large enough so that the number of false aborts is
kept minimum. This largely depends on the transaction
response time. Therefore, the appropriate timeout value can
be chosen by observing the transaction response times. One
can also include autonomic mechanisms to set the timeout
values by continually observing the response time values at
runtime.

Fig. 14 shows the data regarding average delays in
detection of the failure of transactions that were failed in
the validation phase. Fig. 15 shows this data for transactions
that were failed in the commit-incomplete phase. Since we
were interested in measuring the delays in detecting valid
failures, we measured this data only for the failures that
were injected by the failure injection mechanism and not
for the transactions that were wrongly suspected to be
failed. From Figs. 14 and 15, we can see that the detection
delays for transactions failed in the validation phase are
significantly higher than that for the transaction failed in
the commit-incomplete phase. This is expected because, failure
of a transaction failed in the validation phase will only be
detected when some other transaction encounters a read-write
or write-write conflict with the failed transaction, whereas

Fig. 13. Abort statistics for different failure rates (timeout values ranging
from 50 ms to 500 ms).

Fig. 14. Average time to detect failures in validation phase.

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 133

failure of a transaction failed in the commit-incomplete phase
will be detected more promptly due to non-advancement of
STS. We can also observe that the failure detection delay for
transactions failed in the commit-incomplete phase is mainly
dominated by the timeout value: as we decrease the timeout
value the failure detection delay decreases. We observed that
the time required to perform recovery actions is independent
of whether the transaction failed in the validation phase or the
commit-incomplete phase. The average time to perform
recovery typically ranged between 55 ms to 90 ms. We also
measured the average gap between STS andGTS for various
failure rates and timeout values. This data is shown in Fig. 16.
We can see that the average STS gap does not depend on the
timeout values. However, as we increase the failure rate the
average gap value typically increases due to more number
transactions blocking the advancement of STS.

10 CONCLUSION

We have presented here a fully decentralized transaction
management model and a service-based architecture for
supporting snapshot isolation as well as serializable
transactions for key-value based cloud storage systems.
We investigated here two approaches for ensuring serial-
izability. We find that both the decentralized and service-
based models achieve throughput scalability under the
scale-out model. The service-based model performs better
than the decentralized model. To ensure the scalability of
the service-based approach we developed a replication-
based architecture for the conflict detection service. The
decentralized model has no centralized component that can
become a bottleneck, therefore, its scalability only depends
on the underlying storage system. We also observe that the
cycle detection approach has significant overhead com-
pared to the cycle prevention approach. We conclude that if
serializability of transaction is required then using the cycle
prevention approach is desirable. We also demonstrated
here the effectiveness of the cooperative recovery mechan-
isms used in our approach. In summary, our work
demonstrates that serializable transactions can be sup-
ported in a scalable manner in NoSQL data storage
systems.

ACKNOWLEDGMENT

This work was carried out in part using computing
resources at the University of Minnesota Supercomputing
Institute. This work was supported by US National Science
Foundation Grant 1319333 and Grant-in-Aid program of
the University of Minnesota.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber, ‘‘Bigtable: A
Distributed Storage System for Structured Data,’’ ACM Trans.
Comput. Syst., vol. 26, no. 2, pp. 1-26, June 2008.

[2] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
‘‘Pnuts: Yahoo!’s Hosted Data Serving Platform,’’ Proc. VLDB
Endowment, vol. 1, no. 2, pp. 1277-1288, Aug. 2008.

[3] Apache, Hbase. [Online]. Available: http://hbase.apache.org/.
[4] J. Baker, C. Bond, J. Corbett, J.J. Furman, A. Khorlin, J. Larson,

J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, ‘‘Megastore:
Providing Scalable, Highly Available Storage for Interactive
Services,’’ in Proc. CIDR, 2011, pp. 223-234.

