
Implementing Distributed Workflow Systems from XML
Specifications �

Anand R. Tripathi, Tanvir Ahmed, Vineet Kakani and Shremattie Jaman�
tripathi, tahmed, kakani, jaman � @cs.umn.edu

Department of Computer Science
University of Minnesota, Minneapolis MN 55455

ABSTRACT
In enterprise-wide distributed workflow, multiple users coop-
erate towards some common goal following predefined task
specifications. This paper presents an approach for construct-
ing a distributed workflow system starting from its XML spec-
ification in terms of various participants’ roles, access rights
based on roles, shared objects, operations, and workflow con-
straints. The specifications are integrated with an agent-based
distributed middleware for workflow implementation. This
middleware enforces coordination and security constraints
specified in the XML description of the plan. Moreover,
shared objects in the workflow environment are distributed
to the participants according to the role-specific views of the
plan. We illustrate our approach through an example work-
flow system for collaborative authoring.

1 Introduction
A workflow management system can be considered as a com-
puter automated infrastructure where a group of people par-
ticipate together to achieve a common goal following some
predefined rules and task assignments. Most of the existing
workflow management systems try to devise a generic work-
flow model supported by some middleware [14, 2]. More-
over, these systems provide some specification languages and
workflow design tools to support workflow activities ranging
from state manipulation to automatic recovery [4].

The main contribution of this paper is in developing a method-
ology for building a distributed workflow environment by
starting with its specification in a high level form in XML
[22], and then interfacing such a specification with a mobile
agent based middleware to build the desired workflow envi-
ronment. The XML specification needs to describe shared
objects, coordination operations, roles of various people in-

�
This work was supported by National Science Foundation grants ANIR

9813703 and EIA 9818338.

volved in a workflow, security policies based on roles, and
workflow constraints. The middleware enforces the coordi-
nation and security constraints specified in the XML speci-
fication of a plan. An important aspect of our work is the
fact that the designer of a workflow needs to specify only
the workflow plan without being concerned about the man-
agement of the mobile coordination agents and the security
issues.

There are several motivations for implementing distributed
workflow systems using a mobile agent based middleware.
Mobile agents can be used to encapsulate application specific
coordination protocols. Through their use in a workflow, a
group coordinator can ensure that the members participate
only by using the prescribed protocols. Moreover, with the
use of mobile agents as user-interface objects, the adminis-
trator or coordinator of an environment can dynamically up-
grade its agents installed at the participant’s nodes to alter the
workflow policies. It can also grant and change appropriate
privileges to a member based on his role in the collabora-
tion. It is possible to exploit the mobility of a shared object,
when implemented as a mobile agent, by moving it from one
participant to another at various stages of a workflow. By
implementing a user’s interaction environment in a workflow
as a collection of mobile agents, it is possible for a user to
physically move to a different node by simply directing its
agents to migrate to that node. Moreover,the mobile agent
paradigm can be exploited to implement workflow systems
in disconnected environments. This can be achieved as mo-
bile agents can carry along all the application specific data
and code, eliminating the need for a shared file system.

We present the details of this approach through a workflow
authoring system, which we implemented as a proof-of- con-
cept experiment, using the Ajanta mobile agent system [20].
The overview of our approach is described in Section 2. Sec-
tion 3 presents a schema for specifying workflow environ-
ments and shows how the example authoring system can be
specified as a workflow plan. Section 4 describes how this
plan is used to build a distributed workflow system using the
facilities of the Ajanta mobile agent programming system.
Section 5 presents related work, and section 6 discusses the
conclusions and future directions of our work in this area.

d

User A

Role Based User Interface

Application Specific Objects

Generic Coordination Facility

b c

Oc

a

Object
Operation

a

b c

d e f

Oc Oe

Plan Creation and Validation

User B

Role Based User Interface

Application Specific Objects

a

b c

e f

Oe

Generic Coordination Facility

Generic Coordination Facility

Get PlanGet Plan Convener

Figure 1: System level view of agent-based workflow

2 Overview of the Approach
In the proposed approach, building a distributed workflow in-
volves three steps. The first step is devising a schema in the
form of XML Document Type Definition (DTD) to specify
a workflow environment. Such a schema provides constructs
for defining roles, shared objects, and operations associated
with a workflow task. It also provides constructs for associ-
ating privileges with roles and participants, coordination ac-
tions and workflow constraints with operations. The seman-
tics of objects and their actual definitions are not described
but left to the applications.

The second step is the description of a workflow plan, us-
ing XML, in conformance with the DTD. The designer of
the workflow plan, whom we refer to as the convener, is re-
sponsible for preparing this description. This step involves
defining the following elements in a workflow:

Shared Objects: A workflow involves management and use
of a set of shared objects. These objects define the shared
workspace of the participants. Object specific operations
are performed by the participants based on their roles.

Participant Roles: A role defines a set of responsibilities
and tasks for a participant towards the goal of the work-
flow activity. The participants and other entities involved
in a workflow can be identified by their roles. These roles
are assigned to people at the time of the realization of a
plan.

Privileges: The security policies in a workflow are based on
participants’ roles. Privileges are associated with each role
in order for the participant assigned to that role to execute
the required tasks.

Coordination operations: The coordination operations define
the actions to be executed when certain events occur. These
are the user level operations which are executed whenever

a stage of workflow is accomplished. An operation execu-
tion may result either in copying the corresponding object
to other participants or in invocation of certain methods on
objects in other participants’ object-space.

The third step in our approach is illustrated by Figure 1,
which shows the typical structure for realizing a distributed
workflow using a generic coordination facility. The XML
specification of the workflow is interfaced with a generic co-
ordination facility built using the Ajanta agent execution en-
vironment. The workflow plan is securely distributed in a
tamper-proof manner to each users’ computer. This plan is
trimmed on the basis of the user’s role in the workflow life-
cycle so that the user does not get parts of the plan which he
will not access. We refer to this plan as the role specific plan
for that user. Each user participates in the workflow by exe-
cuting an agent-based coordinator on his system. We refer to
this as the User Coordination Interface (UCI). A UCI main-
tains with it copies of the shared objects that are required as
per the user’s roles. It provides suitable interfaces to its user
to facilitate execution of operations on the shared objects.

When installed and initialized on a user’s computer, a UCI
downloads the role specific plan from the convener. This
plan is composed of a collections of objects and their asso-
ciated operations in the form of a XML tree. We refer to the
local copies of the objects at the UCI as the user’s object-
space. Some of the objects in the shared workspace may not
be present in the participant’s object-space, if disallowed by
the security policy. In Figure 1, object d is present only at at
user A’s object-space, and objects e and f are present only at
user B’s object-space. This figure is explained in more detail
in section 4.

3 Specification of a Workflow
This section presents an XML schema that we have devel-
oped for specifying a workflow plan. First, we describe an

example workflow authoring system and then introduce our
schema in DTD for generic workflow environments. Using
the authoring system as an example, we illustrate our ap-
proach.

3.1 A Collaborative Authoring Workflow
We use a collaborative authoring workflow as an example to
experiment with the central concepts discussed in this paper.
The collaborative authoring environment considered in this
paper supports the activities of a group of people jointly de-
veloping a document as shown in Figure 2. The Figure intro-
duces the overall model of our authoring workflow example
where the convener generates a plan in XML which encap-
sulates the central entities of the workflow like a shared doc-
ument, roles in workflow and workflow constrains. In this
example, the participants perform tasks related to writing,
reviewing, and editing different parts of the document to be
developed. Participants are assigned a variety of roles to per-
form these tasks.

Figure 2: Steps in building an agent-based distributed
workflow

The central entity in the shared workspace is the document
object to be produced. Three roles are defined for the au-
thoring system: author, editor, and reviewer. The document
object contains one or more chapter objects. A chapter con-
tains three objects that are shared: the chapter’s content, the
reviewer’s comments and the editor’s comments.

Following are some of the coordination operations defined
for this authoring system. The first operation in the collab-
oration occurs at the chapter level. When the author of a
chapter completes a draft of the chapter’s content, it is pub-
lished to the chapter’s reviewer and editor by invoking the
“publish” operation. This results in the coordination actions
of making the chapter’s content available to the participants
in these two roles. This operation also enables a reviewer to
write a review of the chapter’s text. The reviewer of the chap-
ter cannot compose the review until the chapter content has
been written and received. The next operation occurs at the
reviewer level. Upon completion of the review, the reviewer

publishes the review to make it available to the author and
the editor. The editor of the chapter composes his comments
based on the chapter’s content and the review. The editor
publishes the comments to the author. The author can then
read the review and the editor’s comments, and modify the
chapter accordingly.