[5] S. Das, D. Agrawal, and A.E. Abbadi, ‘‘G-Store: A Scalable Data
Store for Transactional Multi Key Access in the Cloud,’’ in Proc.
ACM Symp. Cloud Comput., 2010, pp. 163-174.

[6] T. Haerder and A. Reuter, ‘‘Principles of Transaction-Oriented
Database Recovery,’’ ACM Comput. Survey, vol. 15, no. 4, pp. 287-
317, Dec. 1983.

[7] T.P. Council, San Francisco, CA, USATPC-C Benchmark.
[Online]. Available: http://www.tpc.org/tpcc.

[8] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, ‘‘A Critique of ANSI SQL Isolation Levels,’’ in Proc.
ACM SIGMOD, 1995, pp. 1-10.

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha,
‘‘Making Snapshot Isolation Serializable,’’ ACM Trans. Database
Syst., vol. 30, no. 2, pp. 492-528, June 2005.

[10] M. Bornea, O. Hodson, S. Elnikety, and A. Fekete, ‘‘One-Copy
Serializability With Snapshot Isolation Under the Hood,’’ in Proc.
IEEE ICDE, Apr. 2011, pp. 625-636.

[11] M.J. Cahill, U. Röhm, and A.D. Fekete, ‘‘Serializable Isolation for
Snapshot Databases,’’ ACM Trans. Database Syst., vol. 34, no. 4,
pp. 20:1-20:42, Dec. 2009.

[12] S. Revilak, P. O’Neil, and E. O’Neil, ‘‘Precisely Serializable
Snapshot Isolation (PSSI),’’ in Proc. IEEE ICDE, 2011, pp. 482-493.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, ‘‘Dynamo: Amazon’s Highly Available Key-Value
Store,’’ SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205-220,
Dec. 2007.

[14] Amazon, Amazon Simpledb. [Online]. Available: http://aws.
amazon.com/simpledb/.

Fig. 16. Average gap between STS and GTS for different failure rates
and timeout values.

Fig. 15. Average time to detect failures in CommitIncomplete phase.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2015134

[15] A. Lakshman and P. Malik, ‘‘Cassandra: A Decentralized
Structured Storage System,’’ SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35-40, Apr. 2010.

[16] S. Das, D. Agrawal, and A. El Abbadi, ‘‘ElasTraS: An Elastic
Transactional Data Store in the Cloud,’’ in Proc. HotCloud, 2009,
pp. 1-5.

[17] E.P. Jones, D.J. Abadi, and S. Madden, ‘‘Low Overhead
Concurrency Control for Partitioned Main Memory Databases,’’
in Proc. ACM SIGMOD Int’l Conf. Manage. Data, 2010, pp. 603-614.

[18] M.K. Aguilera, A. Merchant, M.A. Shah, A.C. Veitch, and
C.T. Karamanolis, ‘‘Sinfonia: A New Paradigm for Building
Scalable Distributed Systems,’’ ACM Trans. Comput. Syst., vol. 27,
no. 3, pp. 5:1-5:48, Dec. 2009.

[19] J. Cowling and B. Liskov, ‘‘Granola: Low-Overhead Distributed
Transaction Coordination,’’ in Proc. USENIX Conf. ATC, 2012, pp. 1-13.

[20] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D.J. Abadi, ‘‘Calvin: Fast Distributed Transactions for Partitioned
Database Systems,’’ in Proc. ACM SIGMOD Int’l Conf. Manage.
Data, 2012, pp. 1-12.

[21] Z. Wei, G. Pierre, and C.-H. Chi, ‘‘CloudTPS: Scalable Transac-
tions for Web Applications in the Cloud,’’ IEEE Trans. Serv.
Comput., vol. 5, no. 4, pp. 525-539, Apr. 2011.

[22] D.B. Lomet, A. Fekete, G. Weikum, and M.J. Zwilling, ‘‘Unbundling
Transaction Services in the Cloud,’’ in Proc. CIDR, 2009, pp. 1-10.