3.2 Workflow Environment Description and an Example
Plan

Our XML DTD defines a generic specification of workflow
environments to be supported by an agent based middleware.
Figure 3 defines a workflow environment under the tag PLAN,
which is composed of one or many roles, objects, and opera-
tions. This definition of a workflow environment can be used
to build any workflow plan; it is not limited to the authoring
example presented here. Figures 3, 4, 5, 6, and 7 show, in
five parts, the DTD specification for a generalized workflow
environment. These figures include the corresponding exam-
ples of an XML plan for the document preparation system.

As shown in Figure 3, a role has a unique id, a name, an
object reference, and a role-interface. The object reference is
specified if a role is associated with an object and then the ob-
ject defines the scope for the role. The role-interface can be a
Java class supplied by the convener or implied by the work-
flow system. This role specific interface can provide different
views of the same object to different participants. Each role
is assigned to one or more participants, who are uniquely
identified by Uniform Resource Names (URN) [19]. The
Ajanta system uses the URN scheme for naming all global
objects and users. In the example in Figure 3, the author role
has a participant urn:ans:A and the reviewer role has two
participants: urn:ans:B and urn:ans:C. The Java class of the
author’s interface is ajanta.UserInterface, which is
specified by the convener.

Role based access control [17, 3, 5] provides centrally con-
trolled access rights and is flexible to enforce policy guide-
lines for enterprise workflow systems. In our XML DTD, we
mapped the Java ACL (Access Control List) interface and
mapped its group interface to role. As shown in Figure 4,
each ACL has a name, an owner if specified, and multiple
entries containing access rights. Each entry is a mapping be-
tween a principal or a group and a set of permissions. More-
over, each entry type can be either positive or negative, and
the default value is positive. In this specification, a group is
a role reference. Access rights are defined in term of three
generic operations: execute, update, and read. It is possible
to include other types of permissions based on method level
access control. In the example of Figure 4, the author role
has read and update permissions, the reviewer role has read
permission, but the principal urn:ans:C is explicitly denied
read permission.

<!DOCTYPE PLAN [
<!ELEMENT PLAN (ROLE+, OBJECT+, OPERATION+)>

<!ELEMENT ROLE (PRINCIPAL+)>
<!ATTLIST ROLE

ROLE_ID ID #REQUIRED
ROLE_NAME CDATA #REQUIRED
OBJECT_REF IDREF #REQUIRED
ROLE_INTERFACE NMTOKEN #IMPLIED

>
<!ELEMENT PRINCIPAL EMPTY>
<!ATTLIST PRINCIPAL

URN CDATA #REQUIRED
>
......
]>

<PLAN>
<ROLE ROLE_ID="doc:author"

ROLE_NAME="author"
OBJECT_REF="doc"
ROLE_INTERFACE="ajanta.UserInterface">

<PRINCIPAL URN="URN:ans:A"/>
</ROLE>
<ROLE ROLE_ID="doc:reviewer"

ROLE_NAME="reviewer"
OBJECT_REF="doc"
ROLE_INTERFACE="ajanta.UserInterface">

<PRINCIPAL URN="URN:ans:B"/>
<PRINCIPAL URN="URN:ans:C"/>

</ROLE>

.........
</PLAN>

Figure 3: Schema and example for a Workflow Plan and Role

<!ELEMENT ACL (ACL_ENTRY*)>
<!ATTLIST ACL

ACL_NAME CDATA #IMPLIED
ACL_OWNER CDATA #IMPLIED

>
<!ELEMENT ACL_ENTRY ((PRINCI-
PAL|GROUP), PERMISSION*)>
<!ATTLIST ACL_ENTRY

TYPE (positive|negative) "positive"
>
<!ELEMENT GROUP EMPTY>
<!ATTLIST GROUP
ROLE_REF IDREF #REQUIRED
>
<!ELEMENT PERMISSION EMPTY>
<!ATTLIST PERMISSION

NAME (execute|update|read) "execute"
>

<ACL>
<ACL_ENTRY>
<GROUP ROLE_REF="doc:author"/>
<PERMISSION NAME="read"/>
<PERMISSION NAME="update"/>

</ACL_ENTRY>
<ACL_ENTRY>
<GROUP ROLE_REF="doc:reviewer"/>
<PERMISSION NAME="read"/>

</ACL_ENTRY>
<ACL_ENTRY TYPE="negative">
<PRINCIPAL URN="URN:ans:C"/>
<PERMISSION NAME="read"/>

</ACL_ENTRY>
</ACL>

Figure 4: Schema and example for Role based Access Control

According to the DTD specification in Figure 5, an object
must have a unique id, a name, and a type specified using
MIME format. Moreover, an object can have a parent object
reference, data, and a codebase which specifies the class im-
plementing this object. Access control is imposed on each
object. Object status, which is a list of operations performed
on the object, is maintained with each object. An object can
have methods and can be composed of other nested objects.
The shared object in this example is a document with a sin-
gle chapter. The review and editor comments of the chapter
are omitted from the example as the given chapter specifi-
cation is sufficient for the basic illustration of our approach.
The type of the document and the chapter are declared us-
ing MIME type multipart/alternative, as the docu-
ment may contain several chapter objects and each chapter is
composed of contents, reviews, and editor’s comments. The
access control for a chapter’s content is shown separately in
Figure 4.

Figure 6 shows the specification of an operation whose exe-
cution is controlled by the UCI. Each operation has a name,

access control entries, precondition, and either a clone ob-
ject or one or more agent-actions. The access control en-
tries of an operation specify for various roles the permissions
to execute this operation. A precondition is a list of opera-
tions, which must precede the given operation. The precon-
dition ensures operation constraints. The CLONE OBJECT
and AGENT ACTION tags define the coordination actions
that need to be performed when a given operation is exe-
cuted. The clone operation is provided to encapsulate the
generic operation of object migration in the workflow sys-
tem. Figure 6 presents the plan for an operation specifica-
tion. The author role has the access right to perform the
Content Publish operation on the Contents object.
The corresponding clone object Contents of the operation
Content Publish contains a list of roles as targets.

In Figure 7, agent actions are the remote actions performed
by an agent by visiting other users’ UCIs. An agent-action is
composed of a remote method and one or more targets which
are references to roles. The remote method is uniquely iden-
tified by a reference to the desired object, a method name,

<!ELEMENT OBJECT (ACL, STATUS, METHOD*,
OBJECT*) >

<!ATTLIST OBJECT
OBJ_ID ID #REQUIRED
PARENT_OBJ_REF IDREF #IMPLIED
OBJ_NAME CDATA #REQUIRED
OBJ_TYPE CDATA #REQUIRED
CODE_BASE NMTOKEN "null"
OBJ_DATA CDATA "null"

>
<!ELEMENT METHOD (ACL, PARAMETER*)>
<!ATTLIST METHOD

METHOD_NAME NMTOKEN #REQUIRED
>
<!ELEMENT STATUS (OPERATION_PERFORMED*)>
<!ELEMENT OPERATION_PERFORMED EMPTY>
<!ATTLIST OPERATION_PERFORMED

OP_REF IDREF #REQUIRED
OPERATOR CDATA #IMPLIED

>

<OBJECT OBJ_ID="doc"
OBJ_NAME="Document"
OBJ_TYPE="multipart/alternative">

<ACL/>
<STATUS/>

<OBJECT OBJ_ID="doc:ch1"
OBJ_NAME="Chapter1"
OBJ_TYPE="multipart/alternative">

<ACL/>

<STATUS/>
<OBJECT OBJ_ID="doc:ch1:content"

OBJ_NAME="Contents"
OBJ_TYPE="text/plain">

....

</OBJECT>

Figure 5: Schema and example for Object

<!ELEMENT OPERATION (ACL, PRE_CONDITION*,
(CLONE_OBJECT | AGENT_ACTION+))>

<!ATTLIST OPERATION
OP_ID ID #REQUIRED
OBJECT_REF IDREFS #REQUIRED
OPERATION_NAME NMTOKEN #REQUIRED

>
<!ELEMENT PRE_CONDITION EMPTY>
<!ATTLIST PRE_CONDITION

OP_REF IDREFS #REQUIRED
>
<!ELEMENT CLONE_OBJECT (TARGET*)>
<!ELEMENT TARGET EMPTY>
<!ATTLIST TARGET

ROLE_REF IDREFS #REQUIRED
>

<OPERATION OP_ID ="doc:ch1:con:publish"
OBJECT_REF="doc:ch1:content"
OPERATION_NAME="Content_Publish">