[23] D. Peng and F. Dabek, ‘‘Large-Scale Incremental Processing
Using Distributed Transactions and Notifications,’’ in Proc.
USENIX OSDI, 2010, pp. 1-15.

[24] C. Zhang and H.D. Sterck, ‘‘Supporting Multi-Row Distributed
Transactions With Global Snapshot Isolation Using Bare-Bones
HBase,’’ in Proc. IEEE/ACM GRID, 2010, pp. 177-184.

[25] H. Jung, H. Han, A. Fekete, and U. Roehm, ‘‘Serializable Snapshot
Isolation for Replicated Databases in High-Update Scenarios,’’ Proc.
VLDB Endowment, vol. 4, no. 11, pp. 783-794, Aug. 2011.

[26] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan,
‘‘Automating the Detection of Snapshot Isolation Anomalies,’’ in
Proc. VLDB, 2007, pp. 1263-1274.

[27] H.T. Kung and J.T. Robinson, ‘‘On Optimistic Methods for
Concurrency Control,’’ ACM Trans. Database Syst., vol. 6, no. 2,
pp. 213-226, June 1981.

[28] A. Adya, B. Liskov, and P.E. O’Neil, ‘‘Generalized Isolation Level
Definitions,’’ in Proc. ICDE, 2000, pp. 67-78.

[29] W. Vogels, ‘‘Eventually Consistent,’’ Commun. ACM, vol. 52,
no. 1, pp. 40-44, Jan. 2009.

[30] M. Maekawa, ‘‘An Algorithm for Mutual Exclusion in Decen-
tralized Systems,’’ ACM Trans. Comput. Syst., vol. 3, no. 2,
pp. 145-159, May 1985.

[31] V. Padhye and A. Tripathi, ‘‘Building Autonomically Scalable
Services on Wide-Area Shared Computing Platforms,’’ in Proc.
IEEE Symp. Netw. Comput. Appl., Aug. 2011, pp. 314-319.

Vinit Padhye received the BE degree from the
University of Mumbai, India, in 2005 and the MS
degree in computer science from the University
of Minnesota, in 2011. He is currently pursuing
the PhD degree in the Department of Computer
Science & Enginnering, University of Minnesota,
Minneapolis. His current research interests are
in distributed systems, fault-tolerant computing,
scalable and highly available systems, and cloud
computing.

Anand Tripathi received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Bombay, in 1972 and the MS and
PhD degrees in electrical engineering from the
University of Texas at Austin, in 1978 and 1980,
respectively. His research interests are in
distributed systems, fault-tolerant computing,
system security, and pervasive computing. He
is a professor of computer science at the
University of Minnesota, Minneapolis. He
worked as a Scientific Officer at Bhabha Atomic

Research Center, India, during 1973-75. During 1981-84 he worked as
a Senior Principal Research Scientist at Honeywell Computer Science
Center, Minneapolis. He joined the University of Minnesota in 1984.
During 1995-97, he served as a Program Director in the Division of
Computer and Communications Research at the National Science
Foundation, Arlington, Virginia. He is a Fellow of IEEE and a member of
the ACM. He served as an at-large member of the IEEE Computer
Society Publications Board (2001-2005). He has served on the editorial
boards of IEEE Transactions on Computers, IEEE Distributed Systems
Online, Elsevier Journal on Pervasive and Mobile Computing, and IEEE
Pervasive Computing. He was the Program Chair for the IEEE
Symposium on Reliable Distributed Systems (SRDS) in 2001 and for
the Second IEEE International Conference on Pervasive Computing
and Communications (PerCom) in 2004. He was one of the organizers
of two ECOOP Workshops on exception handling held in 2000 and
2003, and co-editor for two Springer LNCS volumes on exception
handling, published in 2002 and 2006.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PADHYE AND TRIPATHI: SCALABLE TRANSACTION MANAGEMENT WITH SNAPSHOT ISOLATION 135

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