<ACL>
<ACL_ENTRY>

<GROUP ROLE_REF="doc:author"/>
<PERMISSION/>

</ACL_ENTRY>
</ACL>
<CLONE_OBJECT>

<TARGET ROLE_REF="doc:reviewer"/>
</CLONE_OBJECT>

</OPERATION>

Figure 6: Schema and example for Operation

and a parameter list. In general, these are the methods of the
shared objects that an agent would invoke when visiting the
UCIs of the users corresponding to the target roles. In our
current implementation, the underlying agent based middle-
ware supports operation constraints, and maintains and ma-
nipulates operation status in each object’s node. In a similar
plan for an authoring system, we separated this task on an ap-
plication level object status. As an example of agent ac-
tion, Figure 7 shows how the status object is manipulated
by the UpdateStatus operation. When this operation is
invoked, agents are launched to corresponding participants of
target roles. These agents execute the updateOpmethod on
the remote copies of the status object. Here, the remote
method requires no parameters. For simplicity, the details of
the parameter specifications are not included in the schema.

4 Implementation of Workflow using Mobile Agents
In this section we describe how the XML description of a
workflow is integrated into a generic facility which supports
coordination to achieve the desired workflow. The generic fa-
cility is built using the components of the Ajanta agent pro-

gramming system because this framework is readily avail-
able and provides security and other necessary components.
Section 4.1 presents a brief overview of the Ajanta’s agent
programming model and facilities. Using the authoring sys-
tem as an example, section 4.2 describes how a plan is inter-
faced with the agent-based middleware to build UCIs.

4.1 Mobile Agents in Ajanta
Ajanta [20] is a Java-based framework for programming mo-
bile agents in distributed systems. In Ajanta, mobile agents
are mobile objects, which can migrate autonomously in dis-
tributed environments. Agents encapsulate code and execu-
tion context along with data and are executed on behalf of
a user. The Ajanta system provides facilities to build cus-
tomizable servers to host mobile agents, a set of primitives
for the creation and management of agents, and a global nam-
ing service. Programming abstractions are provided for re-
mote execution by agent migration. Security is an integral
part of Ajanta design and Ajanta provides components for
authentication, public key maintenance, access control, host
resource protection, and cryptographic services. Interested

<!ELEMENT AGENT_ACTION (TARGET*, REMOTE_METHOD)>
<!ELEMENT REMOTE_METHOD (PARAMETER*)>
<!ATTLIST REMOTE_METHOD

OBJECT_REF IDREFS #REQUIRED
METHOD_NAME NMTOKEN #REQUIRED

>

<OPERATION OP_ID="doc:status"
OBJECT_REF="status"
OPERATION_NAME="UpdateStatus">

<ACL/>
<AGENT_ACTION>

<TARGET ROLE_REF="doc:reviewer"/>
<REMOTE_METHOD OBJECT_REF="status"

METHOD_NAME="updateOp"/>
</AGENT_ACTION>

......

Figure 7: Schema and example for Agent Action

readers can refer to [20, 9] for further details.

4.2 Agent Based Implementation Environment
In this section, we present the implementation details of the
example authoring system which is interfaced with the agent
based middleware. We do this by identifying the various
stages involved in the workflow:

Plan Creation and Consistency Checking: The convener
prepares a plan from the XML specifications which conforms
with the DTD. While preparing the plan, it only needs to pro-
vide the values for the REQUIRED attributes of each entity.
The IMPLIED attributes of different entities are determined
by the UCI, if not specified as a part of the plan. The con-
vener then parses and validates this XML plan against the
DTD to generate a Document Object Model(DOM) [22] tree
representation of the XML entities. The next step is to check
the operation and access control consistency. For example,
the plan is inconsistent when a user wants to clone an ob-
ject to a target but the update permissions are not given to
that user. Once a consistent plan is available, the convener
waits for the plan requests from the entities participating in
the workflow.

Plan Distribution with Authentication: On receiving a user
request for a plan, authentication is performed using the Ajanta
naming service. The naming service maintains the public key
of each principal in Ajanta. Once the user is authenticated,
a plan is downloaded to the user’s UCI based on his roles
in the workflow. As mentioned in section 2, this role spe-
cific plan is a trimmed version of the instantiated DOM tree
in the convener’s UCI. To construct a role specific plan, the
concept of view-node access is used, which specifies that the
user can see the attribute values for an object node but not its
data. Based on the following rules, the convener constructs
the role specific plan : if a user has any access on a method,
he has view-node access on the method’s object; if a user has
any access on an operation, he has view-node access on the
corresponding object; for each object with view-node access,
a user has view-node access on all its parent object nodes. In
Figure 1, user A has access on object d and operation Oc;
here, the operation Oc is associated with object c. Hence, the
user A has view-node access on objects a,b,c and d. This

step ensures that the user sees only a view of the plan on
which he has access privileges. While customizing the plan
for a particular user, the convener bundles all the objects to
be given to the user along with the related operations, as a
part of the plan. Currently, the convener also distributes the
role definitions as a part of the plan.

Creation of UCI and Role Based User Interface: Each user
performs his tasks in the workflow through the UCI process
executing on the user’s desktop. Our approach is to imple-
ment a UCI by extending Ajanta’s AgentServer class,
which provides a secure execution environment for hosting
mobile agents. Figure 8 shows the structure of a UCI for the
example authoring system. It contains a document manager
object and user interface objects. The document manager
deals with the XML plan obtained from the convener and
maintains the shared object space. It also maintains opera-
tion nodes corresponding to the OPERATION tag and these
operation nodes contain various specifications needed for op-
eration execution. Its interface enables the user and the vis-
iting agents to read, write, edit, and publish any part of the
document.

The user performs these tasks through the role specific user
interfaces, which are either obtained from the convener and
instantiated or by default bundled with the generic UCI, if not
specified by the convener. By providing a customized role
based user interface for each user, the convener can ensure
that the users participate in the workflow according to the
prescribed protocol only. The generic user interface obtains
the role specific plan from the document manager and dis-
plays the various objects and operations present in the user’s
object space. Figure 9 shows a generic user interface which
displays role specific plan for a user in author role.

The user interface provides the default applications for ma-
nipulating the objects based on their type. In case of text ob-
jects, it simply provides a text editor to compose the text ev-
ery time the object is accessed through the user interface. In
the case of complex types, depending upon the MIME types,
it can be extended to launch relevant applications which al-
low manipulation of those objects.

Role Based User Interface

Document Manager

proxy

Request to dispatch
an agent to remote UCIs

Objects obtained from Convener

Agent Environment

AGENT 1
from a remote

UCI Implementation as an Agent Server

AccessProtocol

user’s UCI

Figure 8: Steps in building an agent-based distributed
collaboration

Execution of Coordination Operations: The operation execu-
tion takes place through the user interface component of the
UCI. The user interface enforces access control and synchro-
nization on operation execution. Access rights are checked
against the ACL, which is maintained on each operation node.
In the current implementation, the execution of an operation
results in the launching of mobile agents, which either clone
the corresponding object or invoke specified remote methods
on the remote copy of the object related to the operation.

An operation is performed only if its precondition is satisfied.
Precondition checks are performed at two stages in work-
flow execution. First, the user interface performs this check
and displays appropriate error messages. Second, when an
agent reaches a remote target UCI as a part of the opera-
tion’s remote action. If the precondition of the operation at
the remote site is not satisfied, the agent waits for the pre-
condition to be true. Proper synchronization primitives are
implemented in the system to signal the agent when the pre-
condition of the operation is satisfied.

When an operation is executed, the corresponding operation
node with the document manager is examined. If any cloning
is specified as a part of this operation, the document manager
creates an agent to clone the object referenced by this opera-
tion to the target roles’ UCIs. All the child objects and related
operations of this object are packaged together and cloned at
the remote sites. If any agent-action is specified as a part of
this operation, the document manager creates an agent to ex-
ecute the methods at the target UCIs. Figure 8 shows that to
publish the chapter contents to remote hosts, an agent is cre-
ated and dispatched. Here, an agent server, in our context the
UCI, provides a secure execution environment for the host-
ing agents by a proxy based access-control mechanism [21].

Figure 9: User Interface for the Author Role

Each agent carries with it credentials, which include the iden-
tity of the agent’s owner. When an agent arrives at a host,
the agent-server checks its credentials and verifies the agent’s
identity. Upon success, the agent-server creates an exclusive
proxy of the document manager for this agent and embeds
the identity of the agent’s owner in the proxy. Later, when the
agent invokes a method in the proxy, the proxy transparently
invokes the corresponding method in the document manager
with the agent’s owner identity. The proxy mechanism en-
ables the document manager to impose access control based
on the agent’s owner identity.

5 Related Work
The work presented here relates to many existing ideas from
a number of areas such as computer-supported workflow, work-
flow specifications, workflow management, role-based secu-
rity, and mobile agent systems. Our work integrates these
ideas into an XML schema for workflow specification and
interfaces this schema with Ajanta mobile agent based mid-
dleware for implementing distributed workflow systems.

Several systems have been designed as general purpose sys-
tems to build desired collaboration and workflow environ-
ments using library modules and interfaces [11, 16]. How-
ever, in these systems coordination policies still need to be
programmed using procedural languages. COCA [10] is a
framework for collaborative objects coordination, separating
specification of coordination from computation. Our work is
related to COCA in that it also uses roles to specify policies
for workflow. However, our approach differs from COCA in
that we use XML for specification of various coordination
policies and description of roles unlike a first order logic lan-
guage used in COCA. Our model makes the specification and
the underlying implementation framework more decoupled.
XML is also more readily understood by both human users
and software systems.

Coordination specifications indicate how the dependencies
between activities should be managed in a workflow. In work-
flow design, a process language allows one to define the ac-
tivities [18] [1]. A number of groups have proposed process
definition meta models. These include OMG’s XMI (XML
Meta Data Interchange)[12], UML [15], and Wfmc [24] pro-
cess definition meta-language. Moreover, workflow specifi-
cation languages [23, 2, 13] are studied based on state and
activity charts. State and activity charts can be easily incor-
porated into our XML schema. In our approach, the XML
based plan description corresponds to a process level descrip-
tion, and the agent-based middleware is the execution infras-
tructure. Our work is fundamentally different from Wfmc
[24], which is concerned with interoperability of workflow
systems. It mainly focuses on data exchange related issues.

Many other workflow [14, 2] systems have introduced a generic
middleware for implementing workflow. In [7], a component
based Java Beans supported suite is introduced for building
synchronous collaborative applications. This requires a mid-
dleware to be implemented using the component suite, which
is limited to current Java Beans tools [7]. In our model,
XML specification can easily tie existing middleware and
other components to realize a workflow system. The re-
cent development of internet based workflow requires asyn-
chronous workflow model which can be easily abstracted in
agent based workflow systems.

The use of mobile agents in workflow systems has also been
investigated by others researchers [6]. In [8], agent enhanced
workflow is discussed, where an agent layer is wrapped around
existing workflow applications. In contrast, our approach
uses mobile agents at the implementation level for support-
ing workflow in distributed collaborations.

6 Conclusion
The main contribution of this paper is in developing a method-
ology for building a distributed workflow systems using a
high level specification in XML and then interfacing this spec-
ification with a mobile agent based middleware, to realize the
desired environment. The workflow plan is specified in XML
in terms of shared objects, user roles, role-based security
requirements, operations, and workflow requirements. The
agent based middleware interprets the XML description of
the environment, and transparently launches agents to other
users’ nodes when operations need to be performed to ensure
workflow requirements.

We have presented our approach using a proof-of-concept
implementation of an example workflow authoring system
using Ajanta. Especially noteworthy is the fact that we are
able to leverage an agent based middleware for supporting
the security requirements prescribed in the workflow specifi-

cations as Ajanta provides security related components like
authentication, public key maintenance, access control, host
resource protection, and cryptographic services.

There are several areas that we plan to investigate further in
our research. We plan to add more dynamic behavior to the
system such as dynamic delegation of access rights and en-
abling participants to dynamically add entities to workflow.
Moreover, we plan to integrate state and activity charts in our
schema and extend the security policy so that it can incorpo-
rate workflow states. Also, an extension of our user interface
will support manipulation and display of various kinds of ob-
jects depending on their MIME types.

REFERENCES
1. BUSSLER, C. Enterprise-Wide Workflow Manage-

ment . IEEE Concurrency 7, 3 (July-September 1999),
32–43.

2. D. WODTKE, J. WEISSENFELS, G. W., AND KOTZ-
DITTRICH, A. Mentor Project: Steps Towards
Enterprise-Wide Workflow Management. In Interna-
tional Conference on Data Engineering (1996).

3. DEMURJIAN, S., TING, T., AND THURAISINGHAM,
B. User-role based security for collaborative comput-
ing environments . Multimedia Review 4, 2 (Summer
1993), 40–47.

4. DENGI, C., AND NEFTCI, S. Dflow workflow man-
agement system. In International Conference on
Database and Expert Systems Applications (DEXA)
(1997), IEEE, pp. 16–21.

5. DEWAN, P., AND SHEN, H. Access Control for Col-
laborative Environments. In Proceedings of the ACM
Conference on CSCW (1992), pp. 51–58.

6. GAIL KAISER, A. S., AND DOSSICK, S. A Mobile
Agent Ap-
proach to Lightweight Process Workflow. Available at
URL ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-021-
99.pdf.

7. GURUDUTH BANAVAR, SRI DODDAPANENI, K. M.,
AND MUKHERJEE, B. Rapidly Building Synchronous
Collaborative Applications By Direct Manipulation . In
CSCW 98 (98), pp. 139–148.

8. J.W. SHEPHERDSON, S. T.,
AND ODGERS, B. R. Cross Organisational Workflow
Co-ordinated by Software Agents. Available at URL
http://www.zurich.ibm.com/ hlu/WACCworkshop.

9. KARNIK, N., AND TRIPATHI, A. A Security Archi-
tecture for Mobile Agents in Ajanta. In Proceedings of
the International Conference on Distributed Computing
Systems 2000 (April 2000).

10. LI, D., AND MUNTZ, R. COCA: Collaborative Ob-
jects Coordination Architecture. In Proceedings of
CSCW’98 (1998), pp. 179–188.

11. MCCANNE, S., BREWER, E., AND KATZ, R. Toward
a Common Infrastructure for Multimedia-Networking
Middleware. In Seventh International Workshop on
Network and Operating System Support for Digital Au-
dio and Video (May 1997).

12. OMG . XML Meta Data Interchange.
http://www.omg.org.

13. P MUTH, D. WODTKE, J. W., WEIKUM, G., AND

DITTRICH, A. K. Enterprise-wide workflow manage-
ment based on state and activity charts. In Workflow
Management Systems and Interoperability, T. O. A. Do-
gac, L. Kalinichenko and A. Sheth, Eds. Springer Ver-
lag, 1998.

14. PETER MUTH, JEANINE WEISSENFELS, M. G., AND

WEIKUM, G. Workflow history management in virtual
enterprises using a light-weight workflow management
system . In Proceedings of the 9th International Work-
shop on Research Issues in Data Engineering (1999).

15. RATIONAL SOFTWARE. UML Documentation . Avail-
able at URL http:www.rational.com/uml/resources.

16. ROSEMAN, M., AND GREENBERG, S. Building Real-
time Groupware with GroupKit, A Groupware Toolkit.
In ACM SIGCHI’96 (March 1996).

17. SANDHU, R., COYNE, E., FEINSTEIN, H., AND

YOUMAN, C. Role-Based Access Control Models.
IEEE Computer 29, 2 (February 1996), 38–47.

18. SCHMIDT, M.-T. The Evolution of Workflow Stan-
dards . IEEE Concurrency 7, 3 (July-September 1999),
44–52.

19. SOLLINS, K., AND MASINTER, L.
RFC 1737: Functional Requirements for Uniform Re-
source Names. Available at URL http://www.cis.ohio-
state.edu/htbin/rfc/rfc1737.html, December 1994.

20. TRIPATHI, A., KARNIK, N., VORA, M., AHMED, T.,
AND SINGH, R. Mobile Agent Programming in Ajanta.
In Proceedings of the 19th International Conference on
Distributed Computing Systems (May 1999).

21. TRIPATHI, A. R., AND KARNIK, N. M. Protected
Resource Access for Mobile Agent-based Distributed
Computing. In Proceedings of the 1998 ICPP Work-
shop on Wireless Networks and Mobile Computing (Au-
gust 1998), IEEE Computer Society, pp. 144–153.

22. W3C. Extensible Markup Language (XML) 1.0,
W3C Recommendation 10. Available at URL
http://www.w3.org/TR/, February 1998.

23. WODTKE, D., AND WEIKUM, G. A Formal Foun-
dation For Distributed Workflow Execution Based on
State Charts. In International Conference on Database
Theory (1997).

24. WORKFLOW MANAGEMENT COALITION. Inter-
face 1 - Process Definition Interchange V 1.0 Final .
http://www.wfmc.org, 1998.

